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ABSTRACT

Normalization of cDNA and oligonucleotide micro-
array data has become a standard procedure to offset
non-biological differences between two samples for
accurate identification of differentially expressed
genes. Although there are many normalization tech-
niques available, their ability to accurately remove
systematic variation has not been sufficiently evalu-
ated. In this study, we performed experimental valida-
tion of various normalization methods in order to
assess their ability to accurately offset non-
biological differences (systematic variation). The
limitations of many existing normalization methods
become apparent when there are unbalanced shifts
in transcript levels. To overcome this limitation, we
have proposed a novel normalization method that
uses a matching algorithm for the distribution
peaks of the expression log ratio. The robustness
and effectiveness of this method was evaluated
using both experimental and simulated data.

INTRODUCTION

The draw of gene expression profiling using microarray is
in its ability to study complex interactions of thousands of
genes simultaneously. Differential gene expression profiles
can provide valuable insights into physiological processes
or disease etiology that arise from coordinated action of
sets of genes (1). Owing to the inherent noise and systematic
variation present in such high-throughput experiments, accur-
ate determination of differential gene expression requires
normalization of microarray data. Normalization serves to
offset non-biological differences such as dye bias, starting
amount of mRNA, spotting or surface characteristics (2), so
that the underlying biological variation can be accurately
determined.

Normalization of microarray data involves two steps: (i)
selection of genes to be used as normalization features and
(i1) application of a mathematical operator or metric to
calculate the normalization factor using the data from the
selected genes. Gene selection can contain the entire gene
set (global), housekeeping genes, rank-invariant genes or
genes spotted with the same print-tip. Mathematical operators
or metrics include expression-intensity —mean/median,
expression-ratio mean/median, mean/median logarithm
expression-ratio, expression-ratio probability density and
non-linear/piece-wise linear regression.

A basic assumption for global normalization is that first,
the array contains a large enough assortment of random genes
that a majority of the genes are not differentially expressed
between any two samples (2) and second, the numbers of up-
and down-regulated genes on the array are roughly equal.
Thus, in situations where there are unbalanced or global shifts
in the mRNA population, these global normalization strategies
become inappropriate. Housekeeping genes were thought
to be a useful guide for normalization owing to the general
perception that expression levels of housekeeping genes
remain constant even with large expression level changes in
endogenous genes. However, many housekeeping genes have
been reported to exhibit considerable variability under differ-
ent experimental conditions (3) and their expression levels are
often on the high side, making them unsuitable and unrepres-
entative of the whole expression intensity range. External
spikes have been developed as a replacement for housekeeping
genes (4). By controlling the amount of spiked mRNA, a set of
genes can be made constant regardless of experimental con-
dition. In this approach mRNA transcripts at different intensi-
ties are spiked in equal amounts into both samples hence
creating a set of non-differentially expressed genes which
are ideal as normalization features. This technique is however
not widely used largely because of the extensive preparation
work that is required to create this collection of genes.

Owing to possible occurrence of non-linearity in systematic
variation, non-linear or piece-wise linear normalization
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protocols are normally preferred to constant normali-
zation protocols (5-7). The most well-received method,
LOWESS, provides a normalization factor by robust local
regression of expression log ratio (M) against logarithmic
mean expression intensity (A). LOWESS normalization with
rank-invariant (5), global (6) or print-tip (6) genes has been
proven a powerful non-linear normalization method. How-
ever, the limitation and robustness of LOWESS or other
normalization methods to handle situations where there is
an unbalanced or global shift in mRNA levels have never
been systematically evaluated.

In this paper, we have presented a novel normalization
technique named Cross-correlation normalization which is
able to handle unbalanced shifts in mRNA levels of a large
amount of genes. Using a set of spike-in validation data, Cross-
correlation method has been compared against well-accepted
normalization methods such global LOWESS, global Median,
print-tip LOWESS and rank-invariant LOWESS. The ability
to handle situations where there is an unbalanced or global
shift in mRNA levels was also tested by using data from our
mouse cell culture with glutamine deficient versus fully
enriched media experiments as well as using yeast stationary
versus exponential phase experiments (4). Furthermore, simu-
lated microarray data were used to confirm the effectiveness of
this normalization method. The advantage of our proposed
normalization method over external controls lies in that it
does not require extensive experimental preparation of
external spikes nevertheless it delivers much more reliable
normalization results compared with other well-accepted
methods.

MATERIALS AND METHODS
Microarray setup

Microarray was printed using PCR products prepared from
plasmid clones of the NIA 7.4 K clone set (8) plus other
~400 mouse oligos. PCR products were generated as
described in Tanaka et al. (8). The PCR products were purified
using NucleoFast PCR purification kit from Macherey Nagel
(Duren, Germany), concentrated by vacuum centrifugation
and redissolved in printing buffer (1 M Betaine, 10% Glycerol,
50 mM NaPO,, pH 7.5) at a concentration of 100 ng/ul. The
PCR products were spotted in duplicates on polylysine coated
slides using a Virtek SDDC-3 (Bio-Rad Laboratories, CA)
equipped with quill-type steel pins (Telechem, Sunnyvale,
CA). Spots were printed at a nominal centre-to-centre spacing
of 200 um. Printed slides were baked at 80°C for 2 h and
blocked in succinic anhydride and 1,2 dichloroethane as
described by Diehl et al. (9). The number of the print-
tips used was 48. Details of the array design can be found
on http://www.ncbi.nlm.nih.gov/projects/geo/base platform
GPL1961.

Spike-in microarray experiments

The spike-in experiment (10) was used for generating valida-
tion datasets by spiking in 200 transcripts to mRNA isolated
from mouse hybridoma CRL1606 cells, in order to artificially
generate a set of 100 up- and down-regulated genes. The spike-
in was done at 11 different concentrations (ranging from 0 to
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2 pmol for each gene) with three array replicates for each of
0.025, 0.15, 0.2, 1 and 2 pmol, and six array replicates for each
of 0 (self-hybridization), 0.05, 0.1, 0.25, 0.5 and 0.75 pmol and
the samples were hybridized onto the cDNA microarrays
described above. For details refer to http://www.bii.a-star.
edu.sg/microarray.

Glutamine deficient microarray experiments

Mouse hybridoma cell line CRL1606 was grown in serum-free
enriched media (BITTE) containing all the essential nutrients
and also in glutamine deficient media separately. The cells
were maintained as suspension cultures in shaker flasks in a
humidified incubator (95% relative humidity) at 37°C,
8% CO,. The viability of the culture was determined by
trypan blue exclusion using an Improved Neubauer haemo-
cytometer. When the viability of cells grown in glutamine
deficient media reached ~60%, 10—15 million cells were
harvested by centrifugation from both the deficient media
and the enriched media for mRNA isolation. This viability
corresponds to 7 h after inoculation of the cells grown in
glutamine deficient media. Three replicates with hybridi-
zation of cDNA generated from cells grown in glutamine
deficient media were made including one dye swap. For the
control, mRNA was pooled in equal amounts from the
corresponding time points in the enriched media. The same
in-house developed microarray chips as described above
were used.

Cross-correlation normalization

Cross-correlation of one signal with a template is widely used
for pattern recognition. Let the template be the distribution
t(M) of normalized log ratio in a self-hybridization microarray
experiment. Using this idea, we can match the distribution
s(M,A) of the log ratio for all genes in an intensity interval
(window) with the template. By varying the matching para-
meter m, the Cross-correlation of s(M,A) with #(M) can be
maximized. The optimal matching parameter, which is the
optimal m in maximizing the following objective

J(m) = /S(M — m,A)t(M)dM

is assigned as the normalization factor k(A), where M and M,
are the lower and upper boundary of M.

In order to cope with non-linearity, all data points in a MA
plot are first divided into » number of intensity windows based
on their A values. In each (e.g. window i) of the n windows,
s(M,A;) and k(A;) will then be calculated. The final normal-
ization factor (curve) k(A) is obtained by fitting a spline func-
tion to all k(A;) values.

Selection of templates for Cross-correlation
normalization

As mentioned above, the template is the distribution #(M)
of the normalized log ratio in a self-hybridization micro-
array experiment. In order to avoid any bias, the template
should be symmetrical around the log ratio zero. Thus, the
template should be the average of #(M) and #(—M). Since it is
very likely that the span of log ratio in a sample—control
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experiment is different from that in a self-hybridization
experiment [—M,,, M,], a factor y = (M, — M)/(2M,,) is
required to make this two spans comparable. The actual
template *(M) used in the above equation should then be
as follows:
() = M) + 1= YM).
2

Ideally, the template should originate from a self-hybridization
experiment of the same microarray platform. In reality,
even the distribution of the normalized log ratio can differ
from one replicate to another replicate. Thus, the performance
of Cross-correlation normalization should be rather robust
when using different templates. Figure 1 compares the
performance of Cross-correlation normalization using four
different templates. Template 1 is obtained from a simulated
self-hybridization, Template 2 from simulated data with 10%
down-regulated genes, Template 3 from a self-hybridization
in the spike-in microarray experiment (discussed earlier)
and Template 4 from a Gaussian distribution. It can be seen
from Figure 1 that Cross-correlation normalization delivers
consistent results when using different templates.

The modules for Cross-correlation normalization were
implemented in Matlab. Along with the templates, these
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modules are available for download at http://www.bii.a-star.
edu.sg/microarray.

Discovery of differentially expressed genes

For discovery of differentially expressed genes, a simple
threshold rule was used. In the spike-in data, the median
log ratio of a gene over the replicates was used for ranking
the gene, while the log ratio of a gene was used to rank the
gene in the simulated data.

RESULTS
Spike-in experiments

Different normalization methods (global LOWESS, global
Median, print-tip LOWESS, rank-invariant LOWESS and
Cross-correlation normalization) were compared using the
spike-in validation data in which a set of 200 differentially
expressed genes were artificially created (10).

Figure 2 shows the ROC curves for the spike-in concentra-
tions of 0.1 and 0.75 pmol. For these two concentrations six
replicates were obtained. Although in this set of validation
experiments, only a small percentage of the genes are differ-
entially expressed and the differential expression is balanced,
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Figure 1. Performance of Cross-correlation normalization using different templates: ROC curves of simulated data with a smaller shift in mRNA levels of (a) 10%
and (b) 30% genes and with (c) a stronger shift of 30% genes and (d) distributions of different templates. Cross-correlation 1-4 means Cross-correlation normalization
using Templates 14, respectively. M, is the maximum value of normalized symmetric log, ratio.
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Figure 2. ROC curves of spike-in data with (a) 0.1 pmol spike-in concentration
and (b) 0.75 pmol spike-in concentration. The following different normaliza-
tion methods were compared: global LOWESS, global Median, print-tip
LOWESS, rank-invariant LOWESS and Cross-correlation. Rank-invariant 1
or 2 means application of a looser or stricter criterion for selection of rank-
invariant genes, respectively.

it is clear that some normalization methods give better results
than the others. From this set of experiments, global LOWESS,
Cross-correlation and global Median normalization methods
consistently returned very good results. Print-tip LOWESS
normalization, however, was surprisingly inconsistent.
Print-tip LOWESS has been regarded as more effective
than global LOWESS because of its ability to adjust for
systematic differences between different print-tips (5,11).
Our experimental results however show that correcting for
this systematic variation may not always improve prediction
errors. This is shown by Figure 2a and more obviously in
Figure 2b where print-tip LOWESS normalization resulted
in a much lower prediction rate. The inconsistency is likely
because a smaller set of genes is used in normalization. In
this microarray setup, 48 print-tips were used for spotting,
resulting in approximately only 300 spots per print-tip.
Also, global median normalization was able to give as good
results as global LOWESS mainly because there is minimal
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Figure 3. (a) MA plot showing unbalanced changes in expression levels when
mouse hybridoma CRL 1606 cells are grown in full medium versus glutamine
deficiency. Results of LOWESS normalization and Cross-correlation normal-
ization are shown. (b) Histogram of M value for spots within the intensity region
0of 9.6 =< A =< 9.8. The vertical red, blue and pink lines represent the respective
global LOWESS, Cross-correlation and Rank-invariant normalization values.
Rank-invariant 2 means application of a stricter criterion for selection of rank-
invariant genes. Rank-invariant normalization with a looser criterion delivers
similar results (not shown in the figure) as LOWESS.

non-linear correlation in the MA values in this set of experi-
ments. The effectiveness of global LOWESS and Cross-
correlation normalization over global Median is apparent
when there is significant non-linearity between the M and
A values. The performance of rank-invariant LOWESS is
largely dependent on the criterion for selection of rank-
invariant genes. In the spike-in concentration of 0.1 pmol
(Figure 2a), the performance of rank-invariant LOWESS
deteriorates as the number of rank-invariant genes becomes
larger, while rank-invariant normalization delivers the oppos-
ite trend for the spike-in concentration of 0.75 pmol
(Figure 2b), suggesting a possible robustness problem of
this method when applied to two-color arrays.

Glutamine deficient experiments

A typical MA plot for this set of experiments is depicted in
Figure 3a. From the plot, it is clear that there is significant non-
linearity in the data. As such, it is obvious from Figure 3a that
normalizing with global Median will give inferior results. It is
also observable that a significant proportion of genes were
down-regulated when the cells were starved. Owing to this
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Figure 4. Comparison of different normalization methods using (I) ROC curves and (II) distributions of normalized log ratio based on simulated data with the same
shifts in mRNA levels of (a) smaller (10%) and (b) larger (30%) fractions of genes and with (c¢) a larger shift in mRNA levels of 30% genes. Rank-invariant 2 means
application of a stricter criterion for selection of rank-invariant genes. Rank-invariant normalization with a looser criterion delivers similar results (not shown in the

figure) as LOWESS.

unbalanced shift in mRNA levels, there are differences in
global LOWESS normalization and Cross-correlation normal-
ization methods. This is especially observable in the intensity
region of 9.6 =< A =< 9.8. This difference can be explained in
Figure 3b which shows the M value histogram of the genes
within this intensity interval. The difference in the normaliza-
tion curves is due to a significant number of down-regulated
genes in this intensity range resulting in a bimodal distribution
as shown in Figure 3b. The Cross-correlation method is appar-
ently more robust than LOWESS and Rank-invariant normal-
ization as the normalization curve remains at the central mode
of the distribution where the non-differentially expressed
genes lie.

Simulated data

In order to confirm the robustness of Cross-correlation
normalization, we compared Cross-correlation and global
LOWESS normalization methods using simulated data.
Applying the model from Rocke and Durbin (12), we simu-
lated 10 000 data points including 10 and 30% of the data
points down-regulated, respectively. Figure 4, Ia and Ib
compares the ROC curves of global LOWESS, rank-
invariant LOWESS and Cross-correlation normalization for
shifts of 10 (smaller) and 30% (larger) of genes in similar
mRNA levels. Better normalization should have the distribu-
tion peak of normalized log ratio closer to zero. The M value
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histogram shown in Figure 4, Ila and IIb depicts the normal-
ized log ratio by the Cross-correlation method perfectly
distributed around zero regardless of the number of unevenly
shifted genes. Thus, in both cases, Cross-correlation normal-
ization outperforms global LOWESS and rank-invariant
normalization. With increasing mRNA levels for 30% shifted
genes, the superiority of Cross-correlation normalization
to other two methods is even more pronounced (Figure 4,
Ic and Ilc).

Yeast stationary versus exponential growth phase

To further confirm the effectiveness of Cross-correlation
normalization method and ascertain its limitations, experi-
mental data with global changes in expression levels obtained
from Peppel et al. (4) were used. In this study, total RNA were
spiked as external controls over three orders of magnitude in
intensity. These external controls were spiked to have no
difference in fold change. As such, the effectiveness of
normalization methods can be compared by how close it
lies to these external spikes (Figure 5). Most significantly,
Cross-correlation normalization was able to correctly identify
down-regulated genes in the intensity region of 14 < A < 15.
Figure 5b shows the M value histogram of the genes
in the region of 14 < A < 15. In this region, a bimodal
M value distribution is observed. LOWESS normalization
interpolates between the two modes and returns a midway
value. Cross-correlation normalization however, uses a peak
matching algorithm to identify the larger of the two modes
and normalize the data assuming that the larger mode consists
of genes that are non-differentially expressed. Thus, the
method is particularly useful when there is a significant
shift in mRNA expression level that results in an unbalanced
distribution of M value. Since the cross-correlation method
assumes that the largest mode contains the non-differentially
expressed genes and normalizes the data accordingly (see
Materials and Methods), the smaller modes or unbalanced
shifts have minimal effect on the normalization procedure
unlike in other methods.

The obvious limitation, however, is that the method will
not return the correct normalization value when non-
differentially expressed genes do not form the largest mode.
This is illustrated in the M value frequency density of the
region 12 < A < 13 as shown in Figure 5c. The external
spikes lie in the smaller mode, indicating that the correct
normalization curve should pass through this value. However
as expression of most genes was shifted to down-regulation,
Cross-correlation normalization identifies the peak of down-
regulated genes and returns a wrong normalization factor.

DISCUSSION

In order for a normalization method to be effective, some
theoretical criteria should be obeyed. First, genes selected
for normalization should be restricted to non-differentially
expressed genes. Differentially expressed genes intrinsically
possess three unknown variables (systematic, random and
biological variations) whereas non-differentially expressed
genes have only two (systematic and random). As the aim
of normalization is to predict systematic variation, it is
naturally easier to estimate this quantity using non-
differentially expressed genes as two variables are confounded
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Figure 5. (a) MA plot showing Cross-correlation and global LOWESS normal-
ization of yeast data obtained from cells grown at stationary versus mid log
phase from Peppel et al (4). External controls (dark dots) are used as a guide to
benchmark normalization methods. Histograms of M value are depicted for
spots within the intensity ranges of (b) 14 < A < 15and (¢) 12 < A < 13.
The vertical dark (dashed), red, blue and pink lines in (b and c) represent the
central of the external controls, the global LOWESS normalization value, the
Cross-correlation normalization value and the Rank-invariant normalization
value, respectively. Rank-invariant 2 means application of a stricter criterion
for selection of rank-invariant genes. Rank-invariant normalization with a
looser criterion delivers similar results (not shown in the figure) as LOWESS.

instead of three. Second, the normalization operator/metric
should be effective in coping with random errors. Because
of the nature of microarray experiments, predicting systematic
variation inevitably requires appropriate handling of random
noise. As such, the number of genes used for normal-
ization should also be statistically representative (large).
Normalization based on a small subset of all genes, such as
traditional housekeeping genes, may lead to less accurate
results. This is probably the reason that print-tip LOWESS
and LOWESS with a small set of rank-invariant genes could be
less effective compared with the rest of the normalization
methods.

Normalization can be described as a catch 22 situation. This
procedure requires selection of non-differentially expressed
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genes (equivalent to identification of differentially expressed
genes), but identification of differentially expressed genes is in
turn dependent on normalized data. This deadlock makes it
difficult to identify all non-differentially expressed genes
accurately. As such, global normalization still remains as
one of the favorite gene selection methods. To compensate
the inaccuracy in gene selection, the normalization operator/
metric used should be robust against the effect of differentially
expressed genes. The proposed novel normalization method
(Cross-correlation normalization) uses peak matching to
minimize the effects of differentially expressed genes located
in the distribution tails. It has been shown to be highly robust
against unbalanced shifts in mRNA levels and superior to
existing normalization methods. It should however be noted
that there are situations, albeit rare, in which >50% of the
genes are differentially expressed. In these rare situations,
the peak matching algorithm used by Cross-correlation
normalization will yield inaccurate results. The only viable
normalization procedure might be to use a large amount of
external controls. It should be noted that the data presented in
this paper were obtained from two-color (channel) arrays.
Since the proposed normalization method is based on a MA
plot which can also be produced with two single-channel
arrays, this method can be successfully applied to normali-
zation of single-channel arrays such as Affymetrix Genechips
and Illumina Beadchips.
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