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Abstract: Neuroacanthocytosis (NA) syndromes are a group of genetically defined diseases char-
acterized by the association of red blood cell acanthocytosis, progressive degeneration of the basal
ganglia and neuromuscular features with characteristic persistent hyperCKemia. The main NA syn-
dromes include autosomal recessive chorea-acanthocytosis (ChAc) and X-linked McLeod syndrome
(MLS). A series of Italian patients selected through a multicenter study for these specific neurologi-
cal phenotypes underwent DNA sequencing of the VPS13A and XK genes to search for causative
mutations. Where it has been possible, muscle biopsies were obtained and thoroughly investigated
with histochemical assays. A total of nine patients from five different families were diagnosed with
ChAC and had mostly biallelic changes in the VPS13A gene (three nonsense, two frameshift, three
splicing), while three patients from a single X-linked family were diagnosed with McLeod syndrome
and had a deletion in the XK gene. Despite a very low incidence (only one thousand cases of ChAc
and a few hundred MLS cases reported worldwide), none of the 8 VPS13A variants identified in
our patients is shared by two families, suggesting the high genetic variability of ChAc in the Italian
population. In our series, in line with epidemiological data, McLeod syndrome occurs less frequently
than ChAc, although it can be easily suspected because of its X-linked mode of inheritance. Finally,
histochemical studies strongly suggest that muscle pathology is not simply secondary to the axonal
neuropathy, frequently seen in these patients, but primary myopathic alterations can be detected in
both NA syndromes.
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1. Introduction

Chorea-acanthocytosis (ChAc, OMIM #200150) is a rare hereditary neurodegenerative
condition, characterized by the young adult-onset of involuntary choreiform movements
and red blood cells (RBCs) acanthocytosis. The phenotypic spectrum is relatively wide
and variable, encompassing psychiatric symptoms, cognitive impairment, peripheral neu-
ropathy, myopathy and epilepsy [1]. Besides chorea, other motor manifestations may
include facial and oromandibular dystonia, tics, parkinsonism and postural tremor. Al-
though the misshaped RBCs are considered the diagnostic hallmark, the acanthocytes
can sometimes be absent or even make a late appearance in the course of the disease.
Other common laboratory findings in ChAc include increased levels of creatine kinase
and liver enzymes. Together with the X-linked McLeod syndrome (MLS, OMIM #300842),
due to loss-of-function (LOF) variants of the XK gene (*314850), ChAc accounts for the
“core” neuroacanthocytosis (NA) syndromes, defined by the combination of RBC acan-
thocytosis and basal ganglia-related neurological disorders [1,2]. ChAc represents one of
the most common differential diagnoses of Huntington’s disease (HD). The inheritance
pattern of ChAc is autosomal recessive and patients are either homozygous or compound
heterozygous for LOF variants in the VPS13A gene (OMIM *605978) encoding chorein,
a large protein involved in the intracellular vesicle trafficking [1]. Mammalian VPS13A
belongs to a small gene family that codes for ubiquitously expressed proteins derived
by the duplication of an ancestral yeast gene [3]; pathogenic variants in the other genes
of this family underlie other neurologic conditions such as Cohen syndrome (VPS13B),
early-onset autosomal recessive Parkinson’s disease (VPS13C) and spinocerebellar ataxia
with saccadic intrusions (VPS13D). Although ChAc inheritance is generally accepted as
autosomal recessive, patients with possible autosomal dominant ChAc have occasionally
been reported [4–7] but remain questionable in the pre-exome sequencing era. Indeed, a
second VPS13A variant may initially go unnoticed, as in the affected siblings reported by
Saiki et al. [4] where a second VPS13A variant was subsequently identified [8].

We describe here a series of Italian patients with NA syndromes recruited as part of a
multicenter study, that were screened for pathogenic variants in the VPS13A and XK genes.
In a total of six families, we identified eight different VPS13A variants, mostly unreported,
and a single exon deletion of the XK gene. The clinical description, including detailed
muscular pathology, laboratory findings and imaging features are reported.

2. Materials and Methods
2.1. Patient Series

The patients with NA syndromes described here come from clinical–diagnostic evalu-
ations carried out in the neurology departments of three different University hospitals in
Italy. All examiners used commonly adopted scales according to shared criteria to assess
the core phenotype and disability score i.e. the Unified Huntington’s Disease Rating Scale
(UHDRS), the Montreal Cognitive Assessment (MoCA), the Mini Mental State Evaluation
(MMSE), and the Manual Muscle Test (MMT)-Medical Research Council (MRC) grading
scale. With the exception of 2 patients, all other cases described here were not previously
reported. This study was conducted according to the Declaration of Helsinki and written
informed consent was obtained from all participants.

2.2. Molecular Analysis

The molecular diagnostics of probands, and other affected or unaffected family mem-
bers, were performed between 2016 and 2018 in the same laboratory. Total DNA was
isolated from peripheral blood using a MagPurix automatic extractor. All exons and
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flanking regions of the VPS13A and XK genes were amplified from genomic DNA and
customized primers (listed in the Supplementary Material). Amplicons were purified using
Exo-Sap, labeled using a BigDye Terminator v3.1 Cycle sequencing kit (Applied Biosystem,
Foster City, CA, USA) and directly sequenced on an ABI 3500 Genetic Analyzer (Applied
Biosystem, Foster City, CA, USA). Total RNA was purified from blood and was reversely
transcribed using the First Strand cDNA Synthesis Kit (Roche, Hamburg, Germany) ac-
cording to the manufacturer’s random primer protocol. The effect of the VPS13A intronic
variant on splicing in family B was examined by RT-PCR using gene specific primers and
Sanger sequencing. Primer sequences have been reported in the Supplementary Material
and PCR conditions are available upon request. The identification of exon 1 deletion in the
XK gene in family F was obtained by quantitative real-time PCR (qPCR) in a MicroAmp®

optical 96-well plate using exon specific oligonucleotide primers and SYBR Green master-
mix (ThermoFisher, Waltham, MA, USA). The relative quantification of the copy number
was performed according to the comparative method (2—∆∆Ct) [9]. The mean result of
three independent experiments run in triplicate was compared with that of normal controls
whose expression was arbitrarily attributed the value of 1. Western blotting was performed
in some patients on blood in order to detect the VPS13A protein using the anti-chor1
antibody as described previously [10].

2.3. Muscle Studies
2.3.1. Chorea-Acanthocytosis

Open muscle biopsies on patients from two different families with ChAC were per-
formed at the Department of Neurology of the University of Campania “Luigi Vanvitelli”:
patient II:4 from family A had a biopsy on the vastus lateralis of the right quadriceps, while
patients II:2 and II:3 from family D were biopsied on the left deltoid. Muscle tissues were
snap-frozen in isopentane, pre-cooled in liquid nitrogen and stored at −260 ◦C until sec-
tioning. 7 and 10-µm-thick serial cryo-sections were used for histology and histochemistry
and stainings included: hematoxylin eosin (H&E), Gomori trichrome, periodic acid Schiff
(PAS), Sudan III, adenosine triphosphatase (ATPase) at pH 9.6, 4.6 and 4.3, AP (acid phos-
phatase) and oxidative enzymes such as nicotinamide adenine dinucleotide-tetrazolium
reductase (NADH-TR), succinate dehydrogenase (SDH) and cytochrome oxidase (COX).
Qualitative and quantitative light microscopy studies were carried out on muscle slices
using a Nikon Eclipse Ni® photomicroscope equipped with the NIS Elements F4.30.00
image analyses system.

2.3.2. McLeod Syndrome

Following the same protocol described above, muscle studies were also performed on
three individuals affected by McLeod syndrome: F-III:4 had biopsy on the right peroneus
brevis at the Neurology Division of the “Federico II” University of Naples, while patients
F-III:5 and F-III:9 were biopsied on the right quadriceps, respectively, at the Department
of Neurology of University of Campania “Luigi Vanvitelli” and at the Neurology Unit of
Padua University.

3. Results

Table 1 summarizes the clinical data of all 12 patients belonging to the six families
(A–F). Individual patients’ histories are described in detail in the Supplementary Material,
while muscle studies performed on patients A-II:4, D-II:2, D-II:3, F-III:4, F-III:5 and F-III:9
are reported in a dedicated section.
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Table 1. Main clinical, laboratory and histological features. Acanthocytes: percentage of acanthocytes on peripheral blood smear; Serum CK level: normal range 60–190 U/L; OCD:
obsessive-compulsive disorder; CN: caudate nuclei; LL: lower limbs; MUP: motor unit potential; ChAc: chorea-acanthocytosis; MLS: X-linked McLeod syndrome; n.a: not available.
* previously reported by Peluso et al. [11].

A-II:4
(ChAc)

A-II:5
(ChAc)

B-II:3
(ChAc)

B-II:5
(ChAc)

C-II:3
(ChAc)

C-II:4
(ChAc)

D-II:2
(ChAc)

D-II:3 *
(ChAc)

E-II:2 *
(ChAc)

F-III:4
(MLS)

F-III:5
(MLS)

F-III:9
(MLS)

Age at onset 6 24 27 25 11 20 40 30 28 45 39 20

Age at last
update 39 25 36 30 48 41 52 (dead) 46 53 59 (dead) 63 45 (dead)

Onset
Symptoms

Behavioral
disorder

Anxiety
disorder

Orofacial
tics

Behavioral
Disorder Tics, seizures Psychosis,

OCD

Feeding
dystonia,
muscle

weakness

Seizures
Mood and
behavioral
disorders

Muscle
weakness Seizures Behavioral

disorder

Acanthocytes
(%) 7.3–19.2 8.3 8.6 3.1 16.4 28 17 13 40 9–10 18 5–7

Serum CK
level (U/L) 600 1971 489–948 5564 872–3435 1180 3000 1522 1500 2500 1000 1000–8000

Choreic
movements
(onset age)

YES
(15) No YES

(29) No YES
(30)

YES
(30)

YES
(42) No No YES

(50)
YES
(59)

YES
(45)

other
movement
disorders

Feeding
dystonia

Akathisia,
Tics Tics Tics

Facial
dyskinesia,

dystonia

Dystonia,
bradykinesia,

postural
tremor

Feeding
dystonia No

Bradykinesia,
tremor,
motor

slowing,
dystonia

No Buccal
stereotypies

Oro-facial
dystonia

Seizures
(onset age)

YES
(23) No No YES

(25)
YES
(11) No No YES

(30) No No YES
(38)

YES
(40)

Psychiatric
symptoms
(onset age)

YES
(6)

YES
(23) No YES

(26) No YES
(20) No No YES

(28) No No YES
(20)

Brain MRI
anomalies

Atrophy of
CN and hip-
pocampus

No No
Left lateral
ventricular

enlargement

Ventricular
enlargement,

calcific
meningioma

Ventricular
enlargement,

arachnoid
cyst

Cerebral
cortex

and CN
atrophy

Atrophy of
CN and hip-
pocampus

Atrophy of
CN No No Atrophy of

CN

Axonal
polyneu-
ropathy

Sensori-
motor Sensory Sensory Sensory n.a. Sensory Sensori-

motor Sensory No Sensori-
motor

Sensori-
motor

Sensori-
motor
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Table 1. Cont.

A-II:4
(ChAc)

A-II:5
(ChAc)

B-II:3
(ChAc)

B-II:5
(ChAc)

C-II:3
(ChAc)

C-II:4
(ChAc)

D-II:2
(ChAc)

D-II:3*
(ChAc)

E-II:2*
(ChAc)

F-III:4
(MLS)

F-III:5
(MLS)

F-III:9
(MLS)

EMG
pattern

Chronic
denervation

with
myopathic

MUP

Normal Myopathic
MUP n.a. n.a. n.a

Active and
chronic

denervation

Active and
chronic

denervation
Normal

Myopathic
MUP with

chronic
denervation

Myopathic
MUP with

chronic
denervation

Myopathic
MUP with

chronic
denervaion

Muscle
weakness
(onset age)

Lower
limb-

girdle(35)
No

Lower
limb-girdle

(29)
No

Lower
limb-

girdle(47)

Lower
limb-

girdle(37)

Proximal and
distal

muscles LL
(39)

Lower
limb-

girdle(38)

Lower
limb-girdle

(53)

Upper and
lower limb
girdle (40)

Upper and
lower limb
girdle (45)

Upper and
lower limb
girdle (40)

other
muscular
signs and
symptoms

No No n.a. n.a. n.a. n.a.

Fasciculations,
cramps,
muscle
atrophy

Fasciculations,
cramps
muscle
atrophy

No Cramps at LL Cramps at
LL Cramps at LL

Muscle
biopsy

Type-
grouping,

multi-
minicore

fibers

n.a. n.a. n.a. n.a. n.a.
Bizarre fibers,

atrophic
fascicles

Type-
grouping,
core fibers

n.a.

Fiber size
variability,

rimmed
vacuoles

Fiber size
variability, in-
flammatory
infiltrates

Fiber size
variability,
increased

central nuclei

Cardiac
anomalies
(onset age)

No No
paroxystic

tachycardia
(7)

No

paroxystic
atrial

fibrillation
(36)

mild
conductive
anomalies

(39)

No No No YES
(57) No No
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Table 2 lists the VPS13A variants identified in the first five families (A–E) next to
their frequency in the Genome Aggregation Database (gnomAD) and the expected protein
changes.

Table 2. ChAc patients: molecular findings. VPS13A variants on cDNA, their allele frequency in the GnomAD database,
variant type and predicted protein change. § Missense variants in VPS13A are usually benign and the p.K1198Q variant is
anyhow in cis with the pathogenic frameshift c.1114_1115del variant. NF: Variant not found in gnomAD exomes/genomes;
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linsTATAGCTGTTA
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TAAAATTATTTAA 
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3 / 250796 
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Nonsense 
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? NR 
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c.2825-10T>G 
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5 / 251030 
NF 

Frameshift deletion 
Splice-site substitu-

tion 

p.R2579Nfs*26 
 
? 

NR 
NR 

 

3.1. Family A (Chorea-Acanthocytosis) 
This pedigree (Figure 1A), originating from two Vesuvian territories, includes two 

affected individuals. Molecular analysis of the VPS13A gene in the proband A-II:4 con-
firmed the ChAc diagnosis and revealed the presence of three variants: c.3817C>T, 
c.1114_1115delAA and c.3592A>C; the last two were found to be in cis on the maternal 
copy of the gene (Supplementary Figure 1). The first variant (inherited from the father) 
introduces a stop codon in position 1273 (p.R1273*) and the second (inherited from the 
mother) is a frameshift variant disrupting the protein after residue 372 (p.K372Vfs*4). 
While these two variants are both pathogenic and clearly account for the patients’ pheno-
type, a third variant (c.3592A>C) has been co-inherited with the maternal frameshift, caus-
ing a likely benign missense change (p.K1198Q). The same variants have been detected in 
the younger brother (A-II:5) while their older sister (A-II:3) carries only the paternal 
c.3817C>T (p.R1273*) nonsense variant.  
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B
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C
c.1078C>T 13 3 / 250796 Nonsense p.Q360* NR
c.7867C>T 56 1 / 251190 Nonsense p.R2623* [8,12–14]

D c.2512+2T>G IVS24 NF Splice-site
substitution ? NR

E
c.7736_7739del 55 5 / 251030 Frameshift deletion p.R2579Nfs*26 NR

c.2825-10T>G IVS26 NF Splice-site
substitution ? NR

3.1. Family A (Chorea-Acanthocytosis)

This pedigree (Figure 1A), originating from two Vesuvian territories, includes two
affected individuals. Molecular analysis of the VPS13A gene in the proband A-II:4 confirmed
the ChAc diagnosis and revealed the presence of three variants: c.3817C>T, c.1114_1115delAA
and c.3592A>C; the last two were found to be in cis on the maternal copy of the gene
(Supplementary Figure S1). The first variant (inherited from the father) introduces a stop
codon in position 1273 (p.R1273*) and the second (inherited from the mother) is a frameshift
variant disrupting the protein after residue 372 (p.K372Vfs*4). While these two variants are
both pathogenic and clearly account for the patients’ phenotype, a third variant (c.3592A>C)
has been co-inherited with the maternal frameshift, causing a likely benign missense change
(p.K1198Q). The same variants have been detected in the younger brother (A-II:5) while
their older sister (A-II:3) carries only the paternal c.3817C>T (p.R1273*) nonsense variant.

3.2. Family B (Chorea-Acanthocytosis)

This consanguineous pedigree (Figure 1B) originates from a town near Brindisi,
in the south-eastern tip of Italy, and the parents are second cousins. Molecular analy-
sis eventually revealed a homozygous VPS13A variant in both affected brothers B-II:3
and B-II:5 (c.3339+4_3339+10delinsTATAGCTGTTATATAAAATTATTTAA). As shown in
Supplementary Figure S2, this insertion–deletion, close to the splice donor site in intron 31,
alters the canonical splicing of VPS13A mRNA, likely resulting in protein loss-of-function.
The two other brothers (II:2 and II:4) are both heterozygous carriers, like their mother I:2.
The older sister II:1 turned out to be homozygous for the wild-type allele, while the father
I:1 (an obligate carrier) declined genetic testing.

3.3. Family C (Chorea-Acanthocytosis)

This non-consanguineous family has two probands, C-II:3 and C-II:4 (Figure 1C). Only
in 2017, at the age of 41, molecular analysis of VPS13A was eventually performed on C-
II:4, revealing a compound heterozygosity for two nonsense variants c.1078C>T (p.Q360*)
and c.7867C>T (p.R2623*). Sequences of the two variants are shown in Supplementary
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Figure S3. Shortly after his younger brother, C-II:3 also received molecular confirmation of
his ChAc diagnosis and was found to carry the same two nonsense variants. Two other
unaffected brothers (II:2 and II:5) have not been tested yet.

Figure 1. Pedigrees of the five choreo-acanthocytosis families (A–E), all with a clear recessive mode of inheritance. However,
consanguineity was confirmed only for pedigree B (parents are second-degree cousins) and suspected for pedigree D (both
parents carry the same VPS13A variant). Affected individuals are shaded in black. Family members that were sequenced
are indicated by a dash on top of their symbol.

3.4. Family D (Chorea-Acanthocytosis)

This family has two affected brothers (II:2 and II:3) and originates from Herculaneum,
south-east of Naples, close to Mount Vesuvius (Figure 1D). Only the two affected broth-
ers have been tested and the proband (D-II:2) has recently passed away. Although no
parental consanguinity had been reported, VPS13A sequencing revealed a homozygous
splicing variant (c.2512+2T>G) that abolishes the donor site of intron 24 Supplementary
Figure S4). Genetic testing of the younger brother D-II:3 confirmed the presence of the
same homozygous VPS13A variant.

3.5. Family E (Chorea-Acanthocytosis)

The proband (E-II:2) is the second son of a non-consanguineous marriage (Figure 1E).
This patient, along with D-II:3, was previously reported by Peluso et al. [11], who made a
biochemical diagnosis of ChAc since Western blotting had proven the absence of chorein,
the VPS13A protein. Eventually VPS13A sequencing revealed that patient E-II:2 is a
compound heterozygote for two different variants, namely, a 4-bp deletion (c.7736_7739del)
causing a frameshift in exon 55 and an intronic substitution close to the acceptor site of
intron 26 (c.2825-10T>G). Disruption of normal mRNA splicing has been confirmed with
cDNA sequencing of the relevant VPS13A exons (Supplementary Figure S5).
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3.6. Family F (McLeod Syndrome)

This large pedigree (Figure 2) originates from the metropolitan area of Venice and
all patients but the proband F-III:5 are now dead. The familial history clearly suggested
X-linked inheritance and, in fact, the absence of the Kell antigen on red blood cells con-
firmed this suspicion. Genetic testing eventually proved that proband III:5 was positive
for a hemizygous deletion of exon 1 of the XK gene. As shown in the pedigree, four
other individuals have been reported to be affected by family members and died before
DNA analysis was available. However, III:4 and III:9 were subjected to muscle biopsy as
described in the following section.

Figure 2. Pedigree of family F is compatible with X-linked inheritance. The molecular test of III:5 indirectly confirmed the
diagnosis of McLeod syndrome for the other patients (I:1, I:2, III:4, and III:9) who had already died. Obligate carriers are
indicated with a small black circle within their symbol.

3.7. Muscle Studies

Muscle biopsies were performed in three patients with ChAc and in three individuals
of the MLS family; the main histological findings are illustrated in Figure 3.

3.7.1. Chorea-Acanthocytosis

In patient A-II:4 (Figure 3A–C) the muscle biopsy disclosed predominantly neurogenic
alterations, with fiber caliber variability due to small groups of atrophic angulated fibers,
next to some hypertrophic type I and type II fibers at myosinATPase pH 9,4; rare unstruc-
tured core fibers were also detected, suggesting chronic denervation. Muscle specimens
obtained from the two affected siblings of family D showed a significantly different degree
of muscle neurogenic degeneration. In patient D-II:2 (Figure 3D–F) a severe variability of
fiber size was observed due to large groups of atrophic fibers (Ø < 20 µm) intermingled
with several giant fibers (Ø > 120 µm). Splitting phenomena and the severe disruption of
myofibrillar architecture in the form of whorled and bizarre-shaped fibers were also seen
with oxidative enzymes staining (Figure 3E–F). The biopsy of Patient D-II:3 (Figure 3G–I)
showed a histological picture similar to A-II:4, characterized by a slight variability in fiber
size, atrophy of both type I and II fibers, and fiber-type grouping phenomena.
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Figure 3. Histological findings on muscle biopsy. The first column shows images of muscle stained
with haematoxylin-eosin (H&E), the second with succinate dehydrogenase (SDH) and the third with
myosinATPase at pH 9.4. (A–C) Case A-II:4 affected by ChAc: (A) moderate fiber size variability
with some hypo-atrophic angulated fibers (black arrow) next to large hypertrophic fibers; (B) the
great majority of type 1 fibers display multi-minicores and some poorly structured cores (white
head-arrow); (C) atrophic fibers are organized in small-medium groups (type-grouping phenomena).
(D–F) Case D-II:2 affected by ChAc; (D) very severe fiber size variability with numerous atrophic
angulated fibers and atrophic fascicles, next to giant hypertrophic round fibers (black arrow); (E)
severe myofibrillar architecture disruption with bizarre fiber shape, vortex fibers and presence of
unstructured cores in most fibers (black arrow); (F) disruption of muscle architecture where fiber types
are hardly distinguishable. (G–I) Case D-II:3 affected by ChAc; (G) poor fiber size variability with
some hypotrophic fibers (black arrow); (H) rare structured core fibers (white arrowhead); (I) fibers
grouping according to their histochemical type thus suggesting central denervation and reinnervation.
(L–N) Case F-III:5 affected by McLeod syndrome; (L) fiber size variability with numerous clumps of
naked nuclei (black arrow) and an infiltrate of inflammatory cells (white head-arrow); (M) numerous
moth-eaten fibers (black stars); (N) some type grouping phenomena.

3.7.2. McLeod Syndrome

The two brothers (F-III:4 and F-III:5) displayed diffuse neuropathic muscle changes with
a modest increase in endomysial connective tissue. Moreover, in case F-III:5 (Figure 3L–N),
diffuse inflammatory infiltrates were evident along with some moth-eaten and core-like
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fibers, while in patient F-III:4, a single fiber with a “rimmed vacuole” was detected (pictures
not available). Finally, in the biopsy of patient F-III:9 (pictures not available), myopathic
changes with a moderate variability in muscle fiber size were detected, consisting in
prevalence of type I and IIC fibers and increased central nuclei.

4. Discussion

Here, we report 12 Italian patients with a molecular diagnosis of NA, nine belonging
to five ChAC families (carrying bi-allelic variants of the VPS13A gene) and three belonging
to the same family with McLeod syndrome (harboring a deletion of exon 1 of the X-linked
XK gene). The clinical history of these patients, summarized in Table 1 and detailed in
Supplementary Material (Table S1 and Table S2), allowed us to highlight some aspects of
the NA syndromes. Due to the small number of patients with MLS (Family F), a clinical
comparison with ChAc patients (Families A–E) does not add much to what has already
been published [15,16]. As already reported, also in our series the ChAc phenotype is
variable among patients, even within the same family: due to the high variability and low
prevalence, NA is underreported and diagnosed with a clinically significant delay [17,18].
Among the core symptoms, tics and choreic movements, with a prevalence of orofacial
dyskinesia, stand out. This is a first major phenotypic difference with the most frequent
form of hereditary chorea, i.e., Huntington’s disease (HD), in which choreic movements
mainly affect limbs at onset; another distinguishing feature is the occurrence of epilepsy
in ChAc (even at an early stage), while epilepsy is rare and late in typical adult-onset HD
patients. On the other hand, psychiatric symptoms are as frequent as those found in other
hereditary choreas.

Muscle pathology of the NA syndromes is poorly understood, however, a distinction
between ChAc and MLS must be made as they are two separate conditions. In fact, a
neurogenic pattern at muscle biopsy was reported in most ChAc patients, though minor
myopathic changes were observed in few cases [19,20]. Conversely, a primary myopathic
pattern was reported in the MLS series [20]. Actually, the pathogenesis of muscle alterations
in ChAc is still a matter of debate. Indeed, bizarre fibers, such as nucleus fibers, can be
found in both dystrophic process and chronic denervation [21]. Whereas some studies
focused on neurogenic muscle wasting in NA, little is known about the mechanisms under-
lying primary myopathy. Conformational and functional anomalies of tTGase products
were proposed to alter the deformability of both erythrocytes and muscle membrane in
ChAc [22,23]. Saiki et al. [24] proved the loss of chorein expression in the skeletal muscle
of ChAc patients and suggested that this protein plays a role in mitochondrial activity.
Since VPS13A is ubiquitously expressed, mutated chorein could be detected in all tissues
of ChAc patients, including the skeletal muscle [25]. Undoubtedly, the pattern of fascicular
atrophy found in patient D-II:2 (Figure 3D–F) allowed us to hypothesize that the second
motor neuron body or the motor nerve roots may be the primary site of pathogenic events
in ChAc, at least in some patients. However, the detection of whorled and bizarre shaped
fibers (Figure 3E–F) suggests a concomitant primary myopathic process: as far as we know,
these peculiar alterations have not been previously reported in ChAc patients. Furthermore,
we note that muscle changes were very severe in the biopsy of patient D-II:2 (Figure 3D–F)
compared to his brother D-II:3 (Figure 3G–I); although the two brothers share the same
VPS13A splicing variant, this phenotypic heterogeneity cannot be explained only by disease
duration, but genetic and/or epigenetic factors might be involved. The mixed neurogenic
and myopathic pattern of muscle pathology in ChAc, already described in the literature, is
further confirmed by our findings in A-II:2 (Figure 3A–C).

Let us now consider the other NA form, i.e., MLS, which was initially defined as a
benign X-linked myopathy with acanthocytes [26], although Hewer et al. [27] claimed that
it is neither benign nor a pure myopathy. Since a dystrophic pattern of myopathy was re-
ported in some rare cases [28], an involvement of dystrophin (whose gene is 4 Mb upstream
of XK on the X chromosome) was sought but not confirmed [29,30]. Immunocytochemical
studies suggested that lack of XK expression in MLS may destabilize the normal muscle
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structure and function, but the protein role remains unclear [31]. The 444-amino acid long
XK protein has 10 transmembrane domains, it belongs to the 4.1R multiprotein complex of
the red blood cell membranes and is joined to the Kell protein by a disulphide bond [32].
The deletion of exon 1 of the XK gene identified in our family F (Figure 2), which had
been reported at least once before [33], is expected to completely abolish the presence of
the protein in all cells of hemizygous males. Finally, the clinical and muscular phenotype
(Figure 3L–N) of family F confirms that MLS is a mixed neuropathic and myopathic con-
dition, with variable severity of CNS involvement. Based on our findings and those of
the literature, histological signs of primary myopathy along with less severe neurogenic
changes should be considered more suggestive of MLS rather than of ChAc.

We should now focus on the high genetic variability of VPS13A variants identified
in our ChAc families (Figure 1), all of Italian origin: it is worth noting that, differently
to what has been reported in the Japanese population [8,34], our patients do not present
with recurrent variants (Table 2). Furthermore, the two most frequent Japanese variants
(p.R1471* and p.V2738Afs*5), present in more than half of the patients [8,34], are absent in
our series. In agreement with previous reports [34], where missense pathogenic variants
are exceedingly rare, we also found three nonsense, two frameshift and three splice-site
variants in our nine ChAc patients (Table 2). Only one missense variant (p.K1198Q) has
been detected in Family A, but it is predicted to be likely benign and, most importantly, it
was found in cis with the pathogenic frameshift variant (p.K372Vfs*4).

As shown in Table 2, only two of the listed VPS13A variants were previously reported
in ChAc patients; the first such variant (c.7867C>T) introduces a stop codon truncating chor-
ein at arginine 2623 (p.R2623*). This variant was first identified by Dobson-Stone et al. [12]
in the original Kentucky family, clinically described by Critchley et al. [35] in 1968 and
was afterwards reported in several independent patients [8,13,14]. The other previously re-
ported variant is a 2-bp deletion (c.1114_1115del) causing an early frameshift (p.K372Vfs*4),
reported just once in the extensive series of Tomiyasu et al. [8]; interestingly, although they
analyzed patients from 11 countries, the only patient carrying this variant (in homozy-
gosity) was Italian. The c.1114_1115del frameshift might be therefore an Italian variant,
also found in our family A from Naples where it associates in compound heterozygosity
with the c.3817C>T nonsense variant (Supplementary Figure S1). The other six variants
found in our nine ChAc patients are apparently novel, and three of them are not even
found in the Genome Aggregation Database (gnomad.broadinstitute.org/, last accessed
on 30 December 2020) [36]; this unexpected high genetic variability suggests that many
undetected VPS13A variants are actually present in the Italian and possibly other European
populations. Although Italy has a very diverse genetic structure due to its central position
in the Mediterranean and the numerous migratory waves that has mixed its population
over the millennia, we conclude from our study that VPS13A variant screening should be
considered in patients with chorea (after HD has been excluded) even in the absence of
acanthocyte studies.

5. Conclusions

To summarize, we reported a relatively large series of NA patients proving that ChAc
and MLS, although rare, should be always considered in the differential diagnosis of
suspected hereditary chorea. Depending on the laboratory techniques available, chorein
dosage with Western blotting and Kell blood group expression may be tested first or DNA
sequencing of the VPS13A and XK genes will be performed. Moreover, since a primary
myopathy is now suspected not only in MLS but also in ChAc patients, it would be useful
to perform a muscle biopsy and protein expression studies in all confirmed NA patients in
order to thoroughly study skeletal muscle involvement in these conditions.
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Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
425/12/3/344/s1, Figure S1: (A) c.1114_1115del; (B) c.3592A>C; (C) c.3817C>T, Figure S2: (A)
c.3339+4_3339+ 10delinsTATAGCTGTTATATAAAATTA TTTAA; (B) exon 30-33 cDNA amplicon,
Figure S3: (A) c.1078C>T; (B) c.7867C>T, Figure S4: c.2512+2T>G (homozygous), Figure S5: (A)
c.7736_7739del; (B) c.2825-10T>G; (C) effect of the c.2825-10T>G splice-site variant on cDNA sequence,
Table S1. Sequencing primers employed for genetic testing of VPS13A., Table S2. Sequencing primers
employed for genetic testing of XK.
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