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Abstract

Increasing road crashes related to occupational drivers’ deteriorating health has become a

social problem. To prevent road crashes, warnings and predictions of increased crash risk

based on drivers’ conditions are important. However, in on-road driving, the relationship

between drivers’ physiological condition and crash risk remains unclear due to difficulties in

the simultaneous measurement of both. This study aimed to elucidate the relationship

between drivers’ physiological condition assessed by autonomic nerve function (ANF) and

an indicator of rear-end collision risk in on-road driving. Data from 20 male truck drivers

(mean ± SD, 49.0±8.2 years; range, 35–63 years) were analyzed. Over a period of approxi-

mately three months, drivers’ working behavior data, such as automotive sensor data, and

their ANF data were collected during their working shift. Using the gradient boosting decision

tree method, a rear-end collision risk index was developed based on the working behavior

data, which enabled continuous risk quantification. Using the developed risk index and driv-

ers’ ANF data, effects of their physiological condition on risk were analyzed employing a

logistic quantile regression method, which provides wider information on the effects of the

explanatory variables, after hierarchical model selection. Our results revealed that in on-

road driving, activation of sympathetic nerve activity and inhibition of parasympathetic nerve

activity increased each quantile of the rear-end collision risk index. The findings suggest

that acute stress-induced drivers’ fatigue increases rear-end collision risk. Hence, in on-

road driving, drivers’ physiological condition monitoring and ANF-based stress warning and

relief system can contribute to promoting the prevention of rear-end truck collisions.

Introduction

In recent years, traffic crashes due to drivers’ deteriorating health have become a problem

worldwide [1]. Even in Japan, traffic crashes caused by drivers’ deteriorating health are
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increasing, particularly among occupational drivers [2–4]. Health deterioration such as fatigue

degrades cognitive and motor performance (e.g., reaction time decline), which can increase

the potential risk of traffic crashes [5–7]. To counter this problem, various measures, based on

the assessment of drivers’ physiological conditions before and after work, are being under-

taken. For example, the Japan Trucking Association is promoting measures to check drivers’

health before they begin their shift, as a means to prevent crashes among truck drivers [8, 9].

Moreover, our research group has also reported that evaluating drivers’ fatigue level, an indica-

tor of physiological condition, before and after work, is effective in estimating the risk of rear-

end collision by truck drivers [10].

While traffic crash counter measures based on pre- and post-shift measurement of physio-

logical conditions have been undertaken, investigation into the practical application of efforts

utilizing physiological conditions during work to reduce traffic crashes has made limited prog-

ress. Given that changes in physiological conditions occur over time [11], utilizing physiologi-

cal conditions specifically during driving, which accounts for the majority of the shift, may be

an important and effective means of reducing traffic crash risk. For example, to prevent

drowsy driving, a type of traffic crash risk, a technology that quantitatively evaluates and

detects drowsiness during driving based on the driver’s autonomic nerve function (ANF)

index obtained from a heart rate variability analysis has been developed [12]. However, the

relationship between traffic crash risk and physiological condition has not yet been adequately

elucidated, with the exception of physiological conditions such as drowsiness, which are clearly

known to pose a risk of traffic crashes [13]. This is mainly due to two challenges.

The first issue is the inability to obtain crash risk assessment data while a vehicle is actually

being driven. Since physiological measurements require attaching measuring equipment to

vehicles and drivers, it is not possible to analyze the relationship between traffic crash risk and

physiological condition from existing crash history data measured from normal vehicles.

Therefore, research has mainly been carried out in experimental environments where measur-

ing equipment is attached to vehicles and drivers and a drive simulator is used to simulate con-

ditions that could pose a crash risk [12, 14, 15]. However, it has been reported that the

physiological response generated by actual vehicle operation is not reproduced in the labora-

tory due to adaptation to the experimental environment [16]. Therefore, it is necessary to ana-

lyze data obtained during the operation of actual vehicles. Meanwhile, due to such crashes

being rare occurrences, it is difficult to obtain sufficient historical data on crashes, including

physiological condition data, during actual vehicle operation within the experiment period

[10]. Moreover, since the degree of latent risk in the event of a crash not occurring is not repre-

sented in the crash history data, it is not suitable for evaluating the effects of changes in physio-

logical condition on crash risk. As outlined above, a crash risk assessment method that does

not depend on the occurrence of crashes during actual vehicle operation has yet to be estab-

lished and consequently, the relationship between risk and physiological condition has been

difficult to analyze.

The second issue is that the relationship between crash risk and physiological conditions

during vehicle operation has been limited in terms of assessable effects. In the past, crash anal-

ysis has largely been conducted using crash history data, which does not include physiological

condition data. For example, factor analysis of injury severity due to rear-end collision using

random parameters bivariate ordered probit model [17] and severity analysis based on spatio-

temporal structure of crash incidence [18] have been previously reported. These studies exam-

ined the mean effect of the explanatory variables, explicitly assuming the distribution of the

response variables (e.g., Poisson or negative binomial distribution for crash frequency [19]).

However, response variables associated with crash risk have been reported to show skewed dis-

tribution [19, 20] and it is possible that evaluating only the mean effect of the explanation
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variable is not adequate for analyzing the relationship. In recent years, quantile regression,

which can examine the effect on response variable quantiles without assuming that the

response variable has a specific distribution, has been introduced in the field of crash analysis,

allowing for more detailed analyses [19–22]. Based on the above, detailed effects analysis,

beyond the mean effect, is necessary to analyze the relationship between crash risk and physio-

logical conditions.

The aim of this study was to clarify the relationship between the risk of rear-end collision,

which accounts for half of all truck crashes [23], and ANF, evaluated by physiological condi-

tions such as fatigue, during actual vehicle operation [24]. To this end, first, the degree of rear-

end collision risk during driving was quantified. Subsequently, the relationship between the

estimated rear-end collision risk and the ANF indicator during on-road driving was analyzed.

Finally, we conducted a comparative evaluation of ANF during operation of the actual vehicle

and pre- and post-work. We found that drivers’ fatigue induced by acute stress increases the

risk of rear-end collision.

Materials and methods

Participants

Twenty-six male truck drivers (mean ± SD, = 48.3±8.2 years; range, 28–63 years) without heart

disease were recruited from a logistics company to participate in this study. The study protocol

was approved by the Institutional Review Boards of RIKEN, Kobe2 (2018–03(4)) and Kansai

University of Welfare Sciences (19–02), and the internal review board of Research & Develop-

ment Group, Hitachi, Ltd., and was conducted in accordance with the Declaration of Helsinki.

All participants provided written informed consent prior to enrollment in this study.

Study design and procedures

All participants’ ANF and working behaviors were monitored over a period of approximately

three months. Four participants were excluded from the analysis, as spike-shape outliers of

R-R interval (RRI) were chronically observed in their data even while driving, when they

hardly moved. Additionally, two more participants were excluded from the analysis because

the amount of their data during driving was much smaller compared to the regular driving

time of the truck drivers in the company. Accordingly, the data of 20 eligible male participants

(mean ± SD, 49.0±8.2 years; range, 35–63 years) were finally analyzed.

ANF was measured in the mid-, pre-, and post-shift conditions. In the mid-shift condition,

drivers’ RRIs were continuously measured using a wearable heart rate sensor (myBeat WHS-1,

UNION TOOL CO., Tokyo, Japan) with 1 kHz sampling [25]. During driving work periods in

the mid-shift, drivers’ RRIs were stably measured regardless of their body motion caused by

their driving behaviors; however, RRI detection sometimes failed in the mid-shift condition

except for driving work periods such as loading and unloading work periods (Fig 1). The

obtained RRI time-series were divided into windows of 120 s each, and ANF was calculated for

each window. In the pre- and post-shift conditions, RRI and ANF were obtained using the

fatigue stress measurement system (VM500, Fatigue Science Laboratory, Osaka, Japan), which

simultaneously measures electrocardiogram and photoplethysmogram, in the resting eye-clos-

ing state for 90 s with 600 Hz sampling [10]. Under all shift conditions, any windows in which

misdetection or abnormal intervals exceeded 10% of the total beats, or the calculated heart rate

showed outliers, were excluded from ANF calculation due to the instability of the measure-

ment and the low reliability of calculated ANF.

In ANF calculation, various RRI features, such as frequency-domain features were first

obtained as the ANF indicators using a similar method as that described in our previous study
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[10]. Briefly, frequency-domain features were obtained by integrating some frequency bands

in the power spectral density (PSD) based on the maximum entropy method, which is ade-

quate for estimating PSD from short-duration RRI [26]. In this study, the low-frequency (LF)

components of the 0.04–0.15 Hz band, which mainly represent the degree of activity of the

sympathetic nervous system (SNS), and the high-frequency (HF) components of the 0.15–0.40

Hz band, which represent the degree of activity of the parasympathetic nervous system (PNS),

were calculated. In addition, the LF/HF ratio, which represents the balance between sympa-

thetic and parasympathetic nerve activity, was also calculated. LF and HF are affected by heart

rate and aging [27, 28], and as we cannot control drivers’ heart rates and ages in actual working

shifts, we utilized the devised score of LF and HF using a method described in previous studies

[10, 29, 30]. The LF deviation score LFscore was defined by the following formula:

LFscore LF; ageð Þ ¼
logð

ffiffiffiffiffiffi
LF
p

=RRIaverageÞ � mLFðageÞ
sLFðageÞ=10

þ 50

where, μLF(age) and σLF(age) are the mean and standard deviation of age, respectively, in the

LF standard distribution NLF;age that approximates a normal distribution. RRIaverage is the aver-

age RRI, and log (z) is the natural logarithm of z. Moreover, the HF deviation score HFscore

was defined as follows:

HFscore HF; ageð Þ ¼

ffiffiffiffiffiffiffi
HF
p

=RRIaverage � mHFðageÞ
sHFðageÞ=10

þ 50

where, μHF(age) and σHF(age) are the mean and standard deviation of age, respectively, in the

HF standard distribution NHF;age that approximates a normal distribution.

Fig 1. Example of daily obtained data. (A) Obtained RRI time-series in mid-shift. Red perpendicular lines show pre-

and post-shift measures. (B) Time series of LFscore in mid-shift. Red crosses show LFscore in pre- and post-shift. (C)

Working behavior including vehicle speed and detailed work shift in mid-shift. (D) Time series of LFscore only during

driving.

https://doi.org/10.1371/journal.pone.0258892.g001
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In addition to frequency-domain RRI features, other types of RRI features were also

obtained to exploratorily analyze the relationship between collision risk and ANF. As a popular

measure of heart rate, average heart rate (AVGHR) was calculated. From the popular time-

domain measures, the standard deviation of normal-to-normal R-R intervals (SDNN), NN

intervals greater than 50 ms (NN50), and root mean square successive difference (RMSSD)

were also calculated, where SDNN mainly reflects SNS activity similar to LF, and NN50 and

RMSSD reflect PNS activity similar to HF [31, 32]. Due to the limitation of the measurement

system used in the pre- and post-shift conditions, these time-domain features were only

obtained in the mid-shift condition.

Estimation of rear-end collision risk

A method was developed to estimate collision risk solely from vehicle behavior information

being acquired continuously during driving, to evaluate crash risk at any time using a measure

not dependent on crash occurrence. This method assumes that crash risk is higher in situa-

tions that occur more frequently than crashes, and could lead to a rear-end collision (hereinaf-

ter referred to as “near-miss situations”) [10], estimating similarity with near-miss situations

from the vehicle behavior to deliver a quantitative assessment of crash risk during driving.

First, prior to estimating similarity with near-miss situations, a detector was developed to

identify possible near-miss situations from vehicle behavior. The near-miss situation detector

was developed in a manner similar to that previously reported by our group [10]. We pro-

duced a data set of explanatory variables represented by driver behavior, and the response vari-

able represented as near-miss situations, based on data collected during the participants’ shift.

The explanatory variables, vehicle speed and acceleration, were recorded every second by a

traffic crash reduction support system (DRIVE CHART, Mobility Technologies, Japan). The

response variable was defined as a near-miss situation in which there was a risk of a rear-end

collision, which accounts for 53% of reported commercial vehicle crashes [23]. Warnings by

the traffic crash reduction support system regarding detected inter-vehicle distance and those

by the rear-end collision prevention system (Mobileye570, Mobileye, Israel) were utilized to

define near-miss situations that could lead to rear-end collisions. An algorithm to classify the

presence or absence of near-miss situations every 20 s from vehicle behavior data was devel-

oped by carrying out training and evaluations of response and explanatory variables generated

by aggregating the measured speed/acceleration information for every second and the warning

alert history in 20 s increments.

The algorithm was developed using a method based on nonparametric analyses [10]. Previ-

ous studies have used statistical modeling, that explicitly assumes the mechanism of crash

occurrence [17, 20, 21, 33], and analysis based on Bayesian modeling, which is a more flexible

method for assuming model structures, such as spatio-temporal structures [18, 34, 35]. How-

ever, since the occurrence mechanism of near-miss situations, which are the subject of analysis

in the current study, is yet to be adequately elucidated, an exploratory, data-driven method of

analyzing the relationship between explanatory and response variables was considered to be

effective. Therefore, the analysis was conducted without explicitly assuming the crash occur-

rence mechanism, by utilizing a gradient boosting decision tree, known to have high classifica-

tion performance among the nonparametric methods of decision tree methods with high

interpretability [10, 36, 37]. The details of the process are given below.

Preprocessing. Speed information was used to classify the driving scene for every second.

To estimate the appropriate collision risk, road type, one of the road condition factors, is

essential [38, 39]. However, due to the limitation of the equipped vehicle sensors in this study,

we could not directly record the actual road types, such as expressway driving. Given that the
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range of driving speed is constrained by the road type [40], we classified the ranges of driving

speed (denoted as driving scenes) and training of the detector and classification of crash risk

were carried out for data groups classified by scene. Four driving scenes were classified accord-

ing to the rules shown in Table 1, which were experimentally decided based on the driving

speed regulations in Japan [41–43] and the driving speed effects [39, 44]. Each driving scene is

as follows: high-speed driving scene such as driving on the expressway, medium-speed driving

scene such as driving on ordinary roads, low-speed driving scene such as driving in the prem-

ises (e.g., logistic warehouse) of the destination, and extremely low-speed driving scene such as

the situation with extremely low or decreased vehicle speed to be able to stop at any time

around crossings and intersections.

Response variable. The response variables were labeled as “1” for situations where the on-

board warning of the crash reduction support system or rear-end collision prevention system

sounded within 20 s, and 0 for cases where a warning did not sound. To determine whether a

situation where the on-board sensor alarm is triggered is truly a high-risk situation, safety

transport managers from a logistics company, who were licensed as Operation Manager by the

Ministry of Land, Infrastructure, Transport, and Tourism of Japan [45], conducted a visual

confirmation of the front-facing video footage from drive records (ND-DVR30, Pioneer,

Tokyo, Japan) [46]. Owing to differences in the warning alarm characteristics of the two sys-

tems, labeling was conducted with consideration of the differences. The warning alarm system

of the inter-vehicle distance alert detected by the on-board sensors of the traffic crash reduc-

tion support system was utilized as is, since the Operation Managers confirmed that the system

showed high-precision. Meanwhile, due to the low precision and high recall of the rear-end

collision alarm sounded by the on-board sensors of the rear-end collision prevention system,

the warning alarm used was extracted using a decision tree classifier to adequately extract only

the truly high-risk situation alarms from those generated by the same system as previously

reported [10].

Explanatory variables. Table 2 shows the 15 types of explanatory variables for which 20-s

aggregate data were generated from per-second speed and acceleration information.

Training and evaluation. The model was built using a gradient boosting decision tree uti-

lizing the response and explanatory variables described above [37]. Classification results from

the model are produced as a numerical value from 0 to 1. The closer the number is to 1, the

higher is the probability of being a near-miss situation. The hyperparameters of the model

were determined by a grid search. The classification performance of the near-miss situations

was evaluated by the receiver operating characteristic (ROC) curve and area under the ROC

curve (AUC) after 5-fold cross validation. In training and evaluation, the low-speed and

extremely low-speed scenes were excluded, as they had no near-miss situations relating to

Table 1. Driving scene classification rules.

Driving Scene Criteria

High-speed • Cases where speeds of more than 70 km/h occur for more than 30 s, when each time point is

aggregated in 1-min units

• Even if the above does not apply, cases where the 1-min period prior was determined as

“high-speed scene”

Medium-speed Cases for which none of the above are applicable, traveling at speeds greater than 0 km/hr

Low-speed Cases where the speed is below 20 km/hr for more than 45 s, continuing for over 4 min, and

each time point is aggregated in 1-min units

Extremely low-

speed

Cases when at speeds below 3 km/hr, the moving average is below 8 km/hr for approximately 5

s near the time point, and for the 10 s before and after �not applicable to cases with a speed of 0

km/hr

https://doi.org/10.1371/journal.pone.0258892.t001
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rear-end collisions. As a result, the performance in 6649 recordings (approximately 36.9 h) of

high-speed scene and that in 9907 recordings (approximately 55.0 h) of medium-speed scene

were evaluated (Table 3). To discuss the effects of explanatory variables of the estimated mod-

els, we also evaluated the feature importance of the explanatory variables, which represent the

contribution of variables [47, 48].

Risk estimation. Rear-end collision risk, during vehicle operation was estimated over

time by using the risk estimation models, with regard to the driving scene, where the classifica-

tion performance of the near-miss situation was found to be suitable for practical application.

The developed models can identify discrete event data indicating the presence or absence of a

near-miss situation. However, continuous response variables are preferable when conducting

a quantile regression analysis. Since driving behavior is continuous, it can be assumed that col-

lision risk moves continuously pre- and post-near-miss detection according to driving behav-

ior. Based on this assumption, the current research uses the level of near-miss similarity and

the detection probability (from 0 to 1) of comprehensible near-miss situations as indicators of

collision risk at any given time [49, 50]. Thus, by estimating near-miss situation probability

every 20 s using the developed models and the vehicle behavior data obtained continuously

while driving, it was possible to quantify the magnitude of collision risk at any time during

vehicle operation, without dependence upon crash occurrence.

Table 2. Explanatory variables of rear-end collision risk estimation model.

Explanatory Variable Type Explanatory Variable

Name

Description

Maximum speed max_speed Maximum speed over 20 s

Minimum speed min_speed Minimum speed over 20 s

Average speed mean_speed Average speed over 20 s

Maximum directional acceleration max_acc_x Maximum directional acceleration over 20 s

Minimum directional acceleration min_acc_x Minimum directional acceleration over 20 s

Average directional acceleration mean_acc_x Average directional acceleration over 20 s

Maximum lateral acceleration max_acc_y Maximum lateral acceleration over 20 s

Minimum lateral acceleration min_acc_y Minimum lateral acceleration over 20 s

Average lateral acceleration mean_acc_y Average lateral acceleration over 20 s

Speed deviation std_speed Speed deviation over 20 s

Directional acceleration deviation std_acc_x Directional acceleration deviation over 20 s

Lateral acceleration deviation std_acc_y Lateral acceleration deviation over 20 s

Fine speed variation components std_diff_speed The 20-s deviation of speed difference with moving average speed (window width 10 s) per

second

Average speed difference from the previous

20 s

diff_mspeed_bef Average speed difference between the average speed of the previous 20 s and the

corresponding 20 s

Average speed difference from the following

20 s

diff_mspeed_aft Average speed difference between the average speed of the following 20 s and the

corresponding 20 s

https://doi.org/10.1371/journal.pone.0258892.t002

Table 3. Training and validation dataset of risk estimation model for each fold.

Driving Scene Dataset Risk Non-Risk Total

High-speed Train 997 4655 6649

Test 172 825

Medium-speed Train 200 8221 9907

Test 36 1450

https://doi.org/10.1371/journal.pone.0258892.t003
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Analysis dataset construction

We constructed the analysis dataset by concatenation between the records of the ANF dataset

and those of the rear-end collision risk index dataset estimated from their working behaviors

dataset. Using the risk estimation model, the rear-end collision risk index was calculated by 20

s based on the explanatory variables obtained from the working behaviors dataset. The esti-

mated risk index was used as an indicator of rear-end collision risk. To match the sampling

frequency, the risk index records were resampled from 20-s-resolution to 2-min-resolution by

averaging. After resampling, the ANF dataset and the resampled risk index dataset were

concatenated. To analyze ANF during driving, we extracted the records when participants

drove continuously for 2 min. Additionally, we extracted the records when drivers drove at

speeds of 20 km/h or more since the estimated risk index was only validated in the medium-

speed and high-speed scenes at speeds of 20 km/h or more. Consequently, we obtained the

analysis dataset including 24111 records of approximately 800 working hours of driving situa-

tions (Table 4).

Analysis of the drivers’ condition indices and crash risk

To analyze whether the drivers’ physiological conditions represented by the ANF indices were

associated with the estimated rear-end collision risk index limited from 0 to 100%, we adopted

logistic quantile regression analysis [20, 51]. Since high-risk situations during driving rarely

occur in occupational drivers, the estimated collision risk distribution was heavily right-tailed,

indicating that the conventional ordinary least squares regression and the generalized linear

model for the estimation of the average were inadequate. In contrast to the methods to evaluate

the mean effects, a quantile regression [52, 53], which does not require any assumptions about

the response variable distribution, enables robust and practical estimation of the effects on

each quantile even for response variables with skewed distributions. The rear-end collision

risk index is a bounded response variable, and, therefore, we employed the logistic quantile

regression, which simply uses the logistic transformation of the response variable given the

range from ymin to ymax [20, 51]. Briefly, in the logistic quantile regression, the conditional τth

quantile of the response variable y, given the explanatory variables X as Qy(τ), can be described

using the following model as

Qy tð Þ ¼
ymaxexpðXβtÞ þ ymin

1þ expðXβtÞ

where, the βτ represents the regression coefficients of the logistic quantile regression model.

Compared to the conditional mean evaluation, the conditional quantile evaluation allows us a

wider understanding of the effects of the explanatory variables on the response variable. Meth-

odological details can be referred to in previous studies [20, 51].

Using logistic quantile regression, we analyzed the relationship between ANF and estimated

collision risk index after the hierarchical model selection. To evaluate whether the autonomic

nervous system (ANS) was associated with the estimated risk, in Step 1, a baseline model only

including the control variables (AVGHR, sex, age, and mean speed) that affect ANS [16, 27,

Table 4. Summary of the amount of analyzed data.

Extraction Condition All (n = 26) For Analysis (n = 20)

Concatenated 279774 219284

Continuous 2 min driving 84116 68006

Over 20km/h term 29327 24111

https://doi.org/10.1371/journal.pone.0258892.t004
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28] was firstly developed. However, the coefficient of sex could not be estimated in this study,

as there were no female participants. Next, the models that additionally included the ANF indi-

ces were compared. As candidate variables to describe the state of the ANS, in Step 2, we intro-

duced the mainly-SNS-reflecting variable (LFscore, LF/HF, and SDNN) and the PNS-reflecting

variable (HFscore, NN50, and RMSSD) [32]. To simplify the interpretation of the contributions

of SNS and PSN, only the combinations of two variables were compared; interaction terms

were not considered in this analysis. For each model, to omit multicollinearity, we checked

whether or not the variance inflation factor (VIF) exceeded 10. As the model selection criteria,

we calculated Akaike’s information criteria (AIC) [33, 54]. In this analysis, the 25th, 50th,

75th, 90th, and 95th percentiles were evaluated, as the distribution of the estimated collision

risk index was heavily right-tailed [20]. In the preliminary analysis, the minimum-AIC models

were different depending on the quantiles. To discuss the relationship by the same structure

model, we selected the model based on the average rank of AIC in each quantile and the signif-

icance of the estimated coefficients introduced in Step 2. The standard errors of the estimated

coefficients were obtained based on bootstrapping with 2000 times resampling. After model

selection, we evaluated the quantile and the mean effects of the explanatory variables on the

estimated collision risk based on the obtained model using logistic quantile regression and

logistic regression, respectively.

Evaluation of the drivers’ state-dependent ANF difference

To clarify the effects of the truck drivers’ work on their physiological conditions, we analyzed

the difference between the mid-shift ANF and the pre- and post-shift ANFs. To evaluate the

effect of starting their work shifts, in the mid-shift, the ANF indices averaged by 30 min imme-

diately after the initiation of driving work were used as the representative values during driving

work. As the pre- and post-shift indices, we used the ANF indices obtained in the drivers’ rest-

ing eye-closing state before starting and after finishing their work shifts, respectively. We com-

pared the ANF indices for each timing except for time-domain features (SDNN, NN50, and

RMSSD) due to the system limitation in pre- and post-shift. In this analysis, the ANF differ-

ences were compared using Tukey-Kramer’s test if the dataset were found to be normally dis-

tributed based on the Shapiro-Wilk test; otherwise, we used the Steel–Dwass test.

Statistical analysis

All data processing and analyses were performed using Python 3.6 including SciPy 1.0 and sci-

kit-learn 0.18. The logistic quantile regression analysis and the multiple comparison tests were

performed using R 3.6 including quantreg 5.54, multcomp 1.4, and NSM3 1.15. p<0.05 was

considered to be statistically significant. Statistical significance is denoted as �p<0.05,
��p<0.01, and ���p<0.001.

Results

Evaluation of estimated collision risk during driving

The classification performance of the detector developed to assess collision risk over time in

near-miss situations that could potentially lead to a crash was evaluated. Of the four driving

scenes, we only evaluated the performance for high-speed and medium-speed scenes, exclud-

ing low-speed and extremely low-speed scenes due to lack of near-miss situations related to

rear-end collision. The performances were evaluated in terms of AUC by ROC curve analysis

(Fig 2). Results of the AUC evaluation of the model trained on each scene using this data set

were: AUC = 0.787 for high-speed scenes and AUC = 0.867 for medium-speed scenes. These
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results confirm that the classification performance is sufficient for the evaluation of collision

risk over time, as the high-speed scene had acceptable discrimination and the medium-speed

scene had excellent discrimination [55].

Next, we showed the contribution of the resulting model’s explanatory variables (see S1

Table for detailed results). In the high-speed model, the contribution of the explanatory vari-

ables was at most approximately 9% and at least approximately 5%. There was no large bias

observed in contribution among the explanatory variables. Five explanatory variables with

contributions above 7% were maximum speed (approximately 9%), average speed (approxi-

mately 9%), average speed difference from the following 20 s (approximately 8%), average

speed difference from the previous 20 s (approximately 7%), and maximum directional accel-

eration (approximately 7%). Moreover, in the medium-speed model, the largest contribution

of the explanatory variable when driving on local roads was approximately 14%, and the lowest

contribution was approximately 5%, and no large bias found. Explanatory variables greater

than 7% were maximum speed (approximately 8%), average speed (approximately 10%), and

minimum speed (approximately 14%).

Relationship between drivers’ condition indices and crash risk

To analyze the relationship between estimated collision risk and ANF when driving, we first

conducted a hierarchical model selection based on AIC for each model of the ANF-based

crash risk analysis model using logistic quantile regression. Compared to the baseline model

built in Step 1, the estimation results for control variables in the Step 2 models 1–9 were gener-

ally consistent (e.g., Fig 3 vs. Fig 4), and improvements in AIC were observed in all models

(Table 5). These results suggest that the ANF index is an effective variable for analysis of esti-

mated collision risk during driving. Next, in a comparison of the Step 2 models, the estimation

results of the coefficients estimated for each quantile corresponding to each SNS and PNS vari-

able were roughly equivalent between the models (e.g., Fig 3 vs. S1 Fig). Meanwhile, the model

with the smallest AIC differed depending on the quantile (Table 5). To analyze the relation-

ships in a single model, results of an average rank calculation based on AIC, indicated that

model 5 had the lowest average rank. In addition, results from an examination of the signifi-

cance of the variable pairs entered in Step 2 indicated that the coefficients of the entered

Fig 2. ROC curve analysis for discriminating near-miss situations. (A) ROC curve of the risk estimation model for

medium-speed scenes (AUC = 0.867). The dotted gray line depicts the ROC curve whose AUC = 0.500 for reference.

(B) ROC curve of the risk estimation model for high-speed scenes (AUC = 0.787).

https://doi.org/10.1371/journal.pone.0258892.g002
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variables were all significant for models 1–3 and model 5. Based on the above results, model 5

was selected and evaluated as an ANF-based crash risk analysis model.

Tables 6 and 7 depict estimate results of the baseline model and the selected crash risk anal-

ysis model (see S2 Table for further results). First, when comparing the baseline model with

the selected crash risk analysis model 5, the results of estimation for each quantile of the con-

trol variables were found to be roughly consistent (Fig 3 vs. Fig 4). Moreover, for the control

variable of AVGHR, heart rate increases tended to reduce the estimated risk of crashes, partic-

ularly at lower quantiles (Fig 4B). Age was shown to increase estimated collision risk (Fig 4C).

Similarly, for mean vehicle speed, estimated collision risk increased as mean vehicle speed

increased, and the effect of all the quantiles shown in Table 6 was greater than the mean effect

(Fig 4D).

Lastly, the effect of the ANF index was examined using the selected crash risk analysis

model (Table 7). First, it was confirmed that estimated collision risk increased along with

increases in LF/HF (Fig 4E). Since LF/HF is an indicator of sympatho-vagal balance [56], this

suggests an increased estimated collision risk with activation of sympathetic nerve activity.

Fig 3. Estimated coefficients of the baseline model. Coefficients over each quantile of (A) Intercept, (B) average heart

rate, AVGHR, (C) Age, (D) Mean speed. Black dashed line shows estimated coefficients, and gray shaded area depicts

bootstrapping 95% confidence interval. Red dashed lines show the coefficient of the logistic regression model and its

95% confidence interval.

https://doi.org/10.1371/journal.pone.0258892.g003

Fig 4. Estimated coefficients of the selected model 5. Coefficients over each quantile of (A) Intercept, (B) average

heart rate, AVGHR, (C) Age, (D) Mean speed, (E) LF/HF, (F) NN50. Black dashed line shows estimated coefficients,

and gray shaded area depicts bootstrapping 95% confidence interval. Red dashed lines show coefficient of logistic

regression model and its 95% confidence interval.

https://doi.org/10.1371/journal.pone.0258892.g004

PLOS ONE Increase in collision risk by stress-induced fatigue in on-road driving

PLOS ONE | https://doi.org/10.1371/journal.pone.0258892 October 21, 2021 11 / 21

https://doi.org/10.1371/journal.pone.0258892.g003
https://doi.org/10.1371/journal.pone.0258892.g004
https://doi.org/10.1371/journal.pone.0258892


This effect was smaller than the effect on mean values in both tails of the distribution. In addi-

tion, the estimated collision risk was observed to be reduced as NN50 increased (Fig 4F).

Given that NN50 is an indicator of PNS activity [32], this suggests a tendency for decreased

estimated collision risk as parasympathetic nerve activity activates. This effect was found to be

larger than the effect on the mean values at the lower quantiles below the median. Even in

other candidate models of the model selection Step 2 (Table 5), a similar relationship between

the ANF indicators and collision risks was also observed (e.g. the model 1 using not LF/HF

and NN50 but LFscore and HFscore, S1 Fig, S2 and S3 Tables)

Effects of driving work shift on drivers’ condition

Differences in physiological condition while driving were assessed, specifically immediately

after commencing driving, and in a resting state with drivers’ eyes closed pre- and post-shift,

to assess the impact of truck driving on physiological condition (Fig 5, Table 8). Firstly, there

were no significant differences in AVGHR for any pair (Fig 5A). Moreover, a comparison

between pre-shift and immediately post commencement showed no significant physiological

differences in LFscores (Fig 5B). In contrast, HFscore decreased significantly after driving com-

mencement (Fig 5C). In addition, LF/HF increased significantly after driving commencement

(Fig 5D). Since HF and LF/HF are indicators of PNS activity and sympatho-vagal balance,

respectively [31, 56], and HFscore is a devised score of HF, reduction in PNS activity when

Table 5. AIC-based hierarchical selection of estimated rear-end collision risk analysis model.

# Model τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90 τ = 0.95 Avg. rank

Step 1 � AVGHR + Age + Mean speed 106072.8 99351.4 98438.8 102445.5 106337.1 –

Step 2 1 LFscore + HFscore + AVGHR + Age + Mean speed 105668.9 98994.5 98198.6 102260.5 106152.6 3.6

2 LFscore + NN50 + AVGHR + Age + Mean speed 105364.8 98967.2 98262.8 102359.8 106272.5 4.6

3 LFscore + RMSSD + AVGHR + Age + Mean speed 105523.0 99012.2 98272.7 102353.7 106280.4 5.6

4 LF/HF + HFscore + AVGHR + Age + Mean speed 105797.1 99066.4 98213.2 102243.3 106130.8 4.8

5 LF/HF + NN50 + AVGHR + Age + Mean speed 105487.9 98916.8 98158.3 102221.4 106122.4 1.4

6 LF/HF + RMSSD + AVGHR + Age + Mean speed 105704.2 99022.8 98201.6 102242.5 106138.7 4.0

7 SDNN + HFscore + AVGHR + Age + Mean speed 105938.2 99234.3 98363.4 102354.1 106242.4 7.4

8 SDNN + NN50 + AVGHR + Age + Mean speed 105483.4 99065.8 98337.6 102369.6 106256.9 5.8

9 SDNN + RMSSD + AVGHR + Age + Mean speed 105687.9 99150.3 98370.1 102381.0 106269.7 7.8

Underlined bold and bold text represent smallest and second smallest-AIC model in each quantile, respectively.

https://doi.org/10.1371/journal.pone.0258892.t005

Table 6. Estimated coefficients of the baseline model by logistic quantile regression and logistic regression.

Variable τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90 τ = 0.95 Mean

Intercept Estim. -10.707� -10.783� -9.185� -8.255� -8.135� -8.811�

SE 0.206 0.185 0.148 0.207 0.201 0.147

AVGHR Estim. -0.023� -0.010� -0.008� -0.005� -0.002 -0.020�

SE 0.002 0.002 0.001 0.002 0.002 0.001

Age Estim. 0.038� 0.035� 0.029� 0.025� 0.023� 0.031�

SE 0.002 0.002 0.001 0.002 0.002 0.002

Mean speed Estim. 0.108� 0.116� 0.109� 0.107� 0.110� 0.099�

SE 0.001 0.001 0.001 0.001 0.001 0.001

Mean (SE with 2000 samples bootstrapping)

�p<0.05

https://doi.org/10.1371/journal.pone.0258892.t006
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driving compared to the resting eyes-closed condition before work, indicates that SNS activity

was relatively dominant.

Lastly, we compared the physiological conditions before, during, and after work. HFscore

and LF/HF were confirmed to be significantly higher and lower, respectively, before driving

than when driving and recovered to pre-shift levels after work (Fig 5C and 5D). In contrast,

differences were found between pre- and mid-shift LFscores, indicating a significant decrease

when compared with either situation (Fig 5B). These results indicate that the relatively domi-

nant state of the SNS observed while driving dissipates when driving ceases, and SNS activity

decreases compared to other time points.

Discussion

In this study, we developed a collision risk index that estimated the magnitude of the risk of a

rear-end collision from vehicle behavior alone, to quantify collision risk while driving, even in

Table 7. Estimated coefficients of the selected model 5.

Variable τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90 τ = 0.95 Mean

Intercept Estim. -10.598� -10.739� -9.097� -8.198� -7.993� -8.765�

SE 0.207 0.194 0.161 0.189 0.228 0.153

LF/HF Estim. 0.033� 0.033� 0.026� 0.023� 0.023� 0.033�

SE 0.004 0.003 0.003 0.003 0.003 0.002

NN50 Estim. -0.028� -0.02� -0.011� -0.008� -0.007� -0.022�

SE 0.002 0.002 0.002 0.002 0.003 0.002

AVGHR Estim. -0.021� -0.011� -0.009� -0.007� -0.003 -0.02�

SE 0.002 0.002 0.001 0.001 0.002 0.001

Age Estim. 0.030� 0.031� 0.026� 0.025� 0.023� 0.026�

SE 0.002 0.002 0.002 0.002 0.002 0.002

Mean speed Estim. 0.109� 0.116� 0.109� 0.107� 0.108� 0.100�

SE 0.001 0.001 0.001 0.001 0.001 0.001

Mean (SE with 2000 samples bootstrapping)

�p<0.05

https://doi.org/10.1371/journal.pone.0258892.t007

Fig 5. Comparison between ANF of resting eye-closing state in pre-shift (left), driving state immediately after starting

driving in mid-shift (middle), and resting eye-closing state in post-shift (right). (A) average heart rate, AVGHR; (B)

devised score of LF, LFscore; (C) devised score of HF, HFscore; (D) LF/HF. �p<0.05, ��p<0.01, and ���p<0.001 by

Tukey–Kramer’s test or Steel–Dwass’s test.

https://doi.org/10.1371/journal.pone.0258892.g005
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the absence of a traffic crash. An analysis of the relationship between the estimated collision

risk indicator and ANF during actual operation of a vehicle revealed that an increase in sympa-

thetic nerve activity leads to an increase in collision risk indicators, whereas an increase in

parasympathetic nerve activity leads to a decrease in collision risk indicators. The above results

suggest that ANF assessment during vehicle operation is useful in reducing collision risk while

driving.

We developed a model for estimating rear-end collision risk by estimating the risk indica-

tors of rear-end collision based on vehicle behavior. The contribution of the explanatory vari-

ables adopted in the resulting model was analyzed and speed-related exploratory variables

were incorporated throughout. Additionally, the explanatory variables of acceleration were

also included in the higher rank for high-speed scene. Since rapid acceleration and decelera-

tion are directly related to high-risk in high-speed scene, low acceleration values are consid-

ered likely when driving with low-risk. In contrast, in near-miss situations, acceleration may

increase in accordance with temporary acceleration and deceleration [57]. It is considered that

the explanatory variable of acceleration included in high-speed scene reflects the previously

mentioned characteristics of high-speed scene. Consequently, it is thought that with the addi-

tion of acceleration, risky-situations can be better captured compared to previous studies that

only used speed and alarm sounding duration [10]. However, our risk estimation has several

limitations. First, due to the equipped sensors’ limitation, we indirectly considered the effects

of road types on collision risks from vehicle speed range in the driving scene classification [38,

39]. In future studies, the utilization of continuous video monitoring and light detection and

ranging (LiDAR) sensors will provide richer surrounding information, including road types

[58, 59]. Second, since driving environment effects, such as time of day, weather, and road

conditions, have also been reported as crash-related factors [34, 35, 38], further expansion of

explanatory variables in the future will improve the existing knowledge on the topic. Third,

since the inter-vehicle gap and rear-end collision warnings used as rear-end collision risks in

this study are reported in the speed ranges of typical driving conditions on public roads, they

have difficulty sounding before and after the vehicle stops and at speeds below 20 km/hr.

Therefore, the model developed in this study for estimating rear-end collision risk was unable

to estimate crash risk in cases of low-speed driving, and extremely low-speed driving scenes at

low speeds. Future research should define and analyze crash risk at low speeds based on a dif-

ferent warning system and method.

The crash risk analysis model in this study was built through hierarchical model selection.

When compared with the coefficients of the control variables in the baseline model created in

Step 1, the estimation result of the control variables in model 5, selected in Step 2, is similar,

and the estimation of the selected model is considered likely to be successful. Furthermore,

Table 8. Difference of ANF between resting eye-closing state in pre-shift, driving state immediately after starting driving in mid-shift, and resting eye-closing state

in post-shift.

ANF Method p-value

ANFmid-ANFpre ANFpost-ANFpre ANFpost-ANFmid

AVGHR Steel–Dwass 0.160 0.126 0.999

LFscore Tukey–Kramer 0.958 0.009�� 0.004��

HFscore Steel–Dwass <0.001��� 0.051 0.012�

LF/HF Steel–Dwass <0.001��� 0.928 <0.001���

�p<0.05

��p<0.01, and

���p<0.001 by Tukey–Kramer’s test or Steel–Dwass’s test.

https://doi.org/10.1371/journal.pone.0258892.t008
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several findings were obtained from the coefficients of the control variables. First, age effects

indicated an increased estimated collision risk with increasing age. The results are thought to

support these findings given that physical, sensory, and cognitive impairments that occur with

age, such as decline in vision and attention, are known to affect driving ability [60]. Moreover,

in our crash risk analysis model, average vehicle speed increases contributed to the increase in

the estimated collision risk. These results are consistent with the previous finding that driving

speed effects impact crash rate by an exponential function and a power function [39]. Since

average vehicle speed exhibits a large effect compared to other variables, and the risk associated

with the increase in the average vehicle speed is high, the estimated rear-end collision risk

index developed in this study mainly captures risks occurring at high speeds.

The relationship between driver’s physiological condition and rear-end collision risk was

revealed by the addition of such elements to the crash risk analysis model that indicate the

ANF of the driver. The selected crash risk analysis model 5 suggested a tendency of increased

estimated risk of collision with the activation of the drivers’ sympathetic nerve activity indi-

cated by increased LF/HF and inhibition of parasympathetic nerve activity as indicated by

decreased NN50. Increased LF/HF has generally been associated with acute stress and fatigue

[56, 61]. Moreover, it is also known that heart rate variability (HRV) decreases during stress

loads such as occupational stress, and indicators of PNS activity, NN50, pNN50, RMSSD, and

HF, decrease [56, 62]. Based on the above, ANF indicators in the crash risk analysis model

may reflect the physiological state in the over-arousal state [13], suggesting that acute stress-

induced fatigue increases the risk of rear-end collision.

Based on the obtained results, we can consider the possible mechanisms of stress-induced

fatigue on crash risk and crash prevention measures. A previous questionnaire-based study

reported that stressful working conditions predict high-risk behavior in bus rapid transport

drivers mediated by fatigue [7], which supports our result, although the time scales on which

both phenomena focus are different. Other studies also clarify that the fatigued situation

degrades cognitive and motor performance, such as inattention and decreased reaction to dan-

gerous situations [5, 6]. Even in ANF indicators, increased SNS activity and decreased PNS

activity are associated with the worse cognitive performance [63]. Considering this knowledge,

the potential mechanism by which stress-induced fatigue associates with collision risk can be

interpreted as follows: fatigue induced by stressful situations causes low mental and physical

performance. The poor performance subsequently makes it difficult to maintain appropriate

inter-vehicle distance, which results in an increased collision risk, and can finally cause subse-

quent crashes. Assuming this mechanism, stress and fatigue management strategies based on

ANF during driving could help reduce traffic crashes. If a mid-driving ANF monitoring sys-

tem will be developed, allowing for the detection of signs of stress or fatigue, then methods

available while driving (e.g., listening to healing music [64]) and those possible to practice at

other times (e.g., performing yoga [65], Zen meditation [66]) can be expected to contribute to

the reduction of traffic crashes caused by poor physiological conditions, via ANF

improvement.

While ANF indicators show the physiological response seen in over-arousal state, the

AVGHR response also requires consideration. These results showed that the risk of crashes

was reduced with an increase in AVGHR, which is the opposite of the physiological response

reported in the over-arousal state [13]. A decrease in AVGHR has been reported as a strong

indicator of drowsiness [67]. In addition, under-arousal states such as increased drowsiness,

disengagement, and decreased vigilance [68] are reported to be accompanied by decreased

heart rates [13]. Considering these results, the estimated rear-end collision risk analysis model

implies that the ANF indices reflect the risk related to the over-arousal state and AVGHR

reflects the risk related to the under-arousal state. In the future, comparative analysis of crash
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risk indicators that reflect under-arousal, such as drowsiness, as the response variable, will pro-

vide an even broader understanding of the relationship between crash risk and physiological

condition.

Finally, based on a comparative evaluation of ANF while driving, and before and after driv-

ing, the necessity of physiological measurement while driving was examined. Commencement

of driving was found to be accompanied by inhibition in PNS activity, leading to a relative SNS

dominance, and this state was resolved upon cessation of driving. This result is consistent with

previous research on SNS dominance while driving [13]. Even when comparing temporally

close conditions, pre-shift and immediately after commencement of work, significant differ-

ences in the state of the ANS are indicated. In addition, when pre-and post-shift are compared

under the same measurement conditions, changes in physiological condition due to driving,

such as a significant decrease in LFscore, were observed. Furthermore, the state of the ANS

changes over time due to factors such as the circadian rhythm [69]. Considering the dynamic

changes outlined above, when carrying out traffic crash countermeasures based on physiologi-

cal condition, it may be possible to expand the scope of measures by combining the evaluation

of the physiological condition before and after work with the evaluation of the physiological

condition while driving.

Although our results showed that, monitoring the drivers’ ANS while driving is important

for the evaluation of collision risk, this study has some limitations. First, as the participants

were mainly mature males, gender and age differences have not been fully evaluated. In the

future, there is a need to evaluate a more heterogenous sample. Second, compared with previ-

ous studies, the effect of the variables and interaction terms has not been considered. The rela-

tionship between the two could be further evaluated by analysis with an extended mixed

model, such as logistic transformation of linear quantile mixed model, which incorporates ran-

dom effects [18, 22, 33]. Finally, the causal relationship between collision risk and physiologi-

cal condition and predictability could not be evaluated in this study. By analyzing causal

relationships and predictability, including the expansion of the analysis model to a time-series

model and considering temporal correlation, it may be possible to detect crash risk and imple-

ment effective measures to avoid it [70, 71].

Conclusion

This study aimed to clarify the relationship between drivers’ physiological condition in terms

of ANF and an indicator of rear-end collision risk in on-road driving situations. Our results

demonstrated that activation of sympathetic nerve activity and inhibition of parasympathetic

nerve activity increased each quantile of the rear-end collision risk index. This suggests that

during driving in actual on-road situations, acute stress-induced drivers’ fatigue increases

rear-end collision risk. Our findings emphasize the importance of truck drivers’ physiological

condition monitoring even in mid-shift to prevent rear-end collisions. Therefore, the develop-

ment of the ANF-based stress warning and relief system using drivers’ continuous monitoring

could contribute to the prevention of a broader range of road crashes including rear-end colli-

sions. Further studies on predicting the increasing risk caused by drivers’ condition changes

will help to promote safe driving.
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