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Porphyra tenera (laver) has long been a popular and traditional seaweed food in Korea, Japan, and China. Historically, it was
known as a marine medicinal herb to treat hemorrhoids and cholera morbus in Donguibogam. We investigated the effects of
P. tenera extract (PTE) for its antioxidant and anti-inflammatory activities. .ese activities were measured using assays for 2,2-
diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging and its superoxide dismutase- (SOD-) like activity,
and through the inhibitory production of inflammatory mediators (prostaglandin E2 (PGE2), NO, tumor necrosis factor alpha
(TNF-α), and interleukin-6 (IL-6)) in lipopolysaccharide- (LPS-) stimulated Raw 264.7 cells. .e antioxidant assay results showed
that PTE displayed DPPH radical scavenging activity (46.44%), NO radical scavenging activity (67.14%), and SOD-like activity
(80.29%) at a concentration of 5mg/mL. In the anti-inflammatory assays, treatment with PTE (1mg/mL) significantly inhibited
expression levels of LPS-induced COX-2 and iNOS, as well as the production of PGE2, NO, TNF-α, and IL-6. .ese results show
that PTE has antioxidant and anti-inflammatory properties and provide scientific evidence to explain the antioxidative and anti-
inflammatory properties of PTE.

1. Introduction

Inflammation is a host response to pathogen attack and is
characterized by redness, heat, pain, and swelling. Over the long
term, this response can lead to tissue damage and the patho-
genesis of diverse disorders, such as atherosclerosis, asthma, and
arthritis [1, 2]. Several inflammatory mediators are involved
during an inflammatory response. Among them, COX-2, iNOS,
and cytokines like IL-6 and TNF-α play significant roles and are
considered as significant anti-inflammatory targets [3]. More-
over, when Raw 264.7 cells are activated, they produce reactive
oxygen species (ROS), which cause oxidative stress. Oxidative
stress is an inflammatory mediator that induces the release of
nitric oxide (NO) and inflammatory cytokines [4]. NO is a

radical made from L-arginine via NO synthase. NO contributes
to the degeneration of inflammatory disorders, suppresses
mitochondrial enzymes, and activates cyclooxygenases (COXs)
to produce prostaglandins. In particular, the COX-2 enzyme is
involved in the production of prostaglandin E2 (PGE2) [5, 6].
TNF-α is also a crucial mediator in the inflammatory response
that leads to innate immune responses via the release of other
inflammatory cytokines [7]. Conversely, IL-6 is produced by
macrophages and is an important inflammatory cytokine in the
acute phase response [8]. Accordingly, an inhibitor of NO,
COX-2, ROS, and inflammatory cytokines is a crucial target for
the treatment and prevention of inflammatory diseases.

Porphyra tenera (laver), a type of red algae (phylum:
Rhodophyta, class: Bangiophyceae, order: Bangiales), has
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long been a popular and traditional seaweed food in
Korea, Japan, and China [9]. P. tenera is rich in protein,
carbohydrates, minerals, and vitamins and low in calo-
ries. Unlike other sea algae, P. tenera contains many free
sugars, such as the major carbohydrates isofloridoside
and floridoside. It also contains dietary fiber, including
hemicellulose, which is a cell wall component and an
insoluble polysaccharide [10, 11]. Moreover, P. tenera
contains diverse inorganic and organic substances, in-
cluding tocopherols, carotenoids, and polyphenols [12].
Importantly, P. tenera reportedly functions as a marine
medicinal herb for the treatment of hemorrhoids and
cholera morbus in Donguibogam [13]. It is reported that
P. tenera functions as an antioxidant [14], has anti-in-
flammatory activities [15], and exerts antimutagenic ef-
fects [16]. Furthermore, Song et al. [17] reported that
P. tenera extract (PTE) activates the immune response in
mouse Raw 264.7 cells via NF-κB signaling. However, the
molecular mechanisms underlying the antioxidative and
anti-inflammatory activities of PTE remain unknown. In
the present study, we examined the antioxidant and anti-
inflammatory profile of PTE. Our data provide a basis for
understanding the mechanisms underlying the inhibitory
effects of PTE on oxidation and inflammatory responses.

2. Materials and Methods

2.1. Chemicals and Reagents. Two reference standards,
chlorogenic acid and palmitic acid, were purchased from
Sigma Aldrich Chemical Co. (St. Louis, MO, USA). .e
purity of these reference standards was greater than 98%.
Ultra-high-performance liquid chromatography- (UPLC-)
grade solution, acetonitrile, methanol, and other reagents
were purchased from J. T. Baker Chemical Company
(Phillipsburg, NJ, USA). Anti-COX-2 and peroxidase-con-
jugated secondary antibodies were obtained from Santa Cruz
Biotechnology Inc. (Santa Cruz, CA, USA). In addition, anti-
β-actin and anti-iNOS antibodies were obtained from
Calbiochem (San Diego, USA.). .e enzyme-linked im-
munoassay kit of PGE2 was obtained from R&D Systems
(Minneapolis, USA), and the TNF-α and IL-6 enzyme im-
munosorbent assay kits were purchased from Pierce
Endogen (Rockford, USA). MTT, LPS, sulfanilamide, L-N6-
(1-Iminoethyl)lysine (L-NIL), NS-398, and all other chem-
icals were purchased from the Sigma Chemical Co. (St.
Louis, MO, USA).

2.2. Preparation of PTE. P. tenera was purchased from
Jindoherb Co. (Jindo, Jeollanam-do, Korea). .e voucher
specimens (Porphyra tenera, PNU10-150) have been de-
posited into the Herbarium of Ducom in the Korean

Medicine, Pusan National University, South Korea. P. tenera
(50 g) was extracted with 3 liters of boiling purified water for
3 h long and filtered via a filter paper (Advantec No. 2 Filter
Paper; Advantec Toyo Kaisha, Ltd., Tokyo, Japan). .e fil-
trate was then lyophilized in a freeze drier (Ilshin, Seoul,
Korea). .e yield of lyophilized PTE was 2.32%. .e ly-
ophilized PTE powder was dissolved in purified water and
filtered via a 0.22 μm filter (Nalgene, USA) prior to use.

2.3. Profiling the Chemical Contents of PTE by UPLC

2.3.1. Chromatography Conditions. We applied an UPLC
(Waters Corp., Milford, USA), supplied with aWaters pump
ACQUITY™ UltraPerformance LC system (Waters Corp.)
and a Waters ACQUITY™ photodiode array (PDA) de-
tector, for the analyses..e Empower ChromatographyData
System (Waters Corp.) was used to record the output signal
from the detector and a Waters ACQUITY™ BEH C18
column (1.7 μm, 2.1× 100) was used for separation of the
products. .e mobile stage was constituted of acetonitrile
and water with a gradient system (0.4mL per min). .e
volume for injection was 2 μL. .e UV wavelength for
detection was set up at 280 nm. .e temperature for the
column was set up at 22–25°C.

2.3.2. Preparation of the Standard Solutions and Samples.
Standard stock solutions of the marker components,
chlorogenic acid, and palmitic acid, were prepared by dis-
solving them at a concentration of 1mg/mL in 10mL
methanol. Working solutions were produced by diluting the
stock solution of standard with methanol. .e standard
stock solutions and working solutions were stored at 4°C.
For the sample preparation, the PTE was dissolved in
methanol (10mg/mL). Before UPLC, the sample was filtered
via a 0.22 μm filter.

2.4. Antioxidant Assays

2.4.1. DPPH Radical Scavenging Activity Assay. Electron
donating ability was evaluated using 1,1-diphenyl-2-pic-
rylhydrazyl (DPPH) by the method of Blois [18]. Briefly,
100 μL of DPPH solution (0.4mM in ethanol) was added to
100 μL of PTE (dissolved in ethanol) at concentrations of
0.1–5mg/mL. Ethanol was used as the control for the ex-
periments. .e mixture was incubated for 15min at
22–25°C. .e optical density was measured at 517 nm by a
microplate reader (Tecan Group Ltd., Männedorf, Swit-
zerland). Ascorbic acid was applied as a positive control. .e
capacity to scavenge the DPPH radical was calculated by the
subsequent formula:

DPPH radical scavenging activity(%) �
absorbancecontrol − absorbancetreatment( 􏼁

absorbancecontrol
× 100, (1)
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where absorbancecontrol and absorbancetreatment are the ab-
sorbance of the control and the treatment, respectively.

2.4.2. NO Radical Scavenging Activity Assay. NO radical
scavenging activity was measured according to Kato et al.
[19]. Briefly, 40 μL of each sample concentration was added
to 20 μL of 1mM NaNO2 solution, followed by the addition
of 140 μL of 0.1N HCl (pH 1.2). .e mixture was allowed to
react at 37°C for 1 h. Next, 40 μL of the reaction mixture was
added to 200 μL of 2% acetic acid, followed by mixing with
16 μL of Griess reagent. After incubating at 22–25°C for
15min, the optical density was measured at 520 nm by a
microplate reader (Tecan Group Ltd.). Ascorbic acid was
applied as a positive control. .e NO radical scavenging
activity was calculated as (%)� (1− (A−B)/C)× 100, where
A is the optical density of the sample without Griess reagent,

B is the absorbance of the sample with Griess reagent, and C
is the absorbance of the control.

2.4.3. SOD-like Activity Assay. .e SOD-like activity was
evaluated by determining the amount of pyrogallol needed
to catalyze the conversion to H2O2, based on Marklund and
Marklund [20]. .e reaction mixture contained 20 μL of the
sample (10mg/mL) and 300 μL of 50mM Tris-HCl buffer
(pH 8.5), which were mixed with 10mM EDTA and 20 μL of
7.2mM pyrogallol. .e mixture was incubated at room
temperature for 10min, and then the reaction was blocked
by adding 10 μL 1N HCl. .e optical density was measured
at 420 nm by a microplate reader (Tecan Group Ltd.).
Ascorbic acid was applied as a positive control..e SOD-like
activity was calculated with the following formula:

SOD − like activity(%) �
absorbancecontrol − absorbancetreatment( 􏼁

absorbancecontrol
× 100, (2)

where absorbancecontrol and absorbancetreatment are the ab-
sorbance of the control and the treatment, respectively.

2.5. Cell Culture. Raw 264.7 cells (ATCC, Manassas, USA)
were maintained in DMEM (Hyclone; .ermo Fisher Sci-
entific, Waltham, USA) supplemented with 10% heat-
inactivated fetal bovine serum (Sigma Aldrich Chemical
Co.), 100 μg/mL of streptomycin, and 100U/mL of penicillin
(Gibco-BRL, Grand Island, USA) in a 5% CO2 incubator at
37°C.

2.6. MTT Assay for Cell Viability. We followed the methods
of Park et al. [21]. Briefly, to determine the cytotoxic con-
centration of PTE, Raw 264, 7 cells were planted in 96 wells
(5×104 cells per well). Cells were serum-starved for 16 h,
treated with various concentrations of PTE for 1 h, induced
by 1 μg/mL of LPS, and then the cells were incubated for 20 h
at 37°C in an incubator with 5% CO2. Following incubation,
cells were stained with MTT at the concentration of 0.5mg/
mL for 4 h, and then the media were eliminated and the
formazan produced was dissolved by adding 200 μL DMSO.
Optical density was measured at 570 nm by an ELISA plate
reader (Tecan Group Ltd.). Cell viability was described
relative to the untreated control cells, where viability (%
control)� 100× (optical density of treated sample)/(optical
density of control).

2.7. PGE2andCytokines (TNF-αand IL-6)Assays. Cells (Raw
264.7 macrophage, 5×105 cells/mL) were incubated for 16 h.
.e cells were then treated with various concentrations of
PTE or with a positive control for the production of PGE2
(NS-398) for 1 h, followed by stimulation with 1 μg/mL of
LPS. At 20 h after LPS stimulation the culture supernatants
were collected and ELISA was performed according to the

manufacturer’s protocol to quantify the amounts of PGE2,
TNF-α, and IL-6 (PGE2, R&D Systems; TNF-α and IL-6,
Pierce Endogen).

2.8. Measurement of NO Production. .e Raw 264.7 cells
(5×105 cells/mL) were incubated for 16 h, after which the
cells were pretreated with various concentrations of PTE or
with a positive control (L-NIL) for 1 h and induced by LPS
(1 μg/mL). Next, the cells were incubated for 20 h at 37°C in a
5% CO2 incubator, after which the culture supernatants were
collected. NO was measured by adding 100 μL of Griess
reagent (0.1% N-[1-naphthy]-ethylenediamine dihydro-
chloride and 1% sulfanilamide in 5% phosphoric acid;
Roche, Switzerland) to the culture supernatant (100 μL) for
15min at 22–25°C in the dark. Optical density was deter-
mined at 540 nm by an ELISA plate reader (Tecan Group
Ltd.). A standard curve was generated similar to that of
NaNO2.

2.9. Western Blot Analysis. Control and PTE-treated Raw
264.7 cells were harvested by centrifugation and washed
twice with phosphate-buffered saline (PBS). Washed pellets
of cells were resuspended in lysis buffer for extraction
(0.5mM dithiothreitol, 5mM EDTA, 250mM NaCl, 5mM
NaF, 0.1% Nonidet P-40, 1mM phenylmethylsulfonyl
fluoride, 0.5mM sodium orthovanadate, and 50mMHEPES
(pH 7.0)) containing 5 μg/mL each of aprotinin and leu-
peptin and incubated at 4°C for 20min. Microcentrifugation
was performed to remove the cell debris, followed by rapid
freezing of the supernatant. Bio-Rad protein assay reagent
was used to measure the protein concentrations by the
manufacturer’s instructions. .en, the cellular proteins
(30 μg) from cell extracts were separated on 8% sodium
dodecyl sulfate–polyacrylamide gels, followed by
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electroblotting onto nitrocellulose membranes. .e mem-
branes were incubated overnight, shaking with 5% skimmilk
at 4°C and subsequently with primary antibody (2 h). .e
blots were then washed five times with tween 20/tris-buff-
ered saline (TTBS), incubated for 1 h, shaking with a 1 :1000
dilution of horseradish peroxidase-conjugated secondary
antibody at 22–25°C, and then rewashed three times with
TTBS. ECL™ Western Blot Reagents for Detection
(Amersham Biosciences, USA) were used to develop the
blots.

2.10. Statistical Analysis. All data were recorded as mean-
s± standard deviation (SD)..e data were estimated by one-
way analysis of variance (ANOVA) tests, Dunnett’s tests,
and independent t-tests. SPSS for Windows (release 25.0 K,
SPSS Inc., USA) was used for all statistical analyses. Dif-
ferences were considered significant at p< 0.05.

3. Results

3.1. PTE Analysis. UPLC was used to identify two PTE
markers: chlorogenic acid and palmitic acid. .eir contents
were calculated from the standards calibration curve (Fig-
ure 1 and Table 1). Validation of the method proved its
stability and reliability. UPLC resulted in the successive
separation of the two marker components in PTE.

3.2. Antioxidant Assay

3.2.1. DPPH Scavenging Activity. Antioxidative activity of
PTE was determined using DPPH radicals to ascertain the
free radical scavenging activity (0.1–5mg/mL). .e DPPH
radical scavenging activity increased significantly as the
concentration of PTE increased (p< 0.05, Figure 2(a)). PTE
displayed scavenging activities of 18.71% and 46.44% at
concentrations of 1 and 5mg/mL, respectively. Although the
DPPH radical scavenging activity of PTE at 5mg/mL
reached 46%, that of the reference compound, ascorbic acid
displayed more scavenging activity (∼91%) than PTE at
concentrations of 0.1–5mg/mL.

3.2.2. NO Radical Scavenging Activity. Figure 2(b) presents
the NO radical scavenging potential of PTE alongside that of
ascorbic acid as the positive control. PTE exhibited scav-
enging activities of 50.01% and 67.14% at concentrations of 1
and 5mg/mL (p< 0.05), respectively, whereas ascorbic acid
exhibited scavenging activities of 96.09% and 97.06% at
concentrations of 1 and 5mg/mL, respectively.

3.2.3. SOD-like Activity. PTE at concentrations of 0.1–5mg/
mL exhibited a slight dose-dependent effect in terms of
SOD-like activity (Figure 2(c)). PTE exhibited SOD-like
activities of 79.84% and 80.29% at 1 and 5mg/mL, re-
spectively. .e reference compound ascorbic acid exhibited
SOD-like activities of 52.53% and 88.85% at 1 and 5mg/mL,
respectively (p< 0.05).

3.3. Inhibitory Effects of PTE on LPS-Induced Production of
NO and PGE2. Different concentrations of PTE (0.25–1mg/
mL) were used to evaluate the inhibitory effects of PTE on
LPS-stimulated production of NO and PGE2 in Raw 264.7
cells. Compared to the control, treatment with LPS resulted
in significantly increased NO production. However, treat-
ment with L-NIL (10 μM), a positive control, significantly
reduced the production (p< 0.001) of LPS-induced NO. In
addition, treatment with PTE resulted in significantly re-
duced production of LPS-induced NO at concentrations of
0.5 and 1mg/mL (#p< 0.05 for 0.5mg/mL, ##p< 0.01 for
1mg/mL; Figure 3(a)). Furthermore, we observed the same
inhibitory effects of PTE on LPS-induced PGE2 production
(Figure 3(b)). Compared to the control, treatment with LPS
resulted in significantly increased PGE2 production. How-
ever, treatment with NS-398 (10 μM), a positive control,
significantly reduced the production (p< 0.001) of LPS-
induced PGE2. Moreover, treatment with PTE resulted in
significantly reduced LPS-induced PGE2 production at a
concentration of 1mg/mL (##p< 0.01 for 1mg/mL;
Figure 3(b)). .us, PTE exhibited an inhibitory effect on the
induction of NO and PGE2 in Raw 264.7 cells.

3.4.CellViability. We used theMTTassay to test for possible
cytotoxic effects of PTE in Raw 264.7 cells. .ere were no
changes in cell viability after exposure to 0.25, 0.5, and 1mg/
mL PTE (Figure 4), indicating that PTE displayed no cell
toxicity.

3.5. Inhibitory Effects of PTE on LPS-Stimulated Expression of
COX-2 and iNOS. Western blot analysis was carried out to
determine whether the effects of PTE against PGE2 and NO
production were related to modulation of COX-2 and
iNOS. .ere were marked increases in the levels of COX-2
and iNOS proteins in response to LPS (Figure 5). PTE
(1mg/mL) showed significant suppression of LPS-stimu-
lated COX-2 protein levels (##p< 0.01 for 1mg/mL). In
addition, treatment with PTE (0.5 and 1mg/mL) resulted in
significant inhibition of LPS-stimulated iNOS protein
levels (#p< 0.05 for 0.5mg/mL, ##p< 0.01 for 1mg/mL).
.ese data confirmed the inhibitory effects of PTE on the
production of PGE2 and NO in LPS-induced Raw 264.7
macrophage cells.

3.6. Inhibitory Effects of PTE on LPS-Stimulated TNF-α and
IL-6 Production. We performed enzyme immunoassays to
evaluate the effects of PTE on the LPS-inducible production
of TNF-α and IL-6. Compared to the control, LPS treatment
showed a significant increase of TNF-α and IL-6 in the
culture supernatants of Raw 264.7 macrophage cells
(p< 0.01). However, treatment with 1mg/mL PTE showed
significant inhibition in LPS-induced TNF-α and IL-6
production (Figures 6(a) and 6(b)). .ese findings indicate
that PTE might inhibit the expression of the specific genes
involved in the inflammation response, such as TNF-α and
IL-6.
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4. Discussion

P. tenera has long been a popular and traditional seaweed
food in Korea, Japan, and China [9]. It is also reported to
have antioxidative [14] and anti-inflammatory effects [15].
However, there is little scientific evidence to demonstrate the
effects of PTE. Consequently, we examined the molecular
mechanisms underlying the antioxidative and anti-inflam-
matory effects of PTE.

ROS consist of hydroxyl radicals, peroxynitrite, sin-
glet oxygen, peroxyl radicals, and superoxide, which
cause oxidative stress, leading to cellular damage [22].
Identifying the free radical-quenching abilities and an-
tioxidant activities of antioxidant compounds sourced
from plants is essential [23]. In the present study, we used
DPPH [18] and NO [19] radical scavenging, as well as
SOD-like activity [20], assays to estimate the antioxidant
activity of PTE. DPPH is commonly used in antioxidant
assays [24]; in this study, the DPPH radical scavenging
activity was significantly increased as the concentration
of PTE increased. PTE had a DPPH radical scavenging
activity of 46.44% at a concentration of 5 mg/mL; how-
ever, the reference compound, ascorbic acid, showed
higher scavenging activity (91.53%) compared to PTE at a
concentration of 5 mg/mL. NO is unstable in the aerobic
state; it reacts with O2 to make stable nitrite and nitrate
products via the N3O4, N2O4, and NO2 intermediates
[25]. Our results indicated that 5 mg/mL PTE exhibited a
NO radical scavenging activity of 67.14%, whereas 5 mg/
mL ascorbic acid showed a scavenging activity of 97.06%.

SOD is a significant antioxidant enzyme catalyzing the
conversion of the superoxide radical into H2O2 and O2
[26]. We measured the SOD-like activity of PTE at different
concentrations (0.1–5mg/mL) and observed slight dose-de-
pendent responses. At 5mg/mL, PTE showed a SOD-like ac-
tivity of 80.29%, whereas 5mg/mL ascorbic acid exhibited a
SOD-like activity of 88.85% (p<0.05). Collectively, these results
suggest that the effects of PTE on the DPPH, NO radical
scavenging, and SOD-like activities might have important
implications for strategies used to manage pathological stress.

In wounds, inflammation is associated with microbio-
logical toxins or chemicals [1]. LPS stimulates the produc-
tion of the NO, PGE2, and cytokines by initiating the NF-κB
transcription factor in Raw 264.7 cells [27–29]. .e in-
flammatory cytokines TNF-α and IL-6 are involved in
various immunological interactions and reactions with di-
verse target cells [6, 7, 30]. In this study, we evaluated the
inhibitory effects of PTE on LPS-stimulated TNF-α and IL-6
by ELISA, which revealed that PTE (1mg/mL) significantly
inhibited LPS-induced levels of cytokines (TNF-α and IL-6).
.us, the inhibitory effects of PTE on inflammatory cyto-
kines could form the basis for treatments of pathological
inflammation. Moreover, iNOS causes damage to cells via
NO production in macrophages stimulated by LPS [31]. In
this study, PTE significantly suppressed LPS-induced iNOS
protein expression and NO production.

Furthermore, treatment with L-NIL (10μM), a positive
control, significantly reduced the production of LPS-induced
NO. In particular, the NO production value for treatment with
PTE (1mg/mL) was somewhat higher than that of the L-NIL.
.is finding indicates that PTE, similar to the L-NIL, can inhibit
NO production. In addition, these results suggest that the
preventive effects of PTE on the inflammatory response are due,
in part, to its suppression of iNOS expression and NO pro-
duction. Furthermore, PGE2, made via COX-2 from arachi-
donic acid, plays crucial regulatory roles in the inflammatory
responses and in brain injuries [32]. PGE2 is released from
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Figure 1: UPLC chromatogram of twomarker compounds in PTE. UPLC chromatogram of standard compounds (a). UPLC chromatogram
of two marker compounds in PTE (b). .e chromatograms were obtained at 280 nm.

Table 1: Contents of two marker compounds in PTE by UPLC
(n� 3).

Compound Content (μg/g)
Chlorogenic acid 3.016± 0.061
Palmitic acid 9.212± 0.002
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blood vessel walls in response to inflammation or infection to
induce fever [33]..erefore, inhibition of PGE2 is useful to help
identify beneficial plant extracts that have anti-inflammatory
properties [34, 35]. Our data showed that PTE resulted in

significant inhibition of PGE2 and the COX-2 protein induced
by LPS. Moreover, treatment with NS-398 (10μM), a positive
control, significantly reduced the production of LPS-induced
PGE2. In particular, the PGE2 production value for treatment
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Figure 2: Antioxidant activities of PTE. Free radical scavenging activities of PTE were measured based on the detection of the DPPH
(a) and NO (b) radical scavenging activities. SOD-like activity (c) was evaluated using the pyrogallol method. Values are expressed as
the means ± SD from three experiments. Different letters indicate significant differences among the groups (p< 0.05).
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Figure 3: Inhibitory effects of PTE on LPS-induced production of NO (a) and PGE2 (b) in Raw 264.7 cells. Cells (5×105 cells/mL) were
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###p< 0.001, ##p< 0.01, and #p< 0.05 compared with LPS alone.
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with PTE (1mg/mL) was higher than that of the NS-398. .is
result shows that PTE can weakly inhibit PGE2 production
compared to the NS-398. .erefore, these findings suggest that
PTE might have preventive and therapeutic effects in the
treatment of pathogenic pain, heat, and inflammation.

PTE is an aqueous extract of the red algae P. tenera. Zhang
et al. [36] reported that the sulfated galactan fraction isolated
from the red seaweed Porphyra haitanensis had significant in
vivo antioxidant activity in aging mice. In addition,

Senevirathne et al. [37] showed that enzymatic extracts from
P. tenera effectively inhibited LPS-stimulated production of
NO in Raw 264.7 macrophage cells. Furthermore, the red algae
Porphyra yezoensis reportedly showed high antitumor activity
against Ehrlich carcinoma [38]. According to Jung et al. [39],
high-performance liquid chromatography showed that PTE
contained Porphyra-334. However, our chromatographic re-
sults revealed that the main markers of PTE were chlorogenic
acid and palmitic acid (Table 1 and Figure 1). Chlorogenic acid,
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an abundant polyphenol compound, possesses multiple bio-
logical activities, including anti-inflammation, immunomo-
dulation, antivirus, and cardiovascular protection [40–42]. In
addition, chlorogenic acid reportedly has a protective effect on
myocardial infarction via its antioxidant activity and reducing
the inflammatory response [43]. Meanwhile, palmitic acid is a
saturated fatty acid discovered in microorganisms, plants, and
animals. It is naturally produced by a wide range of plants and
organisms, but typically at low levels [44]. From the findings
from this study, we suggest that the antioxidative and anti-
inflammatory activities of PTE are likely due to chlorogenic
acid.

5. Conclusion

We showed that PTE has antioxidative and anti-inflam-
matory properties using DPPH, NO radical scavenging, and
SOD-like activity assays and that it acts through the in-
hibitory actions of inflammatory mediators (NO, PGE2,
TNF-α, and IL-6) in LPS-induced Raw 264.7 macrophage
cells. Our results provide scientific evidence that explains the
antioxidant and anti-inflammatory properties of PTE.
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