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Objective: Ectopic pregnancy (EP) is well known for its critical maternal

outcome. Early detection could make the difference between life and death in

pregnancy. Our aim was to make a prompt diagnosis before the rupture occur.

Thus, the predictive analytical models using both conventional statistics and

machine learning (ML) methods were studied.

Materials and methods: A retrospective cohort study was conducted on 407

pregnancies with unknown location (PULs): 306 PULs for internal validation

and 101 PULs for external validation, randomized with a nested cross-

validation technique. Using a set of 22 study features based on clinical

factors, serum marker and ultrasound findings from electronic medical

records, analyzing with neural networks (NNs), decision tree (DT), support

vector machines (SVMs), and a statistical logistic regression (LR). Diagnostic

performances were compared with the area under the curve (ROC-AUC),

including sensitivity and specificity for decisional use.

Results: Comparing model performance (internal validation) to predict EP, LR

ranked first, with a mean ROC-AUC ± SD of 0.879 ± 0.010. In testing data

(external validation), NNs ranked first, followed closely by LR, SVMs, and DT

with average ROC-AUC ± SD of 0.898 ± 0.027, 0.896 ± 0.034, 0.882 ± 0.029,

and 0.856 ± 0.033, respectively. For clinical aid, we report sensitivity of

mean ± SD in LR: 90.20% ± 3.49%; SVM: 89.79% ± 3.66%; DT: 89.22% ± 4.53%;

and NNs: 86.92% ± 3.24%, consecutively. However, specificity ± SD was

ranked by NNs, followed by SVMs, LR, and DT, which were 82.02 ± 8.34%,

80.37 ± 5.15%, 79.65% ± 6.01%, and 78.97% ± 4.07%, respectively.

Conclusion: Both statistics and the ML model could achieve satisfactory

predictions for EP. In model learning, the highest ranked model was LR,

showing that EP prediction might possess linear or causal data pattern.

However, in new testing data, NNs could overcome statistics. This highlights

the potency of ML in solving complicated problems with various patterns,

while overcoming generalization error of data.
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Introduction

Ectopic pregnancy (EP) occurs when a fertilized egg
implants outside the uterine cavity, resulting from numerous
factors that interrupt the successful migration of the conceptus
(1). The incidence rate of EP in Thailand and worldwide
was 9.3 and 10–20 per 1,000 pregnancies, respectively (1–4).
Unfortunately, the mortality rate was high compared with low
numbers of incidence, since EP was reported as a major cause
of maternal death in early pregnancy (5, 6). UK’s Healthcare
Safety Investigation Branch (HSIB) has uncovered that failure
or delay in diagnosis was the main concern (7, 8) and declared
early diagnosis of EP to be a life-or-death medical decision (9).

EP is usually diagnosed in the first trimester of pregnancy.
Presenting symptoms range from vaginal bleeding, abdominal
pain, missed menstruation, and fainting. Examination findings
include abdominal and/or adnexal tenderness, cervical motion
tenderness, or hypotension. Unfortunately, many studies found
that history and physical examination do not reliably predict
outcomes, because up to 50% of patients revealed no risk factor
(10) and 9% reported no pain. Also, the normal examination
found nearly one-third of cases (11). When a pregnancy
test was confirmed and early pregnancy complications were
suspected, ultrasound examination was commonly used to
confirm the location of pregnancy (12). However, only 73.9%
of tubal EPs were visualized by initial TVS (13), and those with
no signs of intra- or extrauterine pregnancy on transvaginal
ultrasonography would initially be defined as pregnancy of
unknown location (PUL), ranging from 8 to 31% in prevalence.
Within this cohort, one-third was found as early intrauterine
pregnancy, and a range of 8.7–42.8% was found as EP (14–
16). Recently, serial measurements of serum hCG have been
shown to improve the diagnostic rate (12). Unfortunately,
the result could not differentiate those with EP from normal
intrauterine pregnancy or miscarriage precisely enough (17).
Consequently, clinicians misdiagnosed more than 40% of EPs on
the initial ED visit reported in a former study (18). While many
clinical protocols have been improved, in addition to modern
investigation tools, limitations remain in diagnosis as observed
in the UK. The National Health Service (NHS) uncovered
30 missed EPs leading to “serious harm” in 1 year (2017–
2018) (9). Therefore, this time-critical condition can become
life-threatening when the implantation site ruptures causing
immediate bleeding into the intra-abdomen and eventually
leading to hemorrhagic shock.

Attempts in developing models for EP diagnosis were
established from a variety of domains. These include the clinical
risk factor model, classifying elevated risk group (19) or the risk
factor model combined with a single serum hCG (20). While

Abbreviations: EP, ectopic pregnancy; PUL, pregnancy of unknown
location; ML, machine learning; NNs, neural networks; DT, decision tree;
LR, logistic regression; SVM, support vector machines.

the specificity was high, the sensitivity was inconsistent. Second,
the serum level of the progesterone model with single cutoffs
had AUC 0.725, or the later widely known model using serial
hCG, M1, M4, and M6, was presented with high performance.
However, the accuracy was lower in different cohorts and
required at least two follow-up examinations up to 48 h (21–23).
Finally, the ultrasound score classified patients using ultrasound
findings (24), and there were still unavoidable limitations of
ultrasound user expertise and patient’s confounding factors.

In addition to the limitations mentioned, international
consensus remains lacking, with no gold standard tools have
been established to identify early EP. Our aim was to develop a
model combining all three domains using traditional statistical
analysis and machine learning (ML).

ML has dramatically contributed to new knowledge in
the medical field in the last two decades. It has defined
the evolution of interdisciplinary sciences between statistics,
artificial intelligence, and medicine. It possesses the ability
to conduct complex tasks, automatically, determines hidden
patterns that are too complex for humans to observe, and has
the advantage of discovering rules for behavior and adaption
to changes in wording, making ML suitable to predict new EP
cases (25).

Numerous EP studies have been based on traditional
statistical analysis. Although EP is dangerous and difficult
to detect, small numbers of studies have applied ML in
this field. One was used as a decision support model for
treatment. Interestingly, another studied different ML methods
to predict EP in PUL based on serum hCG and clinical
information. To the best of our knowledge, this is the first
study to combine all diagnostic feature domains using both
statistics and ML methods.

Our research problem applied the classification technique
based on a supervised learning method. The widely used ML
methods include the decision tree (DT), support vector machine
(SVM), neural network (NN), and logistic regression (LR),
which is the traditional and most used statistical method. Each
model process uses distinctive characteristics of algorithms that
are suitable for different sets of data problems. Our study aimed
to compare all four models and determine the best model
suitable for the stated problem.

Materials and methods

Problem definition and formulation

This constituted a retrospective cohort study, briefly
summarized in Figure 1, conducted from electronic medical
records of 1,604 pregnant women presenting first trimester
complication symptoms including abdominal pain and/ or
abnormal vaginal bleeding at Phramongkutklao Hospital
between October 2010 and March 2022. The criteria for

Frontiers in Medicine 02 frontiersin.org

https://doi.org/10.3389/fmed.2022.976829
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-09-976829 September 17, 2022 Time: 14:24 # 3

Rueangket et al. 10.3389/fmed.2022.976829

FIGURE 1

Study flow diagram based on the foundational method for data science (FMD), IBM (27, 28).

inclusion were those suspected of PUL with medical report
of clinical history, physical examination, and ultrasound
evaluation. Women were included regardless of the report with
or without taking serum hCG due to medical judgment at that
time, such as those presenting suspicious signs of intrauterine
pregnancy or extrauterine pregnancy via ultrasonography at the
first visit. The patients presenting clinically suspicious ruptured
EP (clinical instability or sign of intra-abdominal hemorrhage)
or showing any evidence of intrauterine gestational content
or EP (adnexal mass consisting of fetal pole or fetal heart
motion) by ultrasound at the first visit were excluded. EPs were
those diagnosed with pathological reports in surgical cases and
abnormal serial serum hCG in non-surgical cases. The study
was approved by the Royal Thai Army Medical Department
Institutional Review Board, reference number R048h/62_Exp.
Patient identification was coded before analysis and discussion.
We declare that we used some parts of identical electronic
medical data of patients, visiting Phramonkutklao Hospital,
for model validation in this research, using different research
questions and methods (26).

Outcome of measurement
Binomial value (ectopic pregnancy/non-ectopic pregnancy).

Analysis
For supervised learning analysis, four basic and powerful

classification methods were chosen for their unique classifying
ability as conceptually demonstrated in Figure 2. Despite the
development of a variety of methods, each method provides

FIGURE 2

Conceptual overview of four predictive models.

its own characteristics, and the method capability and model
requirement should be matched.

Logistic regression
Is a traditional statistical method, invented by a British

statistician David Cox in 1958 (29), dealing with classification
problems using a logistic function, for which the result always
falls between 0 and 1 and the graph of the function is
S-shaped. The regression method has an advantage in its
interpretability, which could explain how the model works and
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more importantly lead to an understanding of “why?” this
patient was predicted “yes”. Although regression coefficients
in LR are challenging to interpret and understand as in
linear regression, it could interpret whether the relationship
is proportional or inversely proportional between each feature
(probability) (30, 31).

Support vector machines
Are also used for classification as an alternative to LR,

devised by Soviet statisticians in 1963, and have become feasible
with the introduction of kernels and soft margin classifiers
in the 1990s (32). The advantage over simple regression is
that linear or LR uses all the data points in the calculation
of the line of best fit, while SVMs focus on only the set of
points (called “support vector”) closest to the margin. However,
in terms of interpretability, SVMs perform relatively like a
black box (31).

Decision trees
Classify training data by sorting them on a tree from root to

leaf nodes downwardly. Each internal node involves a feature
and prediction made at leaf nodes. A leaf is a collection of
examples that may not be classified any further (33). It has the
ability to sequence both discrete and continuous values and can
be used even when some training data have unknown values
(33). However, practical issues arise from learning to determine
how deeply to grow the DT, manage continuous data, choose
an appropriate feature selection measure, and link training data
with missing attribute values.

Neural networks
Were named as a simulation of how brain cellular networks

function, which were used in the 1950s. NN comprises one
or more layers of autonomous computational units or nodes
receiving input from other nodes (including within the same
layer), and sending output or even feedback to previous input,
to present the final output prediction. Although the earliest
NNs were used in classification prediction like basic SVMs
or linear discriminant analysis, they have become more useful
in more complex or non-linear tasks like handwriting or
imaging recognition, which are competitive in solving real-
world problems, including using non-linear data. However, one
disadvantage found in NN was the longer time required for
model running compared with the same category of problems
by LR, SVM, and DT. Second, only numbers of nodes and
layers were identified. Finally, NNs have no explanatory power
to explain “why” this is predicted.

Software
RapidMiner Studio 9.9.003 is a well-known data analyst tool,

especially used for predictive analysis and statistical computing
(34, 35).

Data gathering

Study population
In total, 407 PUL patients (26) were included in this study.

Features (predictive values)
Three domains of 22 features of categorical data comprise

clinical history (demographic data, risk factor history, clinical
manifestations), initial serum hCG levels, and ultrasound
results. All factors were extracted and selected from literature
reviews that were statistical and clinically relevant to our
research outcome.

Data preparation
Missing value

Due to the nature of a retrospective study, missing input
data are inevitable. After reviewing cases, approximately 10–
20% involved missing values in all 22 features and were missing
at random (mostly insignificant negative findings or assumed
irrelevant history in those hospital visits) (36). Our objective
was to understand the data for training, not deleting ones,
which could bias the classifier performance (37). The missing
value imputation method has been shown to improve prediction
capability. Thus, the Naïve-Bayes, a simple, probability ML, was
applied (38).

Remove correlated features

To avoid confusing correlation and causation, features with
high or substantial absolute correlation of more than 0.95 were
removed (39).

Feature selection

To select the attribute that was most useful for
classifying examples, optimization selection using
forward/backward stepwise was applied [n (generation
without improvement) = 1].

Model analysis

Dataset allocation
To maximize the use of all values, while decreasing

generalization error or testing/training dataset variance,
the nested cross-validation technique (40) was applied by
randomly splitting and selecting a training and testing
dataset (306:101) in five different loops. In addition, an
inner loop 10-fold cross-validation of training/validating data
was added. The performance would present in average,
minimum, and maximum values from all five-model
loops’ analyses.
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Model training and validating (internal
validation/n = 306)

To optimize the process of training sets to estimate their
accuracy and to overcome model overfitting, by providing 10-
fold (9:1) training and validating data (25), all four models were
trained using the entire dataset.

Performance evaluation
Comparing the four models, the area under the receiver

operating characteristic curve (ROC-AUC) (41) was used to
report the mean ± SD of the cross-validation process. Also,
report accuracy, sensitivity, specificity, positive predictive value
(PPV), and negative predictive value (NPV) were employed to
gain more insights.

Prediction

Model testing/deployment (external
validation/n = 101)

All four models were applied to newly separated patients’
data using the nested cross-validation technique, and then, the
model performance was compared using ROC-AUC.

Results

Characteristics of study populations

Of the 1,604 pregnant women with first trimester
complications, 407 (25.4%) patients initial visits were identified
as PUL—the final diagnosis totaled 208 (51.1%) EPs and 199
(48.9%) non-EPs. Among non-EPs, 22 (11.1%) were threatened
abortion, 1 (0.5%) blighted ovum, 1 (0.5%) corpus luteal
leakage, and the other 175 (87.9%) constituted spontaneous
abortion. The mean age was 30 years with 55.3% multiparity.
Comparing the demographic data presented in Table 1, no
difference was found between the two groups.

Regarding the data preparation process, features selected
to be in the model are shown in Table 2. We then ran the
model analysis and presented the performance comparison in
ROC-AUC in Figure 3.

The average performance ROC-AUC was high in all models
(AUC ≥ 0.856, Figures 3, 4), also highlighting that the statistical
model (LR) was superior to ML in training validation, while NNs
were more superior in external testing.

Of the four models’ performances in the testing population
shown in Figure 4, NNs ranked first, followed closely by LR,
SVMs, and DT with average ROC-AUC ± SD of 0.898 ± 0.027,
0.896 ± 0.034, 0.882 ± 0.029, and 0.856 ± 0.033, respectively.
For clinical aid, we reported sensitivity of mean (± SD) LR:
90.20% ± 3.49%, SVM: 89.79% ± 3.66%, DT: 89.22% ± 4.53%,
and NNs: 86.92% ± 3.24%, respectively. Furthermore, specificity

of mean (± SD) was ranked by NNs, followed by SVMs, LR, and
DT, i.e., 82.02 ± 8.34%, 80.37 ± 5.15%, 79.65% ± 6.01%, and
78.97% ± 4.07%, respectively.

Figure 5 shows more insight on how the DT model predicts
the outcome, indicating that the prediction process was in
a prioritizing order. As the tree grows downward, we found that
the adnexal mass was the highest of priority decision nodes,
first used to classify patients, indicating it as the main classified
feature, followed by cervical tenderness. Concerning the second
pathway if none of these two features existed, we found that
the initial serum history of PID, nausea-vomiting symptoms,
and current use of emergency pill could provide additional
decisional data, as well as serum hCG of more than 1,000
mIU/mL in another branch.

We then evaluated the models on the new cohort for
external validation and found that NNs models performed best
with ROC-AUC of 0.898, followed by LR, SVMs, and DT as
shown in Table 3. However, a slight difference in performance
was observed between LR and NNs in both internal and external
validations.

Discussion

Our study reported an incidence of 51.1% EPs among
initially suspected women with PUL. However, other studies
reported an incidence ranging from 7 to 31% (14, 15, 42,
43). A similar rate was observed in one large prospective
observational study by Malek-mellouli et al. (44) with a rate
of 43%. This could be explained by spontaneous resolution of
EP in PUL that might constitute a failed diagnosis, because
the location remained unknown, while some cases might have
been misclassified as missed abortion. Also, the higher number
might have resulted from the sensitivity of ultrasound at the
initial diagnosis that subjectively differed between cohorts.
Gestational age of diagnosis was also similar in both groups,
leading to a challenge for early diagnosis. Using the method
of data science for model development, two main steps of
results were developed.

First, model learning and validation

While ML is believed to empower prediction fields,
theoretically using complex algorithms should enable highly
accurate models (45). Our result showed that LR provided
a better predictive ability throughout ROC-AUC. One
explanation could be that the model was obtained from features,
chosen by reviewing and studying many literature reviews,
resulting in true causation, which was unavoidable because
medical data are reasonably based on fact. Evidently, due to the
presence of non-random variation (causal or linear relationship)
in the input variables, LR performed the best of the four models
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TABLE 1 Descriptive demographics and features of the study population.

Characteristics Total (N = 407) N (%) EP N (%) (N = 208) Non-EP (N = 199) N (%) P-value

Demographic data: Age (years) mean ± SD 29.58 ± 6.08 30.86 ± 6.30

Age group (years)

<35 (%) 304 (74.69%) 161 (52.96%) 143 (47.04%) 0.198a

≥35 (%) 103 (25.31%) 47 (45.63%) 56 (54.37%)

BMI (kg/m2)

<23 (kg/m2) (%) 272 (66.83%) 141 (51.84%) 131 (48.16%) 0.675a

≥23 (kg/m2) (%) 135 (33.17%) 67 (49.63%) 68 (50.37%)

Parity

Nulliparity (%) 182 (44.72%) 85 (46.70%) 97 (53.30%) 0.110a

Multiparity (%) 225 (55.28%) 123 (54.67%) 102 (45.33%)

Gestational age at diagnosis (days) 52.40 ± 15.78 51.82 ± 16.43 0.717b

Risk factors: History of pelvic surgery

No (%) 304 (78.15%) 164 (53.95%) 140 (46.05%) 0.351a

Yes (%) 85 (21.85%) 41 (48.24%) 44 (51.76%)

Smoking

No (%) 380 (97.94%) 198 (52.11%) 182 (47.89%) 0.007a

Yes (%) 8 (2.06%) 8 (100.00%) 0 (0.00%)

History of ectopic pregnancy

No (%) 385 (95.77%) 197 (51.17%) 188 (48.83%) 0.886a

Yes (%) 17 (4.23%) 9 (52.94%) 8 (47.06%)

History of pelvic inflammatory disease (PID)

No (%) 347 (96.12%) 188 (54.18%) 159 (45.82%) 0.020a

Yes (%) 14 (3.88%) 12 (85.71%) 2 (14.29%)

Current use of emergency pill

No (%) 331 (89.46%) 162 (48.94%) 169 (51.06%) <0.001a

Yes (%) 39 (10.54%) 33 (84.62%) 6 (15.38%)

Assisted reproductive technology

No (%) 390 (97.26%) 200 (51.28%) 190 (48.72%) 0.831a

Yes (%) 11 (2.74%) 6 (54.55%) 5 (45.45%)

Symptoms: Abdominal pain

No (%) 79 (19.46%) 27 (34.18%) 52 (65.82%) 0.001a

Yes (%) 327 (80.54%) 180 (55.05%) 147 (44.95%)

Abnormal vaginal bleeding

No (%) 84 (20.64%) 51 (60.71%) 33 (39.29%) 0.048a

Yes (%) 323 (79.36%) 157 (48.61%) 166 (51.39%)

Nausea, vomiting

No (%) 267 (85.85%) 146 (54.68%) 121 (45.32%) 0.408a

Yes (%) 44 (14.15%) 27 (61.36%) 17 (38.64%)

Fainting

No (%) 293 (92.43%) 156 (53.24%) 137 (46.76%) 0.014a

Yes (%) 24 (7.57%) 19 (79.17%) 5 (20.83%)

Signs Abdominal tenderness

No (%) 209 (51.35%) 67 (32.06%) 142 (67.94%) <0.001a

Yes (%) 198 (48.65%) 141 (71.21%) 57 (28.79%)

Cervical motion tenderness

No (%) 324 (80.19%) 126 (38.89%) 198 (61.11%) <0.001a

Yes (%) 80 (19.81%) 79 (98.75%) 1 (1.25%)

(Continued)
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TABLE 1 (Continued)

Characteristics Total (N = 407) N (%) EP N (%) (N = 208) Non-EP (N = 199) N (%) P-value

Serum marker: Serum β -hCG level at first visit (mIU/ml)

<1,000 (%) 153 (53.87%) 46 (30.07%) 107 (69.93%) <0.001a

≥1,000 (%) 131 (46.13%) 74 (56.49%) 57 (43.51%)

Ultrasound findings: Intra-uterine anechoic content

No (%) 351 (86.88%) 182 (51.85%) 169 (48.15%) 0.251a

Yes (%) 53 (13.12%) 23 (43.40%) 30 (56.60%)

Endometrial thickness > 14mm

No (%) 321 (83.38%) 163 (50.78%) 158 (49.22%) 0.304a

Yes (%) 64 (16.62%) 28 (43.75%) 36 (56.25%)

Adnexal mass of complex echogenicity

No (%) 191 (47.04%) 26 (13.61%) 165 (86.39%) <0.001a

Yes (%) 215 (52.96%) 181 (84.19%) 34 (15.81%)

Free fluid in cul-de-sac

No (%) 235 (58.75%) 74 (31.49%) 161 (68.51%) <0.001a

Yes (%) 165 (41.25%) 129 (78.18%) 36 (21.82%)

SD, Standard deviation; BMI, body mass index (kg/m2); PID, pelvic inflammatory disease.
aChi-square test. bt-test.

TABLE 2 Features selected in the four models.

Machine learning model Feature selections (yes/no)

Logistic regression, support vector machine Multipara, vaginal bleeding, cervical tenderness, serum hCG ≥ 1,000 mIU/mL, inhomogeneous adnexal mass in
ultrasound

Neural network Multipara, history of pelvic surgery, cervical tenderness, serum hCG ≥ 1,000 mIU/mL, inhomogeneous adnexal mass,
intrauterine anechoic sac in ultrasound

Decision tree History of pelvic inflammatory disease, emergency pill, nausea-vomiting, cervical tenderness, serum hCG,
inhomogeneous adnexal mass, free fluid in ultrasound

hCG, human chorionic gonadotropin.

FIGURE 3

ROC-AUC (95%CI) performance comparison of the four models using cross-validation (internal validation), created by RapidMiner Studio
9.9.003.
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FIGURE 4

Predictive performance of the four models (external validation).

FIGURE 5

Decision tree model for predictive ectopic pregnancy diagnosis. Adx mass: inhomogeneous adnexal mass, N/V: nausea-vomiting, Cx tender:
cervical tenderness, PID: pelvic inflammatory disease, created by RapidMiner Studio 9.9.003.

in the internal validation process. Interestingly, SVMs also
presented the best accuracy, supporting the fact that medical
data might possess a linear character, and the support vector of
the SVM model exhibited a greater fit with the data (31).

Particularly interesting for researchers is the new feature,
serum hCG cutoff at ≥ 1,000 mL/mL, for predicting EP. Also,
another study found similar associations (46). To the best of our
knowledge, no model has used this serum cutoff as a feature in
prediction, yet. Also, it has been shown in these four models

that cervical tenderness, adnexal mass, and serum hCG were
chosen using the optimized selection feature process. This could
be interpreted by the DT model. While ultrasound findings
of inhomogeneous adnexal mass were prioritized, followed by
physical examination of cervical tenderness, the initial level of
serum hCG up to 1,000 IU/mL, clinical risk factors of nausea-
vomiting, and current use of emergency pills were shown to be
useful to classify women with PUL in consecutive order. This
was related to the evidence based on observational studies in
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TABLE 3 Average ROC-AUC performance comparison of the four
models applied to the internal and external validation datasets.

Model Internal validation External validation

Average S.D. AUC S.D.

LR 0.879 0.010 0.896 0.034

SVMs 0.869 0.016 0.882 0.029

DT 0.855 0.009 0.856 0.033

NNs 0.876 0.012 0.898 0.027

AUC, area under the curve; S.D., standard deviation.

that these factors were shown to correlate with EP with high
odds ratio (44, 47). This research might prove that the four
factors were not just related to EP but might offer biological
plausibility as well.

Comparing the ML models, the major drawback of ML
models, especially NNs and DT, occurs in their training
phase. We found that accuracy was highly dependent on
the size of input data (48). Although the extraordinary
generalization capability of NNs and its discriminative power
make NNs perform better than DT, those models practically
and theoretically achieve less than NNs. However, DT has
advantages in dealing with training data missing values, which
could be more useful in practical use.

Second, model deployment, and
testing

When deploying the models to unseen data, the average
ROC-AUC was slightly higher in all four models, proving the
generalizability of the models by defeating model overfitting.
While NNs proved to be more superior in classifying EPs,
followed closely by LR, highlighting the fact that EPs prediction
might tend to be in linear or causal relationships due to
medical data based on fact, for which LR and SVMs proved
their capabilities. More importantly, NNs, which were mostly
studied well using non-linear data, also proved the potential
performance in this prediction. Unfortunately, due to the small
sample size, further study is required for more validation.
Importantly, introducing the nested cross-validation technique
by randomly splitting and matching between training and
testing data over five different outer loops for model evaluations
provided an acceptable validation. However, when more new
data become available, and more features are explored, the
model could become more complex and harder to incorporate
all data in a single optimal model, which could constitute
a drawback of ML.

For decision-making, ideally, we would prefer a diagnostic
test offering both 100% sensitivity and 100% specificity.
Unfortunately, this rarely occurs and is usually viewed as a

trade-off (49). In practical use, we would like to focus on
two circumstances.

Concerning the first patient visit, the model focusing on
EP screening might represent the most important because
limitations or pitfalls occur in many settings involving the lack
of obvious clinical presentations or ultrasound findings and the
lack of a specialist to consult in primary care hospitals (50).
To decrease the misdiagnosis rate (ruled in), high sensitivity
remains crucial, for which we found LR performed the best. This
was because we were concerned whether a positive disease (EP)
was not identified using a positive test result (51), leading to
inappropriate discharge or inadequate follow-up. We also found
the least false negative case in the LR model. Furthermore, to
emphasize confidence in test sensitivity, patients predicted as
non-EP still need counseling to use NPV rate, because sensitivity
cannot be used to categorize other people as not having the
condition when in fact they do have it (for which LR also ranked
first in NPV performance).

In the second circumstance, following up the EP group or,
in practice, elevated risk PUL, serial serum hCG, and ultrasound
would have been followed as a standard protocol to definite
cases of EP and intrauterine pregnancy identified by ultrasound.
Unfortunately, we found that in counseling for treatment (ruled
out), high specificity was more important. As a result, NNs
might be chosen, because they could perform at the best
specificity. Thus, people with a positive test result would be very
unlikely to be categorized as having a condition if they indeed
did not have it and prevent harmful unnecessary treatment for
normal pregnancy.

Therefore, selecting a model for scientific problems can
markedly influence predictive performance. Building complex
models using some data might create the only model that is
sufficiently powerful to predict ones but might become useless
concerning some questions. This is because the more complex
the model, the harder the results of a prediction would be
to explain, so you might never obtain the answer for “why”
this says “yes.” Second, while keeping up with the changing
patient’s information in the real world, simple models tend to
maintain their performance, but complex ones require up-to-
date maintenance. Therefore, an additional key could be to focus
on the nature of the data instead of creating complex models.
Finally and more importantly, decisions for what model would
constitute the best might depend on the nature of data and the
question of “what is the answer” vs. “why is this the answer.”

Conclusion

Our research highlights the advantage of applying ML in
medical settings as an innovative way for disease prediction
using its complex algorithms to discover unknown patterns
or information inside the black box. The abilities in dealing
with missing values, selecting the most optimized features,
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and analyzing non-parametric data have proved to be ground-
breaking methods for clinical use.

Study limitation was mainly due to the low incidence of EP
in Thai populations. Thus, a retrospective study was chosen.
However, it provided sufficient power of data for statistics,
but obtained unavoidable missing data. Second, while input
data type was related to the analyzing process, the prediction
performance was affected by the type of data. Our research
mostly used category instead of continuous data, which could
have limited the performance of NNs and SVMs by its nature.

Furthermore, as healthcare organizations have produced
and recorded tons of patient information, which might never be
used, organized electronic collection of data could be properly
processed as a medical alerting system to predict using an ML-
based algorithm. With the ML model, knowledge from these
data could produce an ultimate benefit in terms of predicting
and inventing new insights, gaining more benefit from the
experiences of previous ones (52).
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