
1

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22302  | https://doi.org/10.1038/s41598-021-01636-1

www.nature.com/scientificreports

Enhancing diversity analysis 
by repeatedly rarefying 
next generation sequencing data 
describing microbial communities
Ellen S. Cameron1, Philip J. Schmidt2, Benjamin J.‑M. Tremblay1, Monica B. Emelko2 & 
Kirsten M. Müller1*

Amplicon sequencing has revolutionized our ability to study DNA collected from environmental 
samples by providing a rapid and sensitive technique for microbial community analysis that eliminates 
the challenges associated with lab cultivation and taxonomic identification through microscopy. In 
water resources management, it can be especially useful to evaluate ecosystem shifts in response 
to natural and anthropogenic landscape disturbances to signal potential water quality concerns, 
such as the detection of toxic cyanobacteria or pathogenic bacteria. Amplicon sequencing data 
consist of discrete counts of sequence reads, the sum of which is the library size. Groups of samples 
typically have different library sizes that are not representative of biological variation; library size 
normalization is required to meaningfully compare diversity between them. Rarefaction is a widely 
used normalization technique that involves the random subsampling of sequences from the initial 
sample library to a selected normalized library size. This process is often dismissed as statistically 
invalid because subsampling effectively discards a portion of the observed sequences, yet it 
remains prevalent in practice and the suitability of rarefying, relative to many other normalization 
approaches, for diversity analysis has been argued. Here, repeated rarefying is proposed as a tool 
to normalize library sizes for diversity analyses. This enables (i) proportionate representation of 
all observed sequences and (ii) characterization of the random variation introduced to diversity 
analyses by rarefying to a smaller library size shared by all samples. While many deterministic data 
transformations are not tailored to produce equal library sizes, repeatedly rarefying reflects the 
probabilistic process by which amplicon sequencing data are obtained as a representation of the 
amplified source microbial community. Specifically, it evaluates which data might have been obtained 
if a particular sample’s library size had been smaller and allows graphical representation of the effects 
of this library size normalization process upon diversity analysis results.

Next-generation sequencing (NGS) has revolutionized the understanding of environmental systems by enabling 
characterization of microbial communities and their function through examination of DNA collected from 
samples that contain mixed assemblages of organisms1–3. It is well known that fewer than 1% of species in the 
environment can be isolated and cultured, limiting the ability to identify rare and difficult-to-cultivate members 
of the community4–6. In addition to the limitations of culturing, microscopic evaluation of environmental samples 
remains of limited utility because of challenges in high-resolution taxonomic identification and the inability 
to infer function from morphology2. The use of NGS technology and techniques such as amplicon sequencing 
(sequencing of amplified genes of interest) have allowed for analysis of large quantities of diverse environmental 
DNA7 and have largely eliminated challenges associated with culturing and microscopic identification8 in this 
context. The relatively low cost of amplicon sequencing in comparison to other techniques (e.g., shotgun sequenc-
ing that sequences fragments of all present genetic material) has made it an increasingly popular technique9,10.

The amplification and sequencing of specific genes (e.g., taxonomic marker genes) enables characterization of 
microbial community composition11 ; as a result, it has been successfully applied in many areas of environmental 
and water research. This technique has been used to characterize and predict cyanobacteria blooms12, describe 
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microbial communities found in aquatic ecosystems13, and evaluate groundwater vulnerability to pathogen 
intrusion14. It has also been applied to water quality and treatment performance monitoring in diverse settings15, 
including drinking water distribution systems16,17, drinking water biofilters18, anaerobic digesters19, and cooling 
towers20.

Processing and analysis of amplicon sequencing data are statistically complicated for a number of reasons21. 
In particular, library sizes (i.e., the total number of sequencing reads within a sample) can vary widely among 
different samples, even within a single sequencing run, and the disparity in library sizes between samples does 
not represent actual differences in microbial communities8. Amplicon sequencing libraries cannot be compared 
directly for this reason. For example, two replicate samples with 5,000 and 20,000 sequence reads, respectively, 
are likely to have different read counts for specific sequence variants simply due to the difference in library size. 
These differences in library size may arise due to differences in the amount of DNA loaded for sequencing and be 
further impacted by extraction efficiencies and primer bias during amplification, for example. While parametric 
tools such as generalized linear modelling8 can provide a statistically sound framework for differential abundance 
analysis, drawing biologically meaningful diversity analysis conclusions from amplicon sequencing data typically 
requires normalization of library sizes. Such normalization accounts for the additional variation in counts that 
is attributable to differences in library sizes between samples22. For example, larger samples may appear more 
diverse than smaller samples23 simply due to the presence of more sequences. Notably, a variety of normalization 
techniques that may affect the analysis and interpretation of results have been suggested.

Rarefaction is a normalization tool initially developed for ecological diversity analyses to allow for sample 
comparison without associated bias from differences in sample size24. This is accomplished by reducing the 
number of observations to a size threshold shared among several samples through random subsampling of the 
observations. Although initially developed for use in ecological studies, rarefaction is a commonly used library 
size normalization technique for amplicon sequencing data. It is, however, the subject of considerable debate and 
statistical criticism8,25. Rarefying is typically conducted in a single iteration that only provides a snapshot of the 
community that might have been observed at the smaller normalized library size. This introduces artificial vari-
ation to the data by omitting a random subset of observed sequences and potentially also necessitates discarding 
samples with library sizes deemed to be too small8. Alternatively, repeatedly rarefying has the potential to address 
the concerns associated with omission of data and could provide a more statistically acceptable technique than 
performing a single iteration of rarefying for diversity analyses. Nonetheless, rarefying repeatedly has received 
only trivial consideration in the literature8,26, as discussed in further detail in the Background section. In concept, 
diversity analysis approaches grounded in statistical inference about source microbial diversity (that address 
the random probabilistic processes through which NGS yields libraries of sequence reads) could be superior 
to rarefying27 , but they are not yet fully developed or readily available for routine diversity analysis to support 
study of environmental microbial communities.

Here, we propose that rarefying repeatedly enhances assessment of the similarity or difference in diversity 
between samples by describing what data might have been obtained if a particular sample’s library size had been 
smaller and characterizing the variability in diversity metrics introduced by rarefying samples to equal library 
sizes. Accordingly, application of repeatedly rarefying as a library size normalization technique is investigated 
in several illustrative diversity analyses. This paper graphically evaluates the impact of subsampling with or 
without replacement and normalized library size selection on diversity analyses such as the Shannon index 
and Bray–Curtis dissimilarity ordinations, specifically. Rather than representing diversity as a single numerical 
value or point in an ordination plot (often following transformation that may not be designed to compensate 
for differing library sizes), rarefying repeatedly yields bands of values or patches of points that characterize how 
diversity may vary among or between samples at a particular library size.

Background
Amplicon sequencing and diversity analysis for microbial communities in water: an over‑
view.  Due to the inevitable interdisciplinarity of environmental water quality research and the complexity 
and novelty of next generation sequencing relative to traditional microbiological methods used in water quality 
analyses, further background on amplicon sequencing, diversity analysis, and normalization is provided. Ampli-
fication and sequencing of taxonomic marker genes has been used extensively to examine phylogeny, evolution, 
and taxonomic classification of numerous groups across the three domains of life28–30 . Taxonomic marker genes 
include the 16S rRNA gene in mitochondria, chloroplasts, bacteria and archaea29,31–33, or the 18S rRNA gene 
within the nucleus of eukaryotes34. Widely used reference databases have been developed containing marker 
gene sequences across numerous phyla2.

The 16S rRNA gene consists of nine highly conserved regions separated by nine hypervariable regions 
(V1–V9)35 and is approximately 1540 base pairs in length36,37 . While sequencing of the full 16S rRNA gene 
provides the highest taxonomic resolution38 , many studies only utilize partial sequences due to limitations 
in read length of NGS platforms36 which requires selection of an appropriate region of the 16S rRNA gene to 
amplify and sequence for optimal taxonomic resolution36,39. Sequencing the more conservative regions of the 16S 
rRNA gene may be limited to resolution of higher levels of taxonomy, while more variable regions can provide 
higher resolution for the classification of sequences to the genus and species levels in bacteria and archaea33,36,39 
. Different variable regions of the 16S rRNA gene may be biased towards different taxa38 and be preferred for 
different ecosystems40 making it critical to consider the suitability of the selected 16S rRNA region for the study 
area of interest.

The use of amplicon sequencing of partial sequences of the 16S rRNA gene allows examination of microbial 
community composition and the exploration of shifts in community structure in response to environmental 
conditions11, and identification of differentially abundant taxa between samples2. Amplicon sequencing datasets 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:22302  | https://doi.org/10.1038/s41598-021-01636-1

www.nature.com/scientificreports/

can be analyzed using a variety of bioinformatics pipelines for sequence analysis (e.g., sequence denoising, 
taxonomic classification, diversity analysis) including mothur41 and QIIME242. Such pipelines coordinate the 
outputs and inputs of various bioinformatic tools to ease the process of analyzing samples that require many 
different analysis steps. The implementation of denoising tools, such as DADA243 or Deblur44, that are included 
in bioinformatic pipelines allows quality control of sequencing through the removal of sequencing errors and 
for the creation of amplicon sequence variants (ASVs), which retains the full observed biological variation by 
representing each unique sequence in a way that allows comparison between different studies45. Alternative 
methods for sequencing analysis may involve the creation of dataset-dependent operational taxonomic units 
(OTUs) through clustering sequences into groups that meet a certain similarity threshold45.

Quality controlled sequencing data for a particular run is then organized into large matrices where columns 
represent experimental samples and rows contain counts for different ASVs21. These counts, together with the 
total number of sequencing reads known as the library size8, do not provide information on the absolute abun-
dance of sequence variants25,46. This data can be used for studies on taxonomic composition, differential abun-
dance analysis and diversity analyses (Fig. 1). Taxonomic classification of 16S rRNA sequences based on similarity 
to sequences in rRNA databases including SILVA28 , the Ribosomal Database Project47 and GreenGenes48 allows 
for construction of taxonomic community profiles1. Taxonomic composition graphs frequently express commu-
nity composition in proportions. Differential abundance analysis is utilized to explore whether specific sequence 
variants are found in significantly different proportions between samples21 to identify potential biological drivers 
for these differences. This is frequently performed using programs initially designed for transcriptomics, such as 
DESeq249 and edgeR50, or programs designed to account for the compositional structure of sequence data, such 
as ALDeX251. The final potential application of this data is diversity analyses, which can be evaluated on varying 
scales from within sample (alpha) to between samples (beta)52 but is associated with the challenge of the true 
diversity of environmental sources largely remaining unknown53 .

Alpha diversity serves to identify richness (e.g., number of unique sequence variants observed) and even-
ness (e.g., allocation of read counts across observed sequence variants) within a sample27. Comparison of alpha 
diversity among samples of differing library sizes may result in inherent biases, with samples having larger 
library sizes appearing more diverse due to the potential presence of more sequence variants in samples with 
larger libraries23,27. This has commonly required samples to have equal library sizes before comparison to prevent 
bias fabricated only from differences in library size. Specific indices used to characterize the alpha diversity of 
samples include the Shannon index54 , Simpson index55, Chao1 index56, and Hill number57, but unique details 
of such indices should be understood for correct usage. For example, the Chao1 index relies on the observation 
of singletons in data to estimate diversity56, but denoising processes for sequencing data may remove singleton 
reads, making the Chao1 estimator invalid for accurate analysis. The Shannon index used in this study is affected 

Figure 1.   Schematic of general workflow in amplicon sequencing of samples.
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by differing library sizes because the contribution of rare sequences to total diversity is progressively lost with 
smaller library sizes.

Similar to alpha diversity, samples with differing library sizes in beta diversity analyses may produce errone-
ous results due to the potential for samples with larger library sizes to have more unique sequences simply due 
to the presence of more sequence variants21. A variety of beta diversity metrics can be used to compare sequence 
variant composition between samples including Bray–Curtis58, Unifrac59 or Jaccard60 distances, which can then 
be visualized using ordination techniques (e.g., principal components analysis [PCA], principal coordinates 
analysis [PCoA], non-metric multidimensional scaling [NMDS]). Bray–Curtis dissimilarity, used in this study, 
includes pairwise comparison of the numbers for each ASV between two samples, and these are expected to be 
quite dissimilar (even if the communities they represent are not) if library sizes vary substantially.

Limitations of library size normalization techniques.  Diversity analysis, as it is presently applied, 
usually requires library size normalization to account for bias introduced through varying read counts in sam-
ples. For example, samples with larger library sizes may appear more diverse simply due to the presence of 
more sequences. Normalization techniques that feature various statistical transformations have been proposed 
for use in place of rarefying or proportions22, including upper-quartile log fold change50, variance stabiliz-
ing transformations49, centered log-ratio transformations25, geometric mean pairwise ratios61, or relative log 
expressions62. McKnight et al.22 noted that the failure of most normalization techniques to transform data to 
equal library sizes for diversity analysis “is discouraging, as standardizing read depths are the initial impetus 
for normalizing the data (i.e., if all samples had equal read depths after sequencing, there would be no need to 
normalize”.

These proposed alternatives to rarefying are also often compromised by the presence of large proportions 
of zero count data in tabulated amplicon sequencing read counts. Zero counts represent a lack of information63 
and may arise from true absence of the sequence variant in the sample or a loss resulting in it not being detected 
when it was actually present64,65. Nonetheless, many normalization procedures for amplicon sequencing datasets 
require zero counts to be omitted or modified, especially when applying transformations that utilize logarithms 
(e.g., upper-quartile log fold change, centered log-ratio, geometric mean pairwise ratios, relative log expressions). 
Methods that utilize logarithms involve fabricating count values (pseudocounts) for the many zeros of which 
amplicon sequencing datasets are often comprised and selecting an appropriate pseudocount value is an addi-
tional challenge21 that may be accomplished using probabilistic arguments25,46. Zeros are a natural occurrence 
in discrete, count-based data such as the counting of microorganisms or amplicon sequences and adjusting or 
omitting them can introduce substantial bias into microbial analyses66.

McMurdie and Holmes8 noted that use of proportions is problematic due to heteroscedasticity: for example, 
one sequence read in a library size of 100 is a far less precise representation of source composition than 100 
sequence reads in a library size of 10,000, even though both comprise 1% of the observed sequences. McKnight 
et al.22 favour use of proportions in diversity analysis without noting how precision of proportions, and the degree 
to which alpha diversity in the source is reflected27, varies with library size. Willis27 points towards a conceptually 
better approach to diversity analysis that accounts for measurement error and the difference between the sample 
data and the population (environmental source) of which the sample data are only a partial representation. Diver-
sity analysis in general does not do this, as it applies a set of calculations to sample data (or some transformation 
thereof) to obtain one value of alpha diversity or one point on an ordination plot. Pending further development 
of probabilistic approaches to diversity analysis67, this study revisits rarefying because of the practical simplicity 
of comparing diversity among samples of equal library size.

McMurdie and Holmes 8 propose that rarefying is not a statistically valid normalization technique due to 
the omission of valid data. This may be resolved for the purposes of diversity analysis by rarefying repeatedly to 
represent all sequences in the proportions with which they were observed and compare sample-level microbial 
community diversity at a particular library size. McMurdie and Holmes8 dismissed repeatedly rarefying as a 
normalization technique, in part because repeatedly rarefying an artificial library consisting of a 50:50 ratio of 
two sequence variants does not yield a 50:50 ratio at the rarefied library size and this added noise could affect 
downstream analyses. However, such error is inherent to subsampling, whether from a population or from a 
larger sequence library and has thus already affected samples with smaller library sizes; it is the reason why simple 
proportions are less precise in samples with smaller library sizes. Finally, McMurdie and Holmes8, also cited the 
investigation of Navas-Molina et al.26 as an example of repeatedly rarefying to normalize library sizes and used 
it to support their dismissal of this technique due to the omission of valid data and added variability. However, 
it is critical to note that the work in Navas-Molina et al.26 reported using jackknife resampling of sequences, 
which cannot be equated to repeatedly rarefying (random resampling with or without replacement). Hence, it is 
necessary to build upon preliminary analysis of repeatedly rarefying as a normalization technique and to explore 
the impact of subsampling approach and normalized library size on diversity analysis results.

Methods
Example data—DNA extraction and amplicon sequencing.  Samples used in this study are part of a 
larger study at Turkey Lakes Watershed (Ontario, Canada), but only an illustrative subset of samples is consid-
ered for the purpose of evaluating rarefaction rather than for ecological interpretation. This allows evaluation of 
repeated rarefying as a normalization technique without utilizing simulated data. DNA extracts isolated from 
environmental samples were submitted for amplicon sequencing using the Illumina MiSeq platform (Illumina 
Inc., San Diego, California) at the commercial laboratory Metagenom Bio Inc. (Waterloo, Ontario). Primers 
designed to target the 16S rRNA gene V4 region [515FB (GTG​YCA​GCMGCC​GCG​GTAA) and 806RB (GGA​
CTA​CNVGGG​TWT​CTAAT​68) were used for PCR amplification.
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Sequence processing and library size normalization.  The program QIIME2 (v. 2019.10)42 was used 
for bioinformatic processing of sequence reads. Specifically, demultiplexed paired-end sequences were trimmed 
and denoised, including the removal of chimeric sequences and singleton sequence variants to avoid sequences 
that may not be representative of real organisms, using DADA243 to construct the ASV table. Zeroing all sin-
gleton sequences could erroneously remove legitimate sequences, particularly if the sequence in question is 
detected in large numbers in other similar samples; however, the potential effect of such error upon diversity 
analysis is beyond the scope of this work. Output files from QIIME2 were imported into R (v. 4.0.1)69 for com-
munity analyses using qiime2R (v. 0.99.23)70. Initial sequence libraries were further filtered using phyloseq (v. 
1.32.0)71 to exclude amplicon sequence variants that were taxonomically classified as mitochondria or chloro-
plast sequences.

We developed a package called mirlyn (Multiple Iterations of Rarefying for Library Normalization)72 that 
facilitates implementation of techniques used in this study built from existing R packages (Table S1). Using 
the output from phyloseq, mirlyn was used to (1) generate rarefaction curves, (2) repeatedly rarefy libraries to 
account for variation in library sizes among samples, and (3) plot diversity metrics given repeated rarefaction.

Community diversity analyses on normalized libraries.  To demonstrate the impact of normalized 
library size on alpha diversity metrics, the Shannon index was evaluated. Further analyses using the Hill num-
ber demonstrate the conceptual application of this technique to other diversity metrics. The normalized librar-
ies were also used for beta diversity analysis which was evaluated with the Bray–Curtis distance. A Hellinger 
transformation was applied to normalized libraries to account for the arch effect regularly observed in ecologi-
cal count data and Hellinger-transformed data were then used to calculate Bray–Curtis distances58. Principal 
component analysis (PCA) was conducted on the Bray–Curtis distance matrices. Further analyses using Jaccard 
distances demonstrate the impact of rarefying repeatedly on metrics that reduce datasets to presence-absence 
composition.

Study approach.  Typically, rarefaction has only been conducted a single time in microbial community 
analyses, and this omits a random subset of observed sequences, introducing a possible source of error. To 
explore the error associated with subsampling, samples were repeatedly rarefied 1000 times. This repetition 
provides a representative suite of rarefied samples capturing the randomness in sequence variant composition 
imposed by rarefying.

Rarefying library sizes may be performed with or without replacement. To evaluate the effects of subsampling 
replacement approaches, sequence libraries were repeatedly rarefied both with and without replacement. Results 
of the two approaches were contrasted in diversity analyses to evaluate the impact of subsampling approach on 
interpretation of results.

Rarefying requires the selection of a potentially arbitrary normalized library size, which can impact subse-
quent community diversity analyses and therefore presents users with the challenge of making an appropriate 
decision of what size to select8. To evaluate the effects of different rarefied library sizes, sequence libraries were 
rarefied repeatedly to varying read depths. Results for various normalized library sizes were contrasted in diver-
sity analyses to evaluate the impact of this determinant on interpretation of results.

Results and discussion
Use of rarefaction curves to explore suitable normalized library sizes.  Suitable normalized library 
size for groups of samples can be determined through the examination of rarefaction curves (Fig. 2). By select-
ing a library size that encompasses the flattening portion of the curve for each sample, it is generally assumed 
that the normalized library size will adequately capture the diversity within the samples despite the exclusion of 
sequence reads during the rarefying process (i.e., there are progressively diminishing returns in including more 
of the observed sequence variants as the rarefaction curve flattens).

Suggestions have previously been made encouraging selection of a normalized library size that is encompass-
ing of most samples (e.g., 10,000 sequences) and advocation against rarefying below certain depths (e.g., 1000 
sequences) due to decreases in data quality26. However, generic criteria may not be applicable to all datasets and 
exploratory data analysis is often required to make informed and appropriate decisions on the selection of a 
normalized library size that is relevant to the study. Although previous research advises against rarefying below 
certain thresholds, users may be presented with the dilemma of selecting a sampling depth that either does not 
capture the full diversity of a sample depicted in the rarefaction curve (Fig. 2I) or would require the omission 
of entire samples with smaller library sizes (Fig. 2III). While increasing sequencing depth would resolve the 
problem, this may not be an option for studies with limited resources or sample material. The implementation 
of multiple iterations of rarefying library sizes will aid in alleviating this dilemma by capturing the potential 
losses in community diversity for samples that are rarefied to lower than ideal depth. Doing so with two or more 
normalized library sizes (e.g., an inclusive smaller value and a larger value that excludes some samples) may 
reveal differences in diversity in certain samples, particularly if effects of relatively rare variants are suppressed 
by normalizing to too small of a library size.

The effects of subsampling approach and normalized library size selection on alpha diversity 
analyses.  The R package phyloseq, a popular tool for microbiome analyses, has default settings for rarefy-
ing including sampling with replacement to optimize computational run time and memory usage 74. Sampling 
without replacement, however, is more statistically appropriate because it draws a subset from the observed set 
of sequences (as though the sample had yielded only the specified library size), whereas sampling with replace-
ment fabricates a set of sequences in similar proportions to the observed set of sequences (Fig. 3). Sampling with 
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Figure 2.   Rarefaction curves showing the number of unique sequence variants as a function of normalized 
library size for six samples (labelled A–F) of varying diversity and initial library size. Selection of unnecessarily 
small library sizes (I) omits many sequence variants. Rarefying to the smallest library size (II) omits fewer 
sequences and variants. While selection of a larger normalized library size (III) would omit even less sequences, 
it is necessary to omit entire samples (e.g., Sample F) that have too few sequences).

Figure 3.   The mechanics of rarefying with or without replacement for a hypothetical sample with a library size 
of ten composed of five sequence variants (A–E). Rarefying without replacement (a) draws a subset from the 
observed library excluding the complementary subset, while rarefying with replacement (b) has the potential to 
artificially inflate the numbers of some sequence variants beyond what was observed.
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replacement can potentially cause a rare sequence variant to appear more frequently in the rarefied sample than 
it occurred in the original library.

Rarefying libraries with or without replacement was not found to substantially impact the Shannon index 
in the scenarios considered in this study (Fig. 4A), but users should still be aware of potential implications of 
sampling with or without replacement when rarefying libraries. Libraries rarefied with replacement are observed 
to have a slightly reduced Shannon index relative to libraries rarefied without replacement at many library sizes 
because rare sequences are excluded more often when sampling with replacement.

The conservation of larger normalized library sizes allows detection of more diversity with minimal variation 
observed between the iterations of rarefaction (Fig. 4A). The largest considered normalized library size (11,213, 
associated with the sample having the smallest library size) captured the highest Shannon index values, while the 
Shannon index diminishes for all samples at lower normalized library sizes. While there was only slight dispar-
ity in the Shannon index values between the largest rarefied library size and unnormalized data, this may not 
always be the case and is dependent on the sequence variant composition of the samples. Samples dominated 
by a large number of low-abundance sequence variants are more likely to have a substantially reduced Shannon 
index value at a larger normalized library size. Alternatively, samples dominated by only a few highly abundant 
sequence variants will be comparatively robust to rarefying.

Figure 4.   Effect of chosen rarefied library size and sampling with (WR) or without (WOR) replacement upon 
the Shannon Diversity Index. Six microbial communities were rarefied repeatedly (A) at specific rarefied library 
sizes of 11,213 sequences, 5000 sequences, 1000 sequences, and 500 sequences and (B) to evaluate the Shannon 
Index as a function of rarefied library size.
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A plot of the Shannon index as a function of rarefied library size (Fig. 4B) demonstrates the overall robustness 
of the Shannon index of these samples for larger library sizes (e.g., > 5,000 sequences) and the increased variation 
and diminishing values when proceeding to smaller rarefied library sizes. When the normalized library size was 
illustratively decreased to 5000, the Shannon index is still only slightly reduced by the rarefaction but there is 
greater variability introduced from rarefying.

The consistency of the diversity metric when rarefying repeatedly is extremely degraded when libraries were 
illustratively rarefied to the smallest considered rarefied library size of 500 sequences. This illustrates the potential 
to reach incorrect conclusions if rarefying is completed only once. When rarefying repeatedly to a small library 
size, however, diversity index values that are both highly inconsistent and suppressed relative to the diversity of 
the unrarefied data may lead to inappropriate claims of identical diversity values between samples (e.g., sam-
ples A, B, and C become indistinguishable). The extreme reduction and introduced variation of the Shannon 
index suggests that the selection of smaller rarefied library sizes (if necessary to include all samples) should be 
approached with caution when using alpha diversity metrics, while larger normalized library sizes prevent loss 
of precision and reduction of the Shannon index value. However, as previously noted, the reduction in the value 
of the Shannon index will be dependent on the sequence variant composition of the samples.

Similar trends were obtained when evaluating the Hill number instead of the Shannon Index (Figure S1-I), 
demonstrating the applicability of this concept to different diversity metrics. While similar trends were obtained 
when examining these data with a different diversity metric, in this case the Hill number, it is plausible that future 
analysis may reveal more distinctive differences with data featuring different sequence compositions.

Previous research evaluating normalization techniques has focused on beta diversity analysis and differential 
abundance analysis8,21,25, but the appropriateness of library size normalization techniques for alpha diversity 
metrics should also be evaluated due to the prerequisite of having equal library sizes for calculation. Utilization 
of unnormalized library sizes with alpha diversity metrics may generate bias due to the potential for samples with 
larger library sizes to inherently reflect more of the diversity in the source than a sample with a small library size. 
The repeated iterations of rarefying library sizes allow characterization of the variability introduced to sample 
diversity by rarefying at any rarefied library size (Fig. 4) but (as is the case for all normalization-based approaches) 
does not allow evaluation of uncertainty about the diversity in the source from which the sample was taken.

The effects of subsampling approach and normalized library size selection on beta diversity 
analysis.  When samples were repeatedly rarefied to a common normalized library size with and without 
replacement, similar amounts of variation in the Bray–Curtis PCA ordinations were observed between the sam-
pling approaches (Fig. 5). This indicates that although rarefying with replacement seems potentially erroneous 
due to the fabrication of count values that are not representative of actual data, the impact on the variation intro-
duced into the Bray–Curtis dissimilarity distances is not large and will likely not interfere with the interpretation 
of results. However, rarefying without replacement should be encouraged because it is more theoretically correct 
to represent data possible if only the smaller library size had been obtained, and it has not been comprehen-
sively demonstrated that sampling with replacement is a valid approximation for all types of diversity analysis 
or library compositions.

When larger normalized library sizes are maintained through rarefaction, there is less potential variation 
introduced into beta diversity analyses, including Bray–Curtis dissimilarity PCA ordinations. For example, in 
the largest normalized library size possible for these data (Fig. 5A), a minimal amount of variation was observed 
within each community, indicating that the preservation of higher sequence counts minimizes the amount of 
artificial variation introduced into datasets by rarefaction (including no variation for Sample F because it is not 
actually rarefied in this scenario). For this reason, rarefying to the smallest library size of a set of samples is a 
sensible guideline to retain as much information and introduce as little variation as possible. Although, a nor-
malized library size of 5000 is lower than the flattening portion of the rarefaction curve for samples A, B, and C 
(Fig. 2), the selection of this potentially inappropriate normalized library size (Fig. 5C) can still accurately reflect 
the diversity between samples without excess artificial variation introduced through rarefaction. Due to the vari-
ation introduced to the Bray–Curtis dissimilarity ordinations in the smaller rarefied library sizes (Fig. 5E/G), it 
is critical to include computational replicates of rarefied libraries to fully characterize the introduced variation 
in communities (if such a small library size is needed to include all data). Notably, the dissimilarity between 
samples A and F diminishes with reduced normalized library sizes while the pattern of other samples persists 
(albeit with increasing variation introduced by rarefying). Similar trends were observed when using repeated 
rarefying with the Jaccard distance, showing the potential application of this technique with metrics focused on 
presence-absence data structures (Figure S1-II).

As discussed above, it has been suggested that repeatedly rarefying is inappropriate due to the introduction 
of “added noise”. However, as demonstrated, repeatedly rarefying with larger rarefied library sizes is sometimes 
found to add only trivial variability to diversity analysis results, which is a useful outcome to defend the validity 
of library size normalization through rarefying. At smaller normalized library sizes, rarefaction without replica-
tion could result in artificial similarity or dissimilarity being identified between samples. Plotting the variability 
characterized by rarefying repeatedly aids the analyst in visually assessing similarity or dissimilarity of samples 
to avoid assertions that may be overly dependent on a single unusual rarefaction.

Beta diversity analysis of very small rarefied library sizes (Figure S2A, B, C) was performed to explore 
the robustness of these analyses and determine when the interpretation of the results would become severely 
impacted (Figure S2D). Repeatedly rarefying to extremely small library sizes can still reflect similar clustering 
patterns among samples observed in larger library sizes but with a much poorer resolution of clusters. Rarefying 
has previously been shown to be an appropriate normalization tool for samples with low sequence counts (e.g., 
< 1000 sequences per sample) by 21, which is promising for datasets containing samples with small initial library 
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sizes or potentially analyzing subsets of data to explore diversity within specific phyla (e.g., Cyanobacteria). Cau-
tion must be taken to avoid selection of an excessively small normalized library size due to the introduction of an 
extreme level of artificial variation that compromises accurate depiction of diversity and suppresses the contribu-
tion of rare variants to overall diversity. The tradeoff between rarefying to a smaller than advisable library size or 
excluding entire samples with small library sizes remains and can possibly be resolved by analyzing results with 
all samples and a small rarefied library size as well as with some omitted samples and a larger rarefied library size.

Although rarefying has the potential to introduce artificial variation into data used in beta diversity analyses, 
these results suggest that rarefying repeatedly does not become problematic until normalized library sizes are very 
small (e.g., 500 sequences or less) for the samples considered. While degradation of the consistency and value of 
the alpha diversity Shannon index at 500 sequences was observed, beta diversity analyses may be more robust 
to rarefaction and capable of reflecting qualitative clusters in ordination as previously discussed in Weiss et al.21. 
The artificial variation introduced to beta diversity analyses by rarefaction could lead to erroneous interpretation 

Figure 5.   Variation in PCA ordinations (using the Bray–Curtis dissimilarity on Hellinger transformed rarefied 
libraries) of six microbial communities repeatedly rarefied with and without replacement to varying library 
sizes.
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of results, but the implementation of multiple iterations of rarefying library sizes allows a full representation of 
this variation to aid in determining if apparent similarity or dissimilarity is a chance result of rarefying.

The use of non-normalized data has been shown to be more susceptible to the generation of artificial clusters 
in ordinations, and rarefying has been demonstrated to be an effective normalization technique for beta diversity 
analyses21. However, the use of a single iteration of rarefying does result in the omission of valid data8. This study 
demonstrated that rarefying repeatedly and inclusion of these computational replicates in diversity analyses does 
not substantially impact the output and interpretation of beta diversity analyses unless rarefying to sizes that 
are inadvisably small to begin with. McMurdie and Holmes8 were dismissive of rarefying repeatedly due to the 
variability it introduces, but such repetition was not evaluated in the context of beta diversity analysis. In the case 
of differential abundance analysis, the added variability of rarefying would be statistically inappropriate relative 
to generalized linear modelling that can account for varying library sizes.

McKnight et al.22 preferred use of proportions in diversity analysis over rarefying (arguing that both were 
superior to other normalization approaches). While proportions normalize the sum of the ASV weights to one 
for each sample, the approach does not normalize the library size in terms of sequence counts. This is important 
because sample proportions will provide a more precise reflection of the true proportions of which the set of 
sequences is believed to be representative in samples with larger libraries than in samples with smaller libraries. 
In particular, using proportions of unnormalized sequence count libraries in beta diversity analysis overlooks the 
loss of alpha diversity associated with smaller library sizes when comparing samples with different library sizes.

Perspectives on library size normalization.  The increasing popularity and accessibility of amplicon 
sequencing has enabled the scientific community to gain access to a wealth of microbial community data that 
would otherwise not have been accessible. However, despite amplicon sequencing of taxonomic marker genes 
being the gold standard approach for microbial community analysis, the data handling and statistical analysis is 
still in the early stages of development. The diversity analyses that the scientific community desires to perform 
on amplicon sequencing data require library sizes to be normalized across samples, which creates the challenge 
of determining appropriate normalization techniques. New normalization techniques and tools are constantly 
being developed and released to the community with claims that the newest technique is the best and only solu-
tion that should be utilized for analysis, but they may be associated with data handling limitations, be too specifi-
cally tailored to a particular type of analysis or desired property, or not normalize the library sizes that motivated 
the need for normalization 22 . For example, the centered-log ratio transformation 46 cannot be used with zero 
count data and amplicon sequencing datasets must be augmented with an artificial pseudocount to apply the 
normalization technique. The limitations of normalization techniques may affect downstream analyses, making 
it critical to understand the implications of the technique chosen.

Further discussion within the scientific community is needed to ensure rigorous interpretation of amplicon 
sequencing data without unwarranted bias introduced by the normalization technique. Approaches to micro-
biome data analysis that recognize data as samples from a source population and seek to draw inference about 
diversity in the source rather than just calculating diversity in the (transformed) sample are desirable. Random 
errors are inherent to sample collection, handling, processing, amplification, and sequencing and should ideally 
be reflected in how resulting data are analyzed67. Pending further research on such approaches, rarefying remains 
common in current research requiring library size normalization despite its potential limitations, especially for 
diversity analysis. The implementation of a single iteration of rarefying is problematic due to the omission of 
valid data and should not be used for library size normalization. Conducting repeated iterations of rarefying 
for the generation of a comprehensive collection of computational replicates for each sample, however, does not 
discard valid sequences and allows for the characterization of variation introduced through random subsampling 
in diversity analyses.

Library normalization remains a crucial step in diversity analyses, even with the increasing ability to generate 
samples with larger library sizes. If disparity exists between library sizes, a normalization technique is required 
to ensure that bias generated from data structure does not interfere with downstream analyses and subsequent 
interpretation. For example, if a threshold for library size is used in the generation of sequences (e.g., > 50,000 
reads), disparity between samples may still exist when one sample may have 50,100 reads while a second has 
75,000 reads. In these situations, normalization is still required, albeit for a relatively large normalized library size. 
Performing fewer repeated iterations may be suitable in some situations depending on the disparity between the 
initial library sizes and distribution of counts across different sequences. However, this can only be determined 
through initial data exploration and examination of the variation introduced through subsampling processes.

Rarefying and repeatedly rarefying have previously been generally discarded as library normalization tech-
niques due to the omission of valid data, but this research proposes use of this technique for diversity analyses 
to encapsulate the variation introduced through rarefying. However, as is the case for initial criticisms of this 
technique, the results from this research may not be universally applicable and we caution that normalization 
techniques and data handling decisions should be driven by study design and the research question as there 
are certain cases where rarefying may not be an appropriate technique. For example, studies interested in the 
detection of very rare sequences may not benefit from this technique due to the increased probability of very 
rare sequences being regularly discarded. In these cases, researchers are encouraged to explore alternative data 
handling approaches to ensure rigorous analysis and prevent bias in the generation of results that are driven 
mainly by the initial data structure.
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Conclusions
Repeated rarefying (e.g., 1000 times if computationally feasible) statistically describes possible realizations of 
the data if the number of sequences read had been limited to the normalized library size, thus allowing diversity 
analysis using samples of equal library size in a way that accounts for the data loss in rarefying.

Graphical depiction of the variability in diversity metrics introduced by rarefying allows analysts to make 
well-informed subject assessments and avert erroneous claims of similarity or dissimilarity that may arise from 
only rarefying once.

Rarefying with or without replacement did not substantially impact the interpretation of alpha (Shannon 
index) or beta (Bray–Curtis dissimilarity) diversity analyses considered in this study, but rarefying without 
replacement is theoretically more appropriate and will provide more accurate reflection of sample diversity.

The use of larger normalized library sizes when rarefying minimizes the amount of artificial variation intro-
duced into diversity analyses but may necessitate omission of samples with small library sizes (or analysis at both 
inclusive low library sizes and restrictive higher library sizes).

Bray–Curtis ordination patterns were relatively well preserved down to small normalized library sizes 
with increasing variation shown by repeatedly rarefying, whereas the Shannon index is very susceptible to 
being impacted by small normalized library sizes both in declining values and variability introduced through 
rarefaction.

Even though repeated rarefaction can characterize the error introduced by excluding some fraction of the 
sequence variants, rarefying to extremely small sizes resulting in exclusion of the majority of the data (e.g., 100 
sequences) is inappropriate because the substantial introduced variation leads to an inability to differentiate 
between sample clusters and suppresses contribution of rare variants to diversity.

Further development of strategies (e.g., data handling, library size normalization for diversity analyses) for 
ensuring rigorous interpretation of amplicon sequencing data is required.

Data availability
The datasets analyzed during this study are available for use as example data in the R package, mirlyn (https://​
github.​com/​escam​ero/​mirlyn).
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