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Quality assurance (QA) of an intensity-modulated radiation therapy (IMRT) plan is
more complex than that of a conventional plan. To improve the efficiency of QA,
electronic portal imaging devices (EPIDs) can be used. The major objective of the
present work was to use a commercial treatment planning system to model EPID
response for the purpose of pre-treatment IMRT dose verification.

Images were acquired with an amorphous silicon flat panel portal imager (aS500:
Varian Medical Systems, Palo Alto, CA) directly irradiated with a 6-MV photon
beam from a Clinac 21EX linear accelerator (Varian Medical Systems). Portal images
were acquired for a variety of rectangular fields, from which profiles and relative
output factors were extracted. A dedicated machine model was created using the
physics tools of the Pinnacle3 (Philips Medical Systems, Madison, WI) treatment
planning system to model the data. Starting with the known photon spectrum and
assuming an effective depth of 7 cm, machine model parameters were adjusted to
best fit measured profile and output factors. The machine parameters of a second
model, which assumed a 0.8 MeV monoenergetic photon spectrum and an effective
depth in water of 3 cm, were also optimized. The second EPID machine model was
used to calculate planar dose maps of simple geometric IMRT fields as well as a 9-
field IMRT plan developed for clinical trials credentialing purposes.

The choice of energy and depth for an EPID machine model influenced the best
achievable fit of the optimized machine model to the measured data. When both
energy and depth were reduced by a significant amount, a better overall fit was
achieved. In either case, the secondary source size and strength could be adjusted
to give reasonable agreement with measured data. The gamma evaluation method
was used to compare planar dose maps calculated using the second EPID machine
model with the EPID images of small IMRT fields. In each case, more than 95% of
points fell within 3% of the maximum dose or 3 mm distance to agreement. These
results are slightly poorer than those obtained using an ion chamber array, which
confirms agreement to within 2% of the maximum dose or 2 mm distance to agree-
ment for all points within these fields.
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I. INTRODUCTION

Recent improvements in the contrast and resolution of electronic portal imaging devices (EPIDs)
have made them an increasingly important component of current medical linear accelerators. In
addition to their use for patient positioning, significant efforts have been made by various
groups to use EPIDs for dose measurement for the purpose of quality assurance (QA) of treat-
ment plans,(1–4) in vivo dosimetry,(5,6) positioning verification for multileaf collimator compensator
thickness,(7) and in situ dosimetry.(8) Modern amorphous silicon EPIDs are typically characterized
by ease of set up, 12- to 16-bit grayscale depth, and submillimeter pixel separation. Prototype
versions of amorphous silicon EPIDs have been developed for the measurement of commissioning
data from a linear accelerator.(9)

Since these devices became available, serious efforts have been made to extract accurate dosi-
metric information from them. For a commercial EPID, the signal produced in the hydrogenated
amorphous silicon matrix has been found to be stable and approximately proportional to dose.(10–13)

But because EPIDs were primarily designed for localization imaging, several problems must be over-
come to facilitate dose measurement.

First, the response of the EPID with field size is not water-equivalent, which poses a problem for
direct dose conversion. This problem has been extensively studied and accounted for by several
investigators by either measuring or modeling the scatter kernel and glare kernel of the EPID.(12–15)

An EPID’s pixel elements are known to over-respond to low-energy photons.(16–18) This over-
response is attributed to enhanced photoelectric interaction of low-energy photons in the high
atomic number phosphor layer, resulting in a 13% increase in response relative to central axis at
15 cm off-axis where the beam has a greater low-energy component. This effect also reduces the
EPID response to radiation transmitted through closed multileaf collimator (MLC) leaves relative
to an open beam by a factor of 1.28 at central axis because of beam hardening through the MLC.(19)

Second, backscatter from components of the EPID support arm downstream from the detector
have been found to influence the signal by up to 5%.(20,21)

Third, a major problem arises from the automatic accounting of differential pixel response of the
EPID. Individual raw pixels of the aS500 show differences in sensitivity. An auto-correction pro-
cess involves the division of raw images by the flood field (FF) image. This FF image is acquired
with a large open field, and all raw EPID images are divided by it before they are stored and
displayed. However, the division procedure overlooks the fact that an inherent beam profile is
present in both the raw image and the FF image and is therefore eliminated from the final stored
image. Furthermore, pixels in various regions of the FF may see a different photon spectrum, which
influences their relative response correction through their non-water-equivalent response. Both
effects result in a corruption of dosimetric response of the EPID. Various approaches are used to
overcome this problem: for example, physically altering the FF to be uniform,(8,11,21) or correcting
the EPID image using a measured dose profile.(3,22) A fluence map deduced from the EPID image
can later be convolved with dose deposition kernels for a patient or water phantom, thereby
predicting the planar dose inside the patient or water phantom.(15,23,24) Greer(8) presented a method
to measure off-axis response and to subsequently account for it by further processing.

A further issue pertains to the ghosting effects in the portal imager, which result from the
change in pixel sensitivity and image lag in the readout of signal. These effects arise from the fact
that residual charge may be trapped in the bulk silicon matrix, possibly altering the electromagnetic
field and hence the sensitivity of a pixel.(25,26)

In the present paper, we introduce a novel practical approach to IMRT plan verification. We
define EPID response as the auto-FF and dark field–corrected planar image arising from accumula-
tion of charge in pixel elements because of direct irradiation of the portal imager at a given
source–to–portal imager distance without the addition of an absorber in the beam. The decision to
forgo the buildup layer was made for the following reasons: the setup is simple, the EPID images
appear sharper, and no modifications to maintenance and EPID QA procedures are needed. Our
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approach involves using the physics tools of a commercial treatment planning system (Pinnacle3:
Philips Medical Systems, Madison, WI) to create a dedicated machine model that, for a given
source-to-surface distance (SSD) and assumed effective depth in water, yields the planar dose
distribution at the isocenter of an IMRT beam that matches the image acquired by the EPID
centered on the isocenter irradiated by the beam at the same SSD. The machine model param-
eters—energy, incident fluence profile, and secondary scatter source width and intensity—were
adjusted to best fit calculated profiles and output factors to those extracted from EPID images.

The model parameters of the dedicated EPID machine may not necessarily be regarded as
having physical meaning, but the ability to fine-tune them at the commissioning stage to achieve
the best possible fit with measurements is of great benefit to a QA analysis because the detection
limit of errors is minimized (in contrast to most other methods published in literature, which model
the physical EPID in a physical beam spectrum in an effort to predict response). Furthermore, to
simplify its practical implementation, this technique models the response of the EPID used without
additional buildup and with default imaging settings. Most of the modeling approaches are based
on physical Monte Carlo modeling of the EPID or on empirical measurements.(22,27) The work
presented here is focused on the modeling of EPID response using convolution–superposition-
based treatment planning software in a manner similar to that seen in the work of Van Esch et al.,(3)

except that here, the existing water convolution kernels were used, whereas in the work of Van
Esch, they were replaced with the EPID response function. The work of Van Esch and colleagues
also reports on the effects of ghosting and imager saturation. These effects are equally relevant to
our work, but are not reported here. We report the development of an empirical EPID machine model
in Pinnacle3 and the testing of the model against EPID images of IMRT test patterns and of fields
from a clinical trials phantom benchmark plan.

II. MATERIALS AND METHODS

A. Measurements for EPID commissioning
All measurements were performed using an amorphous silicon aS500 EPID (Varian Medical Sys-
tems, Palo Alto, CA) supported by the Exact Arm (Varian Medical Systems) centered on the machine
isocenter. A 300 monitor units (MUs) per minute 6-MV photon beam was used for irradiation. The
EPID was operated in IMRT mode (0 syn delay, 0 reset frames, 9996 frames average) using Portal
Vision client software ver. 7.3.10, IAS2 software ver. 6.1.11, and a model IDU-11 detector. In this
mode, the EPID performs signal readout from individual pixels frame by frame until the beam is
turned off. A frame is a single readout of the whole matrix of 512 × 384 pixels. The integrated IMRT
acquisition mode results in a single image that is the sum of all frames acquired during beam
delivery, divided by the number of frames. Portal images were acquired for various field sizes
defined by jaws and MLCs (Table 1). The data were processed using ImageJ, a Java-based public
domain image processing software application developed at the National Institutes of Health
(http://rsb.info.nih.gov/ij/index.html). In-plane and cross-plane profiles through the central axis
were both extracted from the image. From the image of a given field, the central axis response is
determined from the mean grayscale value of the central 9 × 9 pixels. Averaging over this (approxi-
mately) 7-mm square reduces the effect of pixel sensitivity variation. Output factor (OF) was
calculated as the ratio of mean grayscale for a given field to that of a 10 cm square reference field.
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B. Pinnacle modeling
A Pinnacle3 (ver. 7.4f) radiation therapy planning system was used to model the EPID response.
The convolution–superposition algorithm used in Pinnacle3 is based on the work of Mackie et
al.(28,29) and Papanikolaou et al.(30) For incident energy fluence, the algorithm calculates total
energy released per unit mass (TERMA) in the medium, which is subsequently convolved with the
energy deposition kernel to compute dose in the medium.(5) Using ImageJ, in-plane and cross-
plane profiles and OFs were extracted from EPID images of the field geometries set out in Table 1.
The profiles were then imported into Pinnacle3 with the depth in water set to 7 cm. (Once the EPID
profiles are imported, the assigned depth in water is not a parameter that can be varied.) The choice
of 7 cm as the depth was based on observations of our own and those of others(12) that variation
in EPID central pixel response as a function of field size approximates that of an ion chamber at
between 5 cm and 10 cm depth in water. Preserving this variation in the model is important if IMRT
segments of various sizes are to sum with correct relative magnitude.

The clinical machine model of a Varian 21EX 6-MV photon beam was used as a starting point for
this model (henceforth called PinEPID7). The adjustable model parameters were energy spectrum,
radial fluence profile, primary source size, secondary source size and strength, jaw and MLC
transmission, and electron contamination. In contrast to the work of Van Esch et al.,(3) our work
with the physics tools within Pinnacle3 did not provide the ability to replace the scatter kernel with
the dose response function for the EPID. The clinical beam photon spectrum was retained for the
PinEPID7 model. All other model parameters were iteratively adjusted until a best fit with measured
profiles and output factors was achieved. A second model (PinEPID3) was created in which the
water-equivalent depth of the measured EPID profiles was taken to be 3 cm while preserving the
same source-to-detector distance of 100 cm. In this geometry, a clinical beam photon spectrum
does not model the observed variation of EPID response with field size. At shallow depths, this
variation is better fitted using lower photon energy. A monoenergetic beam was used because the
model must reproduce the EPID response only at the single fixed depth of irradiation.

Once the depth and energy of the PinEPID3 model were selected, the other model parameters
were again iteratively adjusted to achieve the best fit to the measured profiles and output factors.
The sensitivity of this model to the choice of depth and energy was evaluated by altering either the
modeling depth by ±1 cm or the energy by ±0.2 MeV. The altered models were compared with the
original in terms of how well they fit the measured profiles (Fig. 1) and output factors (Fig. 2).

The raw data saved by the imaging acquisition system represents the imager response per
frame. This response may be calibrated to a dose if the number of acquired frames is known. This
number can be determined by examining the image properties using Portal Vision tools. However,
the number of frames could not be deduced from the raw data file alone during the post-processing
step. Each measured profile was therefore renormalized to fit the corresponding calculated profile
at the central axis (Figs. 3 – 6). Absolute calibration of the EPID, while straightforward, has not been
implemented in this work.

TABLE 1. Fields used for modeling electronic portal imaging device (EPID) response in Pinnacle3, expressed as a
single dimension for square shapes or as width by length for rectangular shapes

Jaws (cm at isocenter)            MLC (cm at isocenter)

1, 2, 3, 5, 8, 10, 15, 18, 20, 25, 28 Parked
10 1, 2, 3, 5, 6, 8

6 × 1, 6 × 2, 6 × 3, 4 × 3, 4 × 2, 3 × 6, 3 × 4, 3 × 2
3 × 1, 2 × 6, 2 × 4, 2 × 3, 2 × 1, 1 × 6, 1 × 3, 1 × 2

20 10, 15, 18, 18 × 10, 15 × 6, 15 × 3, 10 × 18, 10 × 4
6 × 15, 4 × 18, 4 × 10, 3 × 5
10 (offset 5 cm cross-plane)
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FIG. 1. Percent error in computed minus measured profiles normalized to central axis plotted as a function of off-
axis distance (in cm). The curves correspond to the PinEPID3 model and the models derived from it by altering
either the modeling depth (PinEPID2 and PinEPID4) or machine energy (PinEPID3+ and PinEPID3–) as
explained in the text. The dose error peaks to about 15% at the field edge because of the large dose gradient there.
Nevertheless, the distance to agreement in this neighborhood is within about 2 mm.

FIG. 2. Ratios of computed-to-measured output factors normalized to unity for a 10-cm square field plotted as a
function of equivalent square field size. Calculations use the PinEPID3 model and the models derived from it by
either increasing or decreasing the modelling depth by 1 cm (PinEPID4 and PinEPID2 respectively) or by
increasing or decreasing the machine energy by 0.2 MeV (PinEPID3+ and PinEPID3– respectively).
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FIG. 4. Cross-plane profiles normalized to unity at XC = 0, comparing PinEPID3 and PinEPID7 model results with
electronic portal imaging devices (EPID) measurements for a step-wedge-shaped intensity-modulated radiation
therapy test pattern.

FIG. 3. In-plane profiles normalized to unity at YI = 0, comparing the PinEPID3 and PinEPID7 model results with
electronic portal imaging device (EPID) measurements for a well-shaped intensity-modulated radiation therapy
test pattern.
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C. Testing the EPID model
Step-and-shoot IMRT test patterns resembling a well, step-wedge, tower, and checkerboard were
planned and delivered with the EPID positioned at isocenter. For each field, the EPID was irradiated
to 200 MUs with a dose rate of 300 MU/min. To calculate the EPID image, the clinical machine was
replaced with the PinEPID3 or PinEPID7 machine model. This replacement must be done by run-
ning a UNIX script outside of the planning system so as to retain the planned leaf segments (which
would otherwise be reset if the machine were to be changed within the plan).

To test the two models, planar doses were computed at a depth of 3 cm (97 cm SSD) and 7 cm (93 cm
SSD) for each beam. The dimensions of the dose plane were chosen to match those of the portal
images acquired at a plane intersecting the isocenter with the EPID: 512 × 384 pixels with 12.8 pixels
per centimeter over an area of 40 × 30 cm2. Figs. 3 and 4 show a relative comparison between
measured EPID images and the planar dose maps computed using the EPID models for 2 of the 4
test patterns. A one-dimensional chi-square test was used to evaluate the model fit to the EPID
measurements. The χ2 score was evaluated according to method described by Press et al.,(31)

    , (1)

where EPIDi and PinnEPIDi are, respectively, the values of the ith pixel of the acquired and calcu-
lated image normalized to the calculated value at the central axis.
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FIG. 5. In-plane profiles (normalized to unity at a point in the large dark region of the inset image) comparing
measured with modeled data for beam 6 of the RPC phantom (Radiological Physics Center: M.D. Anderson,
Houston, TX) plan. Measurements made with the I′mRT MatriXX (IBA Dosimetry, Schwarzenbruck, Germany)
and with the electronic portal imaging device (EPID) are compared with planar dose calculations using the
commissioned Pinnacle model and the Pinnacle EPID model respectively.
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D. IMRT plan verification
A 9-beam step-and-shoot IMRT treatment plan was designed for an RPC (Radiological Physics
Center: M.D. Anderson, Houston, TX) head phantom with a 6 MV 21EX accelerator model in
Pinnacle3 for the purpose of clinical trial credentialing. Before irradiation of the phantom, a two-
dimensional ion-chamber array, I′mRT MatriXX (IBA Dosimetry, Schwarzenbruck, Germany), was
irradiated at 100 cm source-to-axis distance with 5 cm polystyrene buildup. The dose for each beam
was recorded and evaluated against the Pinnacle-calculated planar dose map using the digital
gamma evaluation algorithm within the OmniPro-I′mRT software. The plan was also delivered at
300 MU/min to the EPID positioned at isocenter, and planar images were acquired for each beam
separately. As described in the preceding subsection, the Varian 21EX machine model was replaced
with the PinEPID3 machine model, and the planar dose maps were computed for each field at 3 cm
depth (97 cm SSD) of water. Representative relative profiles are plotted in Figs. 5 and 6, which show
the typical range of modulation found in IMRT fields. A relative comparison between the measured
and computed images was done by normalizing the measured image to the calculated value at a
point within a uniform high-dose region of the field and then using a gamma evaluation technique
implemented in-house.(32) For the gamma evaluation, a criterion of 3% of maximum dose difference
and 3 mm distance to agreement was applied to generate the gamma map. The OmniPro I′mRT
software was used to compare calculated and measured planar doses. Here, the digital gamma test
was applied to all points registering greater than 10% of the maximum dose.

FIG. 6. Cross-plane profiles (arbitrarily normalized for best fit) comparing measured with modeled data for beam 9
of the RPC phantom (Radiological Physics Center: M.D. Anderson, Houston, TX) plan. Measurements made with
the I′mRT MatriXX (IBA Dosimetry, Schwarzenbruck, Germany) and with the electronic portal imaging device
(EPID) are compared with planar dose calculated with the commissioned Pinnacle model and the Pinnacle EPID
model respectively.

III. RESULTS

A. Model optimization
Certain parameters were straightforward to fit because they affected only certain aspects of the
profile shape. Electron contamination was turned off, and the incident fluence profile was adjusted
to match the in-field portion of the 28-cm square-field profile derived from the EPID image. Incident
fluence variation with off-axis distance is plotted for both models in Fig. 7.
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The primary source size has only a small effect on the slope of the penumbra, but it was minimized
to achieve as steep a penumbra as possible. Jaw transmission was reduced relative to the clinical
model to lower the calculated output factor for very small fields. Because most IMRT segments are
collimated with MLC leaves, the leaf transmission was increased to boost the dose in the profile tails,
and the leaf radius was slightly reduced to increase the rounding of the profile shoulder.

The energy and the secondary scatter source size and strength had the greatest effect on the fit
of the model. Variation in any of these parameters affects profiles and output factors alike. The main
challenge was to model the relatively large measured variation in phantom scatter factor (which
suggests a depth of about 7 cm), while at the same time modeling the sharp drop-off of dose out-
of-field in the measured profiles (which suggests a much shallower depth). These two objectives
tend to conflict. The PinEPID7 model (which was based on the clinical machine spectrum) yielded
profiles with shoulders that were too rounded. Correcting for these shoulders by reducing the
scatter source magnitude resulted in poor agreement with measured output factor variation with
field size.

The second model, PinEPID3, took advantage of shallow depth and lower energy to sharpen the
profile penumbra for the same scatter source size and strength. A depth of 3 cm and energy of 0.8 MeV
more closely fit the measured data. The selected energy is not truly an optimized value. The three
parameters of energy, scatter source size, and scatter source strength are not independent with
respect to their influence on profile and output factor variation. Starting with the scatter source
parameters of the clinical machine model, the energy was adjusted to give the best agreement with the
measured profile shoulders and output factors. The secondary source parameters were then fine-
tuned to get the best overall fit to the measured data. Agreement between measured and computed
profiles with the PinnEPID3 model was slightly improved over the PinEPID7 model. The agreement
between modeled and computed output factors was also improved for smaller fields (Fig. 8).

Other combinations of energy and depth may also result in acceptable models once secondary
scatter source size and strength are optimized. However, at higher energy or shallower depth, the
output variation with field size for larger fields tends to be less than that observed from measure-
ment; at lower energies and greater depths, it tends to be greater than the variation observed from
measurement. This differential is illustrated in Fig. 2, in which the modeling depth and energy of the
PinEPID3 model are varied while the other modeling parameters are kept constant.

FIG. 7. Relative incident photon fluence profile used for the PinEPID3 and PinEPID7 models, plotted in arbitrary
units.
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This variation also has an effect on the calculated profiles. Fig. 1 shows the percent error
between computed and measured profiles of a 6 × 15-cm MLC collimated field normalized to the
beam central axis. As in Fig. 2, the profiles are calculated using the PinEPID3 model or those derived
from it by altering either the modeling depth by ±1 cm (PinEPID2 and PinEPID4) or the incident
photon energy by ±0.2 MeV (PinEPID3+ and PinEPID3–). It is evident from Fig. 1 and observed in
general that the models corresponding to shallower depths or higher energy have profile shoulders

FIG. 8. Output factors from the measured EPID image (filled triangles), and a PinEPID model computation (filled
squares) plotted as a function of field size. The output correction factors, OFc (filled circles), are the ratios of
measured-to-computed output factors; they equal unity in an ideal case. (a) Data for the PinEPID7 model. (b)
Data for the PinEPID3 model.

(a)

(b)
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that are too square just within the field edge with dose falling too quickly outside the field. On the
other hand, the models corresponding to greater depth or lower energy have profile shoulders that
are too rounded within the field with tails that do not fall rapidly enough just outside the field edge.
Note that, although the absolute error is large near the field edge at 7.5 cm, the distance to agree-
ment is within 2 mm for all points in the high gradient region of the profile. The largest error (about
2%) occurs in the region of the profile under the MLC. For the PinEPID3 model, the maximum in-
field error is less than 1.3% at 7.1 cm from the central axis. Beyond that point, the gradient becomes
steep, resulting in a maximum distance to agreement of about 1 mm. Under the MLC, the profiles
agree to within about 1.5%; under the jaws, the agreement is within about 2%. This level of
agreement is consistent for all of the profiles used to develop the model, provided that the mea-
sured profiles are symmetric about the central axis.

Table 2 summarizes the parameters that were found to best fit the measured profile and relative
output factor data for the both PinEPID3 and PinnEPID7 machine models.

TABLE 2. Pinnacle3 optimized 6 MV parameters for a Varian 21EX linear acceleratora (21EX), an electronic portal
imaging device (EPID) model for 7 cm depth (PinEPID7), and an EPID model for 3 cm depth (PinEPID3)

         Parameters 21EX PinEPID7 PinEPID3

Source size
X (cm) 0.04 0.01 0.01
Y (cm) 0.04 0.01 0.01

Secondary source
Gaussian height (cm) 0.08 0.1 0.1
Gaussian width (cm) 1.4 1.7 1.7

Jaw transmission 0.007 0.0011 0.002
MLC transmission 0.015 0.015 0.018
Rounded leaf tip radius (cm) 6.5 6 6
Energy Modified Modified 0.8 MeV

Mohan spectrum Mohan spectrum

a   Varian Medical Systems, Palo Alto, CA.

B. Model evaluation
The profiles computed from the PinEPID7 model agreed with the measured EPID profiles to just
within the VanDyk(33) criterion (which is commonly used to evaluate a treatment planning model);
those computed from the PinEPID3 model passed the criterion somewhat more easily. As shown in
Fig. 8(a), computed output factors of the PinEPID7 model deviated from measurements by up to 7%
for the smallest field, but otherwise the agreement was within about 2%. The output factors computed
from the PinEPID3 model [Fig. 8(b)] agreed with those measured to within 2% for all field sizes.

Figs. 3 and 4 show relative EPID response profiles computed using the two EPID models
PinEPID3 and PinEPID7 plotted with the EPID measurements for 2 of the 4 IMRT test patterns. In
all 4 IMRT test patterns, both models fulfill the gamma criterion; however, as indicated in Table 3,
higher χ2 scores resulted for PinEPID7 than for PinEPID3. The superiority of PinEPID3 resulted in
subsequent comparisons considering only the latter model.

A 9-beam IMRT plan for a RPC head phantom was verified using the process set out in Section
II.D. Representative profiles plotted in Figs. 5 and 6 for 2 of the beams show good agreement with
the EPID measurements. The gamma evaluation histograms calculated for all 9 beams indicate that
95% of all points pass the preset criterion of 3% dose or 3 mm distance to agreement for each beam.
Fig. 9 shows representative histograms for beams 6 and 9. For comparison to I′mRT MatriXX
results, the data were reanalyzed using the OmniPro software with the same dose and distance-to-
agreement criterion, but with a 10% of maximum dose threshold. By selectively renormalizing the
data, the percent of pixels passing the digital gamma test for beam 6 was 99.4 for the EPID as
compared with 99.1 for the MatriXX, and the percent for beam 9 was 99.5 for the EPID as compared
with 100 for the MatriXX.
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(a)

(b)

TABLE 3. Comparison of χ2 scores corresponding to the fit of the PinEPID7 and PinEPID3 models to electronic
portal imaging device (EPID) measurements for each of the four intensity-modulated radiation therapy test
patterns analyzed

Test pattern PinEPID3 PinEPID7

Tower 1.1 3.1
Well 3.0 5.1
Step-wedge 1.1 8.1
Checkerboard 3.6 9.0

FIG. 9. Histograms of gamma indices for (a) beam 6 and (b) beam 9 of the RPC head phantom (Radiological Physics
Center: M.D. Anderson, Houston, TX). A criterion of 3 mm distance to agreement and dose difference of 3% of
maximum dose was used in the evaluation procedure.
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IV. DISCUSSION

A limitation of this technique for QA of IMRT fields is that it does not verify the clinical calculation,
because the clinical machine is substituted by the EPID machine. This technique verifies errors in
delivery only; other means are required for verifying the calculation.

With regard to the FF correction, our version of Portal Vision did not include a dosimetric
workspace in which the beam profile correction is automatically applied. This step could have been
performed as part of our own image processing, but we chose instead to model the flattened beam
profiles recorded by the EPID, which does not contain horns because of the auto FF correction.

Although the physical characteristics of the EPID are well understood, they could not be
directly incorporated into our model, which treats the EPID as water-equivalent. At all but the
shallowest depths, the falloff in the open beam EPID profile is more rapid than that in a clinical beam
in water. At shallow depths, however, the shoulders of the EPID profile are more rounded than
those of the clinical beam. The sharper profile falloff for the EPID as compared with an ionization
chamber in water is partly a result of the higher aS500 EPID pixel resolution (0.781 mm per pixel as
compared with a typical ion chamber diameter of about 4 mm) and partly a result of the smaller
physical depth for the given water-equivalent depth of 8 mm (specified by the vendor). The higher
tails arise most probably because of over-response to low-energy photon scatter in the EPID.
Other authors(14) have shown that the rapid falloff in the penumbra region of the profiles is a result
of the difference between the scatter kernel of water and that of the EPID and to the glare kernel of
the EPID. The higher resolution of the aS500 as compared with an ion chamber is advantageous for
measuring doses in sharp dose gradients and in penumbra regions because its small size means
that it is not prone to partial-volume effects.

The scatter characteristics of an EPID as compared with water for a 6 MV beam also influence
output factor variation with field size. Matching computed and measured output factors is impor-
tant, because Pinnacle3 applies a single equivalent square–based output factor correction, OFc,
calculated from the ratio of computed to measured output factors. The OFc depends only on the
fixed jaw positions and not on the MLC positions, which are varied during segmented IMRT
delivery, causing a corresponding variation in phantom scatter factor. For the PinnEPID3 model,
OFc was less than 1% for all clinically relevant fields [Fig. 8(b)], recognizing that, in practice,
segments of equivalent squares less than 3 cm or greater than 22 cm are disallowed. The small
magnitude of this correction indicates that the phantom scatter factor variation with MLC colli-
mated field size is accounted for in the model to within about 1%.

Rather than correct the EPID image with the beam profile, we used a radial photon fluence
correction (plotted in Fig. 7). This approach necessitates the alignment of the beam central axis
with the EPID center when imaging (to within a few millimeters) to reproduce the geometry when FF
was acquired. The radial fluence correction plays the same role as the radial dose profile correction
commonly used by others.

The modest improvement seen with the PinEPID3 model over the PinEPID7 model suggests that
any number of assumed depths can lead to acceptable models once model parameters are suitably
adjusted. The limited success of the PinEPID7 model is likely a result of 7 cm being too deep.
However, no attempt was made to adjust the energy spectrum for this model, and so the possibility
of improving the fit by that means cannot be excluded. On the other hand, PinEPID3 was developed
by first choosing a reasonable modeling depth and then adjusting the EPID machine modeling
parameters to obtain the best fit with the measured data. The alternative approach of starting with
the clinical machine’s modeled photon spectrum and then adjusting the modeling depth and other
parameters is logistically more cumbersome to implement because modeling depth is not a param-
eter that is easily adjusted. As shown in Figs. 1 and 2, varying either the incident energy or the
modeling depth alone in the PinEPID3 model does not improve the fit to the measured data. The
profile error plot of Fig. 1 corresponding to the PinEPID3 model is consistent with generally
observed agreement within 1.5% or 1 mm for in-field points of measured profiles that are symmetric
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about the central axis. In regions outside the field, agreement with measured profiles was generally
within 2%. Measured profiles that displayed asymmetry could not be modelled by any configura-
tion of machine parameters in Pinnacle3, which requires that commissioning profiles be symmetric.
The observed asymmetry in some profiles is attributed to backscatter from the support arm, which
differs from the FF backscatter. It may be possible to reproduce the observed asymmetric profiles
by combining the Pinnacle3 EPID machine model with a suitable choice of calculation geometry,
but further work is needed to investigate this possibility.

Because the EPID is modelled at a single fixed depth for use in a fixed geometry, it is not
necessary to model the variation in photon spectrum with depth. A monoenergetic photon spec-
trum was used, in which the energy was treated as a modelling parameter. The differential EPID
response to beam hardening through MLC leaves was accounted for by adjusting the MLC trans-
mission to fit the profile tails of MLC-collimated fields. The influence of off-axis beam softening on
EPID response was accounted for by fitting the radial fluence (Fig. 7) to the in-field portion of the
EPID measured profiles.

Comparison of computed and measured profiles for geometric IMRT test shapes showed rea-
sonably good agreement (within 2% of maximum dose in low gradient regions). Examples are
illustrated in Figs. 3 and 4. Comparing the two machine models on the basis of a χ2 test confirms
that the PinEPID3 model provides a better fit. This test was used to evaluate the models because it
removes the biasing of data in the high-dose region, penumbra, and tails by normalizing to local
values. The poorer fit of the PinEPID7 model in the low-dose tails of the test shapes bears out this
conclusion. The largest discrepancy appears in Fig. 3, where asymmetry is observed in the mea-
sured EPID profile. This asymmetry is attributed to non-uniform backscatter from the support arm
of the EPID, which affects the FF pixel sensitivity calibration. This seems to be a persistent problem
that becomes more severe as fields differ markedly in shape from the FF. Using the Pinnacle3 EPID
model in conjunction with a specific phantom data set that models the effect of the support
structures is a potential solution that warrants further investigation.

Applying the method of Section II.D for IMRT plan QA to the RPC phantom treatment plan, the
PinEPID3 model generated profiles that generally overlaid the measurements for all 9 beams. The
largest discrepancy occurred at narrow dose peaks and valleys where the Pinnacle model consis-
tently under-represents the extent of the signal excursions. Note, however, that these discrepancies
are within 3% of the maximum dose except for the deep valley in Fig. 4, where the discrepancy is
about 3%. An in-house gamma analysis based on 3% maximum dose or 3 mm distance to agreement
indicates that more than 95% of points pass for each beam. Re-analysis of these beams using the
digital gamma function of the OmniPro I′mRT software, rejecting pixels less than 10% of the
maximum dose and selectively renormalizing the images, yields somewhat better results in which
typically more than 99% of pixels pass. When this same analysis is applied to measurements using
the I′mRT MatriXX with corresponding planar dose maps calculated in Pinnacle, a pass rate of
more than 99% is typically seen for a 2% maximum dose or 2 mm distance-to-agreement digital
gamma test. For these fields, the Pinnacle EPID model does not reliably predict the EPID response
to better than 3%. Nevertheless, the higher resolution of the EPID relative to the MatriXX has an
obvious benefit in terms of the size of errors that can be resolved. The failure of the EPID model
to accurately reproduce the sharp EPID signal excursions suggests that the choice of a 3-cm
modeling depth allows for too much scatter, which broadens and shortens the dose peaks and
valleys. The trade-off in going to a shallower modelling depth is an insensitivity to scatter that
is needed to model the variation of EPID response with field size. The compromise struck with the
current model appears to work well with gamma analysis based on 3% maximum dose or 3 mm
distance to agreement.

The current method may be used to replace film-based IMRT QA by applying the schema set
out in Section II.D. The number of IMRT plans undergoing QA verification at our center would
make a film-based system prohibitively labor-intensive. Our IMRT QA program is currently based
on ion-chamber array measurements, but the EPID-based approach presented here may find a role
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as a cost-effective backup system because no additional infrastructure is needed. The method is
simple to implement in any clinic with an IMRT-capable treatment planning system and an EPID
that can integrate over the entire radiation dose to be evaluated. In centers that have no EPID
capability, the method may potentially be generalized to model any suitable portal imaging modal-
ity (such as film or computed radiography cassettes).

V. CONCLUSIONS

A machine model created using Pinnacle3 physics tools can be used to calculate planar dose maps
that approximate images acquired with the Varian aS500 EPID. Although the calculation assumes a
water-equivalent phantom, the modelled machine parameters are altered from those of the clinical
machine to accommodate the portal imager’s over-response to low-energy scatter (which contrib-
utes to a large variation of relative output with field size) and shallow effective depth (which gives
rise to sharp profile penumbra). From this perspective, an assumed energy of 0.8 MeV and a depth
of 3 cm may be considered a reasonable starting point for the model. Energy and secondary scatter
source size and strength had the largest effect on profile penumbra and output factor, but their
effects were not independent. These parameters were adjusted iteratively to best fit the data.
Fitting the remaining parameters was straightforward. The resulting model predicts relative EPID
response to within a few percent when small IMRT fields are test-imaged. Further work is needed
to account for backscatter from the support arm in the Pinnacle3 calculation. Nevertheless, our
method is expected to find application as a backup system for pre-treatment patient-specific QA in
our clinical IMRT program.
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