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Human Papilloma Virus (HPV) has been associated with oropharyngeal cancer prognosis. Traditionally
the HPV status is tested through invasive lab test. Recently, the rapid development of statistical image
analysis techniques has enabled precise quantitative analysis of medical images. The quantitative analy-
sis of Computed Tomography (CT) provides a non-invasive way to assess HPV status for oropharynx can-
cer patients. We designed a statistical radiomics approach analyzing CT images to predict HPV status.
Various radiomics features were extracted from CT scans, and analyzed using statistical feature selection
and prediction methods. Our approach ranked the highest in the 2016 Medical Image Computing and
Computer Assisted Intervention (MICCAI) grand challenge: Oropharynx Cancer (OPC) Radiomics
Challenge, Human Papilloma Virus (HPV) Status Prediction. Further analysis on the most relevant radio-
mic features distinguishing HPV positive and negative subjects suggested that HPV positive patients usu-
ally have smaller and simpler tumors.
� 2017 The Authors. Published by Elsevier Ireland Ltd on behalf of European Society for Radiotherapy and

Oncology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
Introduction

Oropharyngeal cancer prognosis is often linked with Human
Papilloma Virus (HPV), especially HPV type 16. HPV associated
oropharynx cancer patients have been shown to have increased
survival time and better tumor control with radiotherapy than
non-HPV-associated ones [1–3]. Typically, HPV status is tested
using immunohistochemistry for p16, a protein, or in situ
hybridization for viral DNA. However, the lab testing usually
requires collecting biospecimen from the patients, thus it is inva-
sive and may impose potential risk to the patients. Therefore, seek-
ing non-invasive yet accurate way to assess the HPV status
becomes important. One possible solution is through the low dose
computed tomography (CT) scans which is done routinely for
screening, diagnosis, and treatment guidance. A low dose CT scan
is non-invasive, and it is less likely to impose extra risks to testees.
Besides non-invasiveness, the imaging technique could help the
physician collect more information at diagnose which subse-
quently will improve the design of treatment, makes the treatment
more precise for each patient.
Recently, the rapid development of radiomics has enabled more
meaningful and precise quantitative analysis of medical images in
various body sites. Magnetic Resonance Imaging (MRI) of brain has
been extensively studied over the past two decades, many efforts
have been done to quantify the relationship between radiomic fea-
tures of MRI and the diagnosis of Alzheimer’s disease [4–8] as well
as risk of Autism [9]. CT image is another important image modal-
ity that has been widely studied to built its connection with clinical
outcomes. CT scan plays a critical role in early detection and prog-
nosis for different types of cancer [10–13]. However, only a few
studies have tried to connect the CT images with HPV status quan-
titatively, especially in oropharynx cancers. Cantrell and colleagues
[14] studied the radiomic differences in CT images between HPV+
and HPV�, but their study was not focused on predicting HPV sta-
tus. Buch and colleagues [15] analyzed the difference of 42 space-
invariant texture features between HPV+ and HPV� patients, again
this study did not come up with a predictive model for HPV+/�.
Bogowicz and colleagues [16] built a logistic regression distin-
guishing HPV+/� with radiomics features and achieved 0.78 AUC
in validation cohort, but the number of radiomic features they used
was still relative small, and not comprehensive enough. Besides
that, the discovering cohort in their study was relative small.

In this article, we describe an approach that utilizes only CT
image to predict HPV status for oropharynx cancer patients. Our
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method won the first place among 9 participating teams in the
2016 Medical Image Computing and Computer Assisted Intervention
(MICCAI) grand challenge: Oropharynx Cancer (OPC) Radiomics Chal-
lenge, Human Papilloma Virus (HPV) Status Prediction, with Area
Under the Curve (AUC) 0.91549 in the held out evaluation data
set. Our approach is based on statistical analysis of radiomic fea-
tures of the upper chest CT. The feature selection result showed
that among all the radiomic features extracted, MeanBreadth and
SphericalDisproportion were the most important features that cap-
ture the most predictive radiomic information of the HPV status.
We have also discovered that the results indicate that the HPV
associated patients usually have smaller and simpler tumors. It is
also worth mentioning that our method had a higher AUC in pri-
vate leaderboard than the one in the public leaderboard, which
indicates the proposed method is fairly generalizable.
Materials and methods

The analysis is based on radiomic features extracted from upper
chest CT images, and prediction is assessed via statistical predictive
models. The main challenges include extracting meaningful and
predictive radiomic features, combining information across multi-
ple Region Of Interests (ROI), selecting most relevant features, and
constructing powerful predictive models. We have adopted exist-
ing state-of-the-art feature extraction method [17] to obtain a set
of radiomic features covering various aspects of the image, for
example, shape, texture, and grayscale intensities. To handle the
multi-ROI situation, we computed a ‘‘consensus” ROI that can be
regarded as ROI representative for each feature and for each indi-
vidual subject. Statistical methods, e.g. generalized linear model
(GLM), random forest, tree based model, and etc., were employed
to select the relevant features and make the final prediction. The
general procedure is shown in Fig. 1.
Clinical and imaging data

In this challenge, contrast-enhanced Computed Tomography
(CT) scans of upper chest for 315 oropharynx cancer patients were
provided as the radiomic dataset (detailed challenge setting and
information of data acquisition, processing, and inclusion/exclu-
sion, can be find in the challenge summary paper [18]). 150 ran-
domly selected subjects with annotated HPV status were given as
training cohort, with 128 HPV positive and 22 HPV negative
patients. The remaining 165 subjects were held out as a validation
cohort (in the actual challenge, one half of the validation subjects
were scored all through the last of the challenge as the public mea-
sure of the performance, and the other half were held out as a pri-
vate score which was not released until the challenge was
concluded). The human papilloma virus (HPV) status defined by
p16, which was tested and provided by the organizers, is the main
interest of this work. Two types of ROIs, Gross Primary/Nodal
Tumor volume (GTVp/GTVn) are considered, and the ROI segmen-
tation was done manually by board certified physicians in the
organizers’ institution (University of Texas MD Anderson Cancer
Center). In this challenge, we did not make distinguish between
GTVp and GTVn per organizers’ suggestion.
Pre-processing

Several randomly selected 2D slices (5–10) of the CT images of
each subject were manually inspected to assure the consistence of
image quality. Subjects with low quality images including over-
exposed and large degree of blurring were removed from the train-
ing cohort. We removed one subject (id: 88), since their CT scans
were quite blurring in the main interested section, and the ROIs
annotated were of volume 0.

Radiomic feature extraction

1683 radiomic features of 5 categories were extracted using
IBEX [17], including Gray level cooccurrence matrix (GLCM 2D
and 3D), Gray level run length matrix, intensity (and histogram),
neighbor intensity difference (2D and 3D), and shape (for more
details on parameters and feature types in each category please
see Supplementary file 1). Quality control was done to ensure there
is no missing values in extracted features. And the possible out-
liers, identified by Grubbs’ test [19] were discarded.

One critical problem in this dataset was that one subject often
had more than one ROIs (GTVp or GTVn); therefore, a proper
way to ‘‘choose” a representative ROI became important and essen-
tial to the prediction accuracy. Treating each ROI as an individual
subject yields scientific and practical problems due to the fact that
not all ROIs of a specific subject directly reflect HPV status. In this
challenge, we designed a ‘‘consensus” ROI for each subject: if there
was only one ROI for some subject, then we used that ROI to rep-
resent the subject; if there were more than one ROIs for a subject,
we created a virtual ROI, the ROI still had the same set of features,
but the values of the features were not necessary from the same
ROI but rather taking the most extreme value (extremum, in terms
of magnitude) comparing to the robust median of all ROIs of all
subjects in the cohort (an example is given in Fig. 2).

Statistical analysis

The general statistical analysis is outlined as follows:

1. Homogeneous testing between training and validation cohorts
was done by Wilcoxon-rank-sum test [20,21] for each feature.
The features with p-value <0.05 were discarded due to their
inhomogeneity, which will subsequently affect the predictive
model built from the training cohort.

2. Preliminary feature screening was done by Kolmogorov–Smir-
nov (KS) test [22,23]. For each feature, calculating the KS statis-
tic between HPV+ and HPV� subjects in the training cohort,
keep only the features with p-value <0.05 to select only the fea-
tures that were able to distinguish the two groups.

3. Further feature screening through correlation with HPV status.
A biserial correlation between HPV status and each radiomic
feature was calculated, and only the features with biserial abso-
lute correlation >0.3 were kept to achieve clinical relevance.

4. Ranking remaining features by their marginal Area Under Curve
(AUC) obtained by 10-time random split. The marginal AUC was
accessed by building model with only one feature. The random
split was done by randomly sampling 50% of the training cohort
to train the model, then evaluating on the held out 50% data.
We have tested various statistical models, including generalized
linear model (GLM) [24], pdfCluster [25], predictive tree model
[26], random forest [27], Support Vector Machine (SVM) [28],
and etc. Only the top 10 features with highest marginal AUC
were kept in this step.

5. The final features in the model was selected by forward selec-
tion, where we add features one by one according to their ranks
of marginal AUC from high to low, until the model AUC stopped
increasing. The model AUC was accessed by 10-time random
split as well.

Selecting appropriate statistical model (tree, GLM, SVM,. . .) was
done by submitting to the public leaderboard of this challenge, as
well tuning some parameters. e.g. number of trees in random
forest.



Fig. 1. The overall procedure of the wining method.

Fig. 2. The creation of consensus ROI out of a subject with 3 ROIs.

Table 1
Final logistic regression.

Variable Estimated odds ratio 95% CI p-value

MeanBreadth 0.926 [0.895, 0.958] <0.0001
SphericalDisproportion 2.045 [1.833, 2.280] <0.0001
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Results

Eventually, we selected the highest performed model, logistic
regression with two features MeanBreadth and SphericalDispropor-
tion (Table 1). The performance metric used in this challenge was
Area Under Curve (AUC), the model obtained mean AUC of 0.753
(�0:075) from 10-random-split on training cohort (Fig. 3),
0.86667 on public leaderboard, and 0.91549 on the private one.
We are the only team having higher private leaderboard score than
the public one, which is a good indicator of model generalizability.
Due to the challenge setting that truth were not released for public
and private leaderboard cohorts, we are not able to provide ROC
curve for either leaderboard cohorts.
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Fig. 3. The testing ROC curves of each fold of the 10-random-split of the training cohort.
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The MeanBreadth measures the mean ‘‘width” of the ROI; there-
fore, it is closely related to the size of the tumor. We observed that
HPV-pos subjects tend to have smaller meanBreadth (Fig. 4A),
which indicates the tumor size is smaller in the HPV induced
subjects.

On the other hand, SphericalDisproportion measures the ratio of
the surface area of the image ROI to the surface area of a sphere
with the same volume as the image ROI. This feature describes
how complicated the shape of the tumor is, since simpler shape
usually have smaller surface area comparing to more complicated
shape, when the volumes are the same. The HPV-positive subjects
also have smaller SphericalDisproportion (Fig. 4B), which could
imply that the shape of the tumor is less complex for subjects car-
rying HPV than the one for subjects not carrying HPV.

Discussion

In this article, we reported our winning strategy in the 2016
Medical Image Computing and Computer Assisted Intervention
(MICCAI) grand challenge: Oropharynx Cancer (OPC) Radiomics
Challenge, Human Papilloma Virus (HPV) Status Prediction. The
goal of the challenge is to predict HPV-16 status from annotated
CT images. Our approach involves image quality checking, feature
extraction, ROI reconstruction and variable selection. All through
the process, we have tried various statistical models including
pdfCluster, random forest, decision tree, SVM (linear and non-
linear kernels) and etc. In the winning submission, we used the
generalized linear model (GLM) since it had the best public leader-
board score.

Besides the statistical models, we have tried deep learning as
well. The network we used was GoogleNet, and the input was 2D
center slice of the ROI. Although the results turned out to be not
as satisfied as the statistical models, it is worth mentioning that
even with only 149 subjects (actually only 75 subjects since the
random split takes only half of the data as training cohort), deep
learning was able to achieve AUC around 0.744 on a random split
test (0.753 for the winning algorithm on the same set). The differ-
ence in AUC is marginal, and we expect that given more training
subjects, deep learning will behave as well as if no better than
the statistical models.
Several clinical statements were also provided, but we did not
use these information in our model mainly due to two reasons:
firstly, our intuition was to assess the performance of using images
solely, and evaluate how precise image itself can predict the HPV
status; another one is including clinical information will bring in
extra uncertainties into the model. For example, TNM grade
requires further testing, and the grade system is discrete while
tumors develop in a continuous fashion; therefore, a cutoff has to
be chosen to classify the tumor into the grade system. This manda-
tory discretization may introduce bias and uncertainty. On the
other hand, some self-reported items, e.g. smoking and sexual fre-
quency may not be accurate. Therefore, if the clinical parameters
will help improve the prediction is still debatable. There was a
study [29] showing that the clinical parameters themselves were
able to achieve prediction AUC of 0.84 (lower than what our model
can do). They have also showed that their radiomic features did not
provide improvement over the clinical only model. However, they
have had only a few vaguely defined imaging features, while in our
study much more comprehensive radiomic features were
extracted. Unfortunately, since the challenge was concluded, we
no longer have access to the leaderboard, so we are not able to pro-
vide feedbacks at this time. But this issue, whether or not adding
clinical parameters improve the overall prediction accuracy, worth
further study.

One uncommon fact is that our model has a higher AUC on the
private cohort than the public cohort. On one hand we believe it is
an indication of good generalizability of our model, while it could
also be possible that the validation/test cohort is relatively small.
Due to the setting of the challenge that we did not receive the truth
of either public or private cohort, we are not able to give more
information on this rare situation.

From the results, we found that the subjects of HPV-pos usually
have smaller and geometrically simpler tumor, hence it is more
manageable. These findings may partially explain the current liter-
ature results that HPV-pos subjects have overall survival advantage
[1–3].

In this study, we explored the correlation between radiomic
features and one clinical outcome, HPV16 status. As an exploration
study, we think it provides its value by showing the high predictive
ability. Beyond HPV16 status, we believe there are more
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connections between the underlying biology and imaging, for
example quantifying tumor heterogeneity through imaging. In this
scenario, clonal/subclonal composition can be identified through
imaging, without getting the actual biopsy. This will help physician
make better treatment decision, and potentially increase the sur-
vival chance of patients.

In conclusion, we have designed a statistical framework to ana-
lyze CT images to predict HPV status, and achieved the first place in
the 2016 MICCAI grand challenge: Oropharynx Cancer (OPC)
Radiomics Challenge, Human Papilloma Virus (HPV) Status
Prediction.
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