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Abstract

Driver somatic mutations are a hallmark of a tumor that can be used for diagnosis and targeted therapy. Mutations are
primarily detected from tumor DNA. As dynamic molecules of gene activities, transcriptome profiling by RNA sequence
(RNA-seq) is becoming increasingly popular, which not only measures gene expression but also structural variations such
as mutations and fusion transcripts. Although single-nucleotide variants (SNVs) can be easily identified from RNA-seq,
intermediate long insertions/deletions (indels >2 bases and less than sequence reads) cause significant challenges and are
ignored by most RNA-seq analysis tools. This study evaluates commonly used RNA-seq analysis programs along with vari-
ant and somatic mutation callers in a series of data sets with simulated and known indels. The aim is to develop strategies
for accurate indel detection. Our results show that the RNA-seq alignment is the most important step for indel identification
and the evaluated programs have a wide range of sensitivity to map sequence reads with indels, from not at all to decently
sensitive. The sensitivity is impacted by sequence read lengths. Most variant calling programs rely on hard evidence indels
marked in the alignment and the programs with realignment may use soft-clipped reads for indel inferencing. Based on the
observations, we have provided practical recommendations for indel detection when different RNA-seq aligners are used
and demonstrated the best option with highly reliable results. With careful customization of bioinformatics algorithms,
RNA-seq can be reliably used for both SNV and indel mutation detection that can be used for clinical decision-making.

Key words: RNA sequencing; indels; mutation; alignment; variant calling; EGFR.

Zhifu Sun is a Senior Associate Consultant and Associate Professor in Division of Biomedical Statistics and Informatics, Department of Health Sciences
Research at Mayo Clinic Rochester, Minnesota. His research focus is genomics and epigenomics.
Aditya Bhagwate is an Informatics Specialist with Master Degree in Bioinformatics in Division of Biomedical Statistics and Informatics, Department of
Health Sciences Research at Mayo Clinic Rochester, Minnesota.
Naresh Prodduturi is an Informatics Specialist with Master Degree in Bioinformatics in Division of Biomedical Statistics and Informatics, Department of
Health Sciences Research at Mayo Clinic Rochester, Minnesota.
Ping Yang is a Consultant and Professor in Division of Epidemiology, Department of Health Sciences Research at Mayo Clinic Rochester, Minnesota. Her re-
search is lung cancer genetics and epidemiology.
Jean-Pierre A. Kocher is a Consultant and Professor in Division of Biomedical Statistics and Informatics, Department of Health Sciences Research at Mayo
Clinic Rochester, Minnesota. His research focus is bioinformatics and system biology.
Submitted: 16 February 2016; Received (in revised form): 19 June 2016

VC The Author 2016. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

973

Briefings in Bioinformatics, 18(6), 2017, 973–983

doi: 10.1093/bib/bbw069
Advance Access Publication Date: 26 July 2016
Paper

http://www.oxfordjournals.org/


Background

Somatic mutations are a hallmark of a tumor and can be used
for diagnosis and targeted therapy selection. These mutations
are usually detected from tumor DNA. As dynamic molecules of
gene transcription activities, transcriptome profiling by RNA se-
quence (RNA-seq) is becoming increasingly popular, which not
only measures gene expression but also structural variations
such as fusion transcripts or mutations. The full utilization of
the multilevel genomic information in RNA-seq will facilitate
personalized medicine. Although single-nucleotide variants
(SNVs) or somatic SNVs when paired tumor/normal RNA sam-
ples are available can be easily identified from RNA-seq [1–3],
insertions/deletions (indels) longer than two bases cause sig-
nificant bioinformatics challenges. First, RNA from RNA-seq is
not a continuous copy of transcribed genes but of spliced exons,
which leads to significant challenges when aligning sequence
reads to a reference genome. Several RNA-seq-specific aligners
have been developed to deal with the spliced molecules, which
take the intron gaps into consideration in the alignment step.
This can be achieved by either passing the known exon–intron
junctions to the alignment programs or the programs them-
selves performing junction discovery from read coverage evi-
dence. Some of these short-read alignment programs excel in
speed but do not allow gaps in the sequence reads. Second,
gapped alignment for indels is a significant bioinformatics chal-
lenge that not only slows down alignment speed but also is not
easy to find the right positions of the split reads. Lastly, the
alignment is the important but not the only step for accurate
SNV or indel detection. Variable performances for variant detec-
tion in DNA-seq from different variant callers are reported [4–7],
and in one particular example of evaluating multiple callers for
the same alignment, most programs failed to detect indels lon-
ger than two bases [7]. Commonly called indels from different
programs were disappointingly low [8, 9], a strong indication
that there is much to be improved for accurate indel detection.
Data from RNA-seq and combined effect of alignment and vari-
ant calling for indels have not been available and rarely
investigated.

Despite of the challenges, there is a strong clinical need to
detect important and actionable indels. For example, Epidermal
Growth Factor Receptor (EGFR) gene mutation is common in
multiple cancers, particularly for lung adenocarcinoma in non-
smokers. Over 90% of EGFR mutations in lung adenocarcinoma
are in-frame deletions (ranging from 12 to 18 bases) in exon 19
or a point mutation in exon 21 (L858R) [10], and the former alone
can account for about 50% of EGFR-mutated lung cancer [11, 12].
Lung cancers with these EGFR mutations are highly sensitive to
EGFR tyrosine kinase inhibitors, such as gefitinib and erlotinib
[11]. Therefore, it is critical to detect these SNV and indel muta-
tions for clinical decision-making. Furthermore, the less com-
mon EGFR mutations such as insertions in exon 20 (about 4%)
and point mutations that modify codons G719 (to A, C or S; 3%)
and L861 (to Q; 2%) are also useful for guided personal treatment
[11, 13].

Motivated by the clinical importance of indels and our ex-
perience of underreporting of indels from RNA-seq, we
evaluated seven alignment tools for RNA-seq (TopHat, TopHat2,
HISAT, HISAT2, STAR, GSNAP and RUM) and six variant/somatic
mutation calling programs (GATK HaplotypeCaller,
UnifiedGenotyper, FreeBayes, SAMtools/BCFtools and VarScan
including VarScan2 for somatic mutations) for indel detection,
extensively evaluated for DNA-seq but rarely done for RNA-seq
data, in both simulated and real RNA-seq data sets with

corresponding exome sequencing data and known indel muta-
tions. We started from the common 15 base deletion in EGFR
gene in a representative sample and evaluated the behavior of
each aligner and variant caller. We then moved to a simulated
RNA-seq data set with many indels with different lengths to ob-
tain the overall picture of the performance of different aligner
and variant caller combination. Finally, two lung cancer data
sets with validated indels by both exome and other tests were
used to demonstrate the reliable results of selected aligner and
variant caller combinations.

Materials and methods
Alignment tools

We evaluated seven RNA-seq-specific and one popular generic
mapping program BWA [14, 15] for indel alignment of RNA-seq
data (Supplementary Table S1). TopHat [16] is the most com-
monly used alignment program for RNA-seq. The advantages of
using TopHat are that it performs splice junction aware align-
ment; optionally detects fusion transcripts with TopHat-Fusion;
and generates alignment that can be streamlined to de novo as-
sembly programs such as Cufflinks [17] or Scripture [18]. The
early version of TopHat (TopHat 1) uses Bowtie [19] as the
underlying alignment program that performs ungapped global
alignment. The upgraded version of TopHat 2 [20] uses Bowtie 2
[21], which can perform gapped extension that uses dynamic
programming. HISAT or HISAT2 [22] is the new generation of
spliced alignment program for RNA-seq reads based on TopHat
2 with Bowtie 2 with further enhanced performance of faster
runtime and low memory usage. STAR is a relatively new ultra-
fast RNA-seq aligner that performs sequential maximum map-
pable seed search followed by seed clustering and stitching. It is
up to 50� faster than other common aligners like TopHat but
still achieves improved alignment sensitivity and precision [23],
which makes it an attractive alternative for RNA-seq alignment.
GSNAP [24] is another junction aware RNA-seq alignment pro-
gram that is fast and tolerant for complex variants and splicing.
It works with both short (from 14) and long sequence reads.
GSNAP uses a successively constrained search process of merg-
ing and filtering position lists from a genomic index at the oligo-
mer level and demonstrates better performance for reads with
more mismatches or indels up to 30 bases. RUM is an RNA-seq
analytical workflow that combines transcriptome and whole
genome alignment with Blat [25] to align the unmapped reads
to reference genome [26]. As Bowtie 1 is the underlying gapless
aligner, incorporation of Blat, which is gapped alignment, pre-
sumably gets reads with indels aligned. BWA [14, 15] is the most
widely used alignment suite of programs for DNA-seq, which
has three algorithms: BWA-backtrack, BWA-SW and BWA-MEM.
BWA-backtrack is designed for sequence reads up to 100 bp,
whereas the other two are for longer sequences up to 1 Mb.
BWA-MEM is the latest addition with the fastest runtime.
Although not designed for RNA-seq, we included BWA as a gen-
eric alignment tool for its ability to align reads with long gaps so
that it could be potentially used for second round of unmapped
read alignment after the tools such as TopHat, which is known
for ignoring reads with intermediate indels >2 bases.

Variant/mutation calling programs

For variants from single sample, GATK (2.0-35) HaplotypeCaller,
UnifiedGenotyper [27], FreeBayes (v0.9.14) [28], SAMtools/
BCFtools (v1.2) and VarScan [29] (part of VarScan 2 v2.3.7) were
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evaluated. Strelka [30] and VarScan 2 [31] (v2.3.7) were the tools
for somatic mutation calling from paired tumor/normal sam-
ples (Supplementary Table S2). As indels are the primary focus
of this article, the commonly used somatic mutation tools such
as SomaticSniper [32], JointSNVMix [33] and muTect [34] were
not included, as they can only make somatic SNV calls.

Simulated RNA-seq with indels

Two million paired-end reads with incorporated indels were
simulated for human chr7 using the BEERS RNA-seq simulation
program [26] at 100 bp length. Human RefSeq config files pro-
vided by BEERS were used to generate the simulated data. The
true indels from the simulated BAM file were evaluated for their
depth of coverage and alternative indel allele counts. The pos-
itions with simulated reads �10� and�2 alternative reads were
kept as true-positive indels, as many positions can have no reads
simulated (more mimic to RNA expression), which gave us 1805
indels and all other positions not overlapping with simulated
indels and having �10� coverage were treated as true negatives
(�38 million positions). Vast majority of simulated indels from
the simulator were between one and two bases and 64 of them
were three or more up to nine bases. As the focus of the article
was for intermediate indels, these 64 indels were evaluated
closely. The generated FASTQ files were processed through differ-
ent aligner and variant caller combination to make indel discov-
ery. The sensitivity and specificity of the indel calls from each
alignment/caller combination were calculated by comparing with
the true indels and true-negative positions as defined above.

RNA-seq data with known indel mutations from lung
cancer patients

EGFR insertions and deletions in exon 19 and 20 are common
mutations in lung adenocarcinoma, particularly in nonsmoker
patients. From 27 nonsmoker lung cancer patients with both
exome sequence (exome-seq) and RNA-seq [1], we selected five
tumors with known typical EGFR indels (3 deletions in 9 and 15
bases and 2 insertions in 6 and 9 bases, also validated by
MassARRAY technology, Table 1). The clinical characteristics of
these patients were described in our precious work [1]. The
RNA-seq data were sequenced at two samples per lane by
HiSeq2000 sequencer at 101 cycles with an average of 137–216
million pair-end reads. The data were in high quality as
described previously and that study was approved by Mayo
Clinic institute review boards [1]. Lu1321A (its paired normal
lung is Lu1321C), the tumor with 15 base deletion in exon 19
from a female with stage IB tumor, was examined closely for
the performance of aligners and variant callers and underlying
causes for missed calls. To evaluate the impact of sequence
read length, we also trimmed the reads to 50 bp. The adjacent

normal lung tissues of these five tumors were also available
and sequenced by both RNA-seq and exome-seq. They were
used as reference to detect somatic mutations.

To further test the reliability of the recommended aligner/
caller combination for clinical important indels, we also ana-
lyzed 77 tumor/normal pairs of lung adenocarcinoma by RNA-
seq reported previously [35], among which seven tumors with
EGFR deletion of 15 and 18 bases at exon 19 (the similar com-
mon deletion as in our samples) were known. The raw data
were downloaded from Short Read Archive at the accession#
ERP001058. It was sequenced at both ends of 101 cycles. We
aligned the data by both STAR and GSNAP and then called
indels by GATK HaplotypeCaller, UnifiedGenotyper, FreeBayes,
SAMtools/BCFtools and VarScan.

Results
Aligner performance for the well-known 15 base dele-
tion in a clinical sample

As EGFR intermediate deletions are so important clinically and
they are often underreported from RNA-seq, we first carefully
examined the behavior of each aligner for the common 15 base
deletion on exon 19 using one typical paired tumor and normal
(Lu1321A, C) with both exome and RNA-seq data. TopHat 1, 2
(with Bowtie 1, 2), Bowtie 2, HISAT, HISAT2, STAR, GSNAP, RUM
and BWA were included. We first performed the alignment for
the exome-seq data of this sample by both NovoAlign (http://
www.novocraft.com/products/novoalign/) and BWA-MEM, and
in both the 15 base deletion was clearly seen with approxi-
mately 25–30% of support reads (out of 120–150 total reads,
Figure 1A for NovoAlign, 1B for BWA-MEM). The EGFR is highly
expressed in lung adenocarcinoma, and the RNA of the tumor
Lu1321A was sequenced at very high depth over 144 million
pair-end reads. At exon 19 where the deletion is, the average
coverage is about 100–150�. By examining the aligned output
(BAM file), TopHat 1 and 2 did not have any reads with the dele-
tion aligned, which is not surprising as Bowtie 1 is gapless align-
ment, and in TopHat 2, the local alignment option was not able
to be activated, which is available for Bowtie 2 (Figure 1C). Then,
we run Bowtie 2 standalone by turning on local alignment op-
tion (but without considering splicing); we could see many soft-
clipped reads around the deletion region but there were no hard
evidence deletions marked in the Concise Idiosyncratic Gapped
Alignment Report (CIGAR) string for 50 base reads (Figure 1D).
This became better for the 100 base reads where there were
eight reads marked with deletion (Figure 1E). STAR also did not
mark any reads as deletion but soft clipped many for the 50 bp
reads (Figure 2A). However, it aligned a significant number of
reads as deletion for the 100 bp reads (Figure 2B). GSNAP dem-
onstrated itself as the most sensitive aligner in this case, as it

Table 1. Exome-seq result for known indels in five pairs of samples

Sample Known EGFR mutations* Exome (BWA) NovoAlign HaplotypeCallerþ Strelka

Lu106 Chr7_Ex20_9I þþ (N�) þþþ (N�) � �
Lu1271 Chr7_Ex19_9D þþþ (N�) þþþ (N�) � �
Lu1321 Chr7_Ex19_15D þþþ (N�) þþþ (N�) � �
Lu1377 Chr7_Ex20_6I þþ (N�) þþþ (N�) � �
Lu1659 Chr7_Ex19_15D þþþ (N�) þþþ (N�) � �

*Chr7_Ex20_9I: Indel notation by chromosome, exon, indel type, respectively. I/D represents insertion and deletion, and the number before is for the number of bases

inserted or deleted. The number of þ represents an increasing number of deletion reads aligned. N� represents that there is no deletion reads in the paired normal

sample. � represents that the indel/somatic indel is detected in the respective tumor.
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was able to align the highest number of deletion reads to the cor-
rect location with minimal soft clipping for both 50 and 100 base
reads (57 and 91, respectively, Figure 2C and D). RUM aligned the
reads with the deletion to the correct genomic location but it
marked the deletion as splice junctions instead of deletion within
the exon. To test if we could recover the reads with deletion in
which TopHat did not align, we realigned the unmapped reads
from TopHat 1 or 2 by BWA. BWA-backtrack was sensitive to align
the 50 base reads with the deletion with gapped alignment (–e 30
option, Figure 3A); however, BWA-MEM and SW aligned most of

deletion reads as soft clipping (Figure 3B). Conversely, for 100
base reads, the short-read BWA-backtrack only aligned one dele-
tion read (Figure 3C), whereas BWA-MEM aligned 30 reads with
the deletion (Figure 3D). This is a clear indication that the three
BWA algorithms just work as they are supposed to do and users
need to select the one that works the best according to the se-
quence lengths. In comparison of nonjunction aware alignment
program Bowtie 2 with BWA-MEM for longer reads (�100 bp) with
the deletion, Bowtie 2 appeared inferior to BWA-MEM, as it had
far less reads aligned as deletions than BWA-MEM.

Figure 2. RNA-seq alignment by STAR and GSNAP for the EGFR 15 base deletion in exon 19. (A) STAR for 50 base reads, all deletion reads soft clipped but no deletion

marked. (B) STAR for 100 base reads, 41 reads aligned with deletion but others soft clipped. (C) GSNAP for 50 bp reads, almost all reads with deletion were correctly

aligned. (D) GSNAP for 100 bp reads, even more reads with the deletion were correctly aligned, although with some reads as soft clipping. GSNAP has the better sensitiv-

ity to align reads with the deletion. A colour version of this figure is available at BIB online: https://academic.oup.com/bib.

Figure 1. Lu1321A 15 bp deletion at exon 19 by exome-seq and RNA-seq (both at 100 base reads). (A) Exome-seq by NovoAlign. (B) Exome-seq by BWA-MEM. (C) RNA-seq

by TopHat 1 and 2. (D) Bowtie 2 local alignment for 50 base reads. (E) Bowtie 2 alignment for 100 base reads. A colour version of this figure is available at BIB online:

https://academic.oup.com/bib.
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The new generation of TopHat aligner, HISAT and HISAT2, is
much faster and expected to be more widely used. However, as
their predecessors, they still do not support local alignment option,
and therefore we would not expect there is a significant enhance-
ment in terms of alignment for reads with intermediate indels.
This was indeed the case for HISAT1, as there was no deletion
reads aligned for both 50 and 100 base reads (Figure 4A and B).
HISAT2 somehow was able to align some reads with the deletion
as soft clipped at the deletion edges but no hard evidence deletion
for both 50 and 100 base reads (Figure 4C and D). The soft-clipped
reads can be potentially used for some variant callers to call the de-
letion. It is important to note that soft-clipped reads at the deletion
edge by gapped or local alignment algorithm increase alignment
sensitivity and can potentially be used for some variant calling pro-
grams to find structural variants or indels through realignment;
however, they cannot be used for many other variant calling pro-
grams that depend on hard evidence indels marked in the CIGAR
string of the alignment. These soft-clipped reads are generally
ignored by these callers. Therefore, the alignment has a significant
impact on downstream indel calling.

The 15 base deletion detection sensitivity is variable
among variant callers

As aligners that are not able to align reads with deletion to refer-
ence genome cannot be used for indel detection, our evaluation
on indel callers was focused on the alignment by STAR, GSNAP

and HISAT2 for both 50 and 100 base reads. As shown in Table 2,
whether the deletion was called is dependent on sequence
length, aligner and variant caller. For STAR and HISAT2 align-
ment of 50 base reads and HISAT2 100 base reads, no variant
callers except GATK HaplotypeCaller made the correct deletion
call, as all the alignments had no hard evidence deletion. GATK
HaplotypeCaller conducts local realignment that allows it to use
soft-clipped reads for the successful deletion detection. For
STAR alignment of 100 base reads and GSNAP of both 50 and 100
base reads, the deletion was detected by all variant calling tools.
Noted is that VarScan (or VarScan 2) relies on SAMtools pileup
generation. The later version of SAMtools (v1.2) mpileup some-
times does not output the deletion information to pileup file in
the plain output format so no deletion call was made at the pos-
ition. However, it was able to detect the deletion with older ver-
sion (v0.1.13) of SAMtools pileup. Combined use of SAMtools
with BCFtools can make variant calling efficiently through pip-
ing mpileup output into BCFtools. VCF or BCF output format
needs to be specified for the correct calling.

Results for other four tumor samples with different indels
were similar to the sample Lu1321A and they are summarized
in Table 2.

Performance of simulated RNA-seq with indels

To help to select the optimal aligner and variant callers for inter-
mediate indels, it would be useful to use a simulated RNA-seq

Figure 3. Unmapped reads from TopHat with BWA realignment. (A) Unmapped reads by BWA –e 30 option for 50 base reads. (B) Unmapped reads by BWA-MEM for 50

base reads. (C) Unmapped reads by BWA –e 30 option for 100 base reads. (D) Unmapped reads by BWA-MEM for 100 base reads. A colour version of this figure is avail-

able at BIB online: https://academic.oup.com/bib.
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Table 2. RNA-seq aligners and indel detection for five tumors with known indels

Sample Lu106 Lu1271 Lu1321 Lu1377 Lu1659
Chr_exon_type Chr7_Ex20_9I Chr7_Ex19_9D Chr7_Ex19_15D Chr7_Ex20_6I Chr7_Ex19_15D
Genomic location chr7:55248998 chr7:55242465 chr7:55242465 chr7:55249013 chr7:55242464 Sensitivity

STAR IGV* 0k1 1k1 0k1 1k1 0k1
GATK HT 1k1 1k1 1k1 1k1 1k1 1k1
GATK UGT 0k1 0k1 0k1 0k1 0k1 0k1
FreeBayes 0k0 0k1 0k1 0k1 0k1 0k0.8
BCFtools 0k1 0k1 0k1 1k1 0k1 0.2k1
VarScan 0j0k0j1 0j1k1j1 0j0k0j1 0j1k0j1 0j0k0j1 0j0.4k0.2j1

GSNAP IGV* 0k1 1k1 1k1 1k1 1k1
GATK HT 1k1 1k1 1k1 1k1 1k1 1k1
GATK UGT 0k1 1k1 1k1 0k1 1k1 0.6k1
FreeBayes 0k0 1k0 1k1 0k1 1k1 0.6k0.6
BCFtools 0k1 1k0 1k1 0k1 1k1 0.6k0.8
VarScan 0j0k1j1 1j1k1j1 0j1k0j1 0j0k1j1 0j1k0j1 0.2j0.6k0.6j1

TopHatþBWA IGV* 0k0 1k1 1k1 0k1 1k1 0.6k0.8
GATK HT 0k0 1k1 1k1 0k1 1k1 0.6k0.8
GATK UGT 0k0 0k1 0k1 0k0 0k0 0k0.4
FreeBayes 0k0 1k1 0k1 0k1 0k1 0.2k0.8
BCFTools 0k0 1k1 1k1 0k1 1k1 0.6k0.8
VarScan 0j0k0j0 1j0k1j1 1j0k1j1 0j0k1j1 0j0k1j1 0.4j0k0.8j0.8

HISAT2 IGV* 0k0 0k0 0k0 0k0 0k0 0k0
GATK HT 1k1 1k1 1k1 1k1 1k1 1k1
GATK UGT 0k0 0k0 0k0 0k0 0k0 0k0
FreeBayes 0k0 0k0 0k0 0k0 0k0 0k0
BCFtools 0k0 0k0 0k0 0k0 0k0 0k0
VarScan 0j0k0j0 0j0k0j0 0j0k0j0 0j0k0j0 0j0k0j0 0j0k0j0

RUM IGV* 0k0 0k0 0k0 0k0 0k0 0k0
GATK HT 0k0 0k0 0k0 0k0 0k0 0k0
GATK UGT 0k0 0k0 0k0 0k0 0k0 0k0
FreeBayes 0k0 0k0 0k0 0k0 0k0 0k0
BCFtools 0k0 0k0 0k0 0k0 0k0 0k0
VarScan 0k0 0k0 0k0 0k0 0k0 0k0

HT ¼ HaplotypeCaller; UGT ¼ UnifiedGenotyper. 1 in the table for the indel reported and 0 for not reported. The number before k is for 50 base read and after for 100

base read. For VarScan, the number before the bar is for using SAMtools version v1.2 and after for the SAMtools version v0.1.13. *Only solid indel is considered, not

including soft-clipped reads. Lu1321 is used as an example for detailed description in the main text.

Figure 4. HISAT1 and 2 for 15 base deletion alignment. (A) HISAT1 50 base reads, no reads with the deletion were aligned. (B) HISAT1 100 base reads, no reads with the

deletion were aligned. (C) HISAT2 50 base reads, part of deletion reads aligned as soft clipping. (D) HISAT2 100 base reads, part of deletion reads aligned as soft clipping.

A colour version of this figure is available at BIB online: https://academic.oup.com/bib.
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data with indels incorporated as the ground truths are known.
For the simulated data set with 2 million reads from chr7, we
aligned the paired-end FASTQ at 100 bp to hg37 reference genome
with GSNAP, STAR, TopHat with subsequent BWA-MEM and
HISAT2. The aligned BAM files were used to call variants by
HaplotypeCaller, UnifiedGenotyper, FreeBayes, BCFtools and
VarScan. Figure 5A shows the sensitivity of detection for all 1805
indels regardless of indel lengths. GSNAP and STAR alignments
had higher sensitivities for all variant callers than the alignments
from combination of TopHat and BWA-MEM and HISAT2. All call-
ers performed better in GSNAP alignment than STAR alignment
except BCFtools. For the indels at �3 (Figure 5B), the sensitivities
of all callers in GSNAP and STAR remained similar to or better
than the ones for all indels but they were dramatically reduced in
the alignments from TopHatþ BWA-MEM and HISAT2. All align-
ment and caller combinations had very high specificity (>99.75%)
and in some cases, it reached to 100%, for example, there was no
false-positive indel calls by UnifiedGenotyper in any of align-
ments. FreeBayes had the lowest specificity (still at 99.8%) among
the all for the GSNAP alignment (Supplementary Figure S1).
Overall, we found GSNAP or STAR along with GATK
HaplotypeCaller or BCFtools provided the highest sensitivity.

Strategies for accurate indel detection in RNA-seq using
different aligners

Our evaluation demonstrated that intermediate indel detection
from RNA-seq highly hinged on aligners and callers. Some
aligners do not align reads with longer indels at all and others
are more sensitive. Most variant callers need hard evidence de-
letion clearly marked in the CIGAR string of an alignment file

for the deletion calling. The aligners that just soft-clip reads
with deletion would miss the deletion entirely for these callers.
To recover the deletion, two different strategies can be taken: (1)
for the alignment from TopHat families (TopHat 1, 2 and
HISAT1 and 2), where only global alignment is conducted, users
need to perform the second round of alignment for the un-
mapped reads by gapped aligners such as BWA-MEM. The
newly generated alignment can be merged with the initial align-
ment for variant calling. As demonstrated, BWA-MEM is sensi-
tive to align longer reads with indels. With the reads with indels
correctly mapped, almost all variant calling algorithms could
make the correct call. However, this option only serves as a res-
cue alternative, as it does not work as well as the next option
from our simulation. (2) For users who have the flexibility of
choosing different aligners for RNA-seq data, STAR or GSNAP
would be preferred. Although STAR worked well for sequence
reads at 100, it may have a difficulty with shorter reads. In this
case, GSNAP is a better choice. The disadvantages of GSNAP are
its slower speed compared with STAR and a potential compati-
bility issue with other downstream analysis programs such as
fusion detection and novel transcript assembly.

Optimal combination of aligner and variant/somatic
caller for five pairs of tumor/normal samples with
known indels

The above evaluation demonstrated that GSNAP and STAR were
the choices for indel alignment and GATK HaplotypeCaller
(BCFtools is another choice but it cannot use soft-clipped reads)
for indel calling in the single-sample mode. To validate this, we
used five pairs of samples with more diverse known indels and
evaluated the robustness of each aligner and GATK
HaplotypeCaller. In addition, we added somatic callers Strelka
and VarScan 2 to make somatic indel calls between tumor and
its paired normal sample.

The five tumors and normal pairs had both exome-seq and
RNA-seq for detailed comparison. All five tumors had either an
insertion or deletion ranging from 6 to 15 bases (Table 3). The
tumor and normal pair from the same individual allowed us to
evaluate somatic indel calling algorithms as well. Exome-seq
was aligned with both BWA-MEM and NovoAlign, and in both
the expected indels were aligned with strong read support,
whereas there were no reads supporting the indels from their
paired normal samples. All these indels were correctly called by
GATK HaplotypeCaller for the five tumors and by Strelka for
somatic indels in the paired tumor and normal comparison.

Similarly for RNA-seq, all expected indels in the tumors
were called from both GSNAP and STAR alignment (Table 3,

Table 3. RNA-seq result for known indels in five pairs of samples

Sample Known indels GSNAP STAR

Normal Tumor Somatic Normal Tumor Somatic

Lu106 Chr7_Ex20_9I X (�) � � X � �
Lu1271 Chr7_Ex19_9D X (þ) � X X � �*

Lu1321 Chr7_Ex19_15D � (þþþ) � X X � �
Lu1377 Chr7_Ex20_6I X (�) � � X � �
Lu1659 Chr7_Ex19_15D X (þ) � � X � �

� represents that the deletion is seen/detected; X: the deletion is not detected.

�/þ sign in parenthesis for number of deletion reads seen in the BAM files from

IGV; � for none; and the number of þ represents an increasing number of dele-

tion reads aligned. *The somatic nine base deletion was called in the unfiltered

result but filtered out because of low-quality score.

Figure 5. Performance of aligners and variant callers in the simulated RNA-seq

data. Panel A is for all simulated 1805 indels with length from 1 to 9. Panel B is

for the indels >2 bases (3–9 bases). GSNAP and STAR are the better aligners and

HaplotypeCaller and BCFtools are the better choices for indel calling. A colour

version of this figure is available at BIB online: https://academic.oup.com/bib.
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results from other callers were provided in Supplementary Table
S3); however, for the normal samples, something interesting was
observed. Although no single read with indels in the STAR align-
ment was seen in all but one normal sample (Lu1271A), we
observed that at least three normal samples in the GSNAP align-
ment had indel reads aligned in the same position as its paired
tumor or even in some occasions from another tumor sample.
Further careful investigation revealed that these normal samples
were likely contaminated with tumor samples, as no evidence
was seen in any of the respective exome-seq samples and an un-
expected indel from a different tumor other than the patient was
seen (i.e. >1 indels present in a tumor). The reason GSNAP found
more deletions than STAR is that these indel reads sometimes
have adapter sequences. GSNAP was able to handle such complex
cases with both indels and adapter sequences better than STAR.
The contamination could be the result of multiple sources rang-
ing from impure normal sample to library preparation contamin-
ation and has been previously reported to be not an uncommon
issue [36]. The immediate implication from the contamination is
that in paired tumor and normal calling, a true somatic indel may
not be called, as the normal sample also contains the indel reads.
A wrong mutation may be called in a tumor if tumors are cross-
contaminated. As shown in Table 3, sample Lu1271A and
Lu1321A had expected mutations detected in the single-sample
calling mode but the somatic mutations were missed in paired
tumor/normal calling because of the contamination of their
matched normal samples in the GSNAP alignment. STAR was less
sensitive to align reads with indels; therefore, almost all but one
normal sample did not have the contaminated indels, resulting in
the correct somatic calls in almost all the cases.

RNA variant concordance with exome-seq data in sin-
gle-sample calling mode

For the five tumors/normal pairs (10 individual samples), we also
compared all SNVs and indel genotype concordances between
exome-seq and RNA-seq from either STAR or GSNAP along the
GATK HaplotypeCaller. For both exome-seq and RNA-seq, we
used the same version of GATK HaplotypeCaller with equivalent
parameters (except recommended ones for RNA-seq). As variant
calling varies with depth of coverage at genomic locations, we
conducted the concordance comparisons from 5� to 80�. As
shown in Figure 6 for the 100 base reads, the SNV genotype

concordances were generally at 99% (increasing from 98 at 5� to
99.8% at 80�). The indel concordances had a larger range of 95.7–
100%. Noted is that exome-seq and RNA-seq may target different
regions of the genome, resulting in variability of coverage to
make reliable variant calls. The commonly called SNVs were gen-
erally less than half of total calls made by either exome-seq
(46.2–54% of 27 000–48 888) or RNA-seq (33.4–53.4% of 41,740–
46,786) at 5�; the similar observation was reported previously
using a different aligner and a variant caller [1]. The common
indels were even lower at about one-third of total indels at 5�
coverage from either sequencing (30.4–39.7% of 1048–3656 for
exome-seq and 11.0–33.5% of 3679–4040 for RNA-seq, Figure 6,
right axis). Interestingly, all known indels that were called in
exome-seq were reliably detected in RNA-seq.

Somatic mutation comparison of five tumor
normal pairs

Using STAR alignment for 100 base reads, we also compared
the somatic mutations (both SNVs and indels) between five
pairs of tumor and normal between exome-seq and RNA-seq
using Strelka as the somatic mutation caller with similar par-
ameter settings. More somatic SNVs were called in RNA-seq
than in exome-seq (Table 4). Although the commonly called
somatic SNVs accounted for only a small fraction of the total
from either, the genotype concordance was 100% for all exome-
seq and RNA-seq pairs. Somatic indels (Table 5) were generally
less than a couple of dozens from either exome-seq or RNA-
seq. Despite the low overlap between the two, the commonly
detected indels were all the known and expected. As the nor-
mal sample of Lu1271 was contaminated with its tumor
deletion reads in the RNA-seq, the somatic deletion was not
detected in RNA-seq but the missed call was not because of
alignment and calling algorithm but the sample
contamination.

Figure 6. SNV and Indel concordance between exome-seq and RNA-seq at differ-

ent depths of coverage. X-axis: depth coverage cutoff; Y-axis: the genotyping

concordance between exome-seq and RNA-seq by combination of STAR align-

ment and GATK HaplotypeCaller. There is an overall increase of the concord-

ance with depths of coverage. The green cross (þ) indicates the number of

common indels made by exome-seq and RNA-seq, which matches the numbers

on the right Z-axis (ranging from 416 to 1221 indels at 5X coverage). A colour ver-

sion of this figure is available at BIB online: https://academic.oup.com/bib.

Table 4. Somatic SNVs from exome-seq and RNA-seq

Sample
pair

# SNVs
(exome)

# SNVs
(RNA)

# Common % Genotype
concordance

Lu106 445 1983 12 12/12 (100%)
Lu1271 971 2120 21 21/21 (100%)
Lu1321 600 1522 29 29/29 (100%)
Lu1377 210 1650 11 11/11 (100%)
Lu1659 174 1913 16 16/16 (100%)

# SNVs: number of somatic SNVs called in exome-seq or RNA-seq; #Common:

number of commonly called somatic mutation positions.

Table 5. Somatic indels from exome-seq and RNA-seq

Sample pair # Indels
(exome)

# Indels
(RNA)

# Common % Genotype
concordance

Lu106 11 16 1 1/1 (100%)
Lu1271 25 1 0 NA*
Lu1321 10 12 1 1/1 (100%)
Lu1377 10 11 1 1/1 (100%)
Lu1659 6 8 1 1/1 (100%)

*The somatic nine base deletion was detected in both exome-seq and RNA-seq,

but it had a low-quality score in RNA-seq and was then filtered out as its paired

normal sample contained the same deletion reads, which was likely contained

from the tumor or filed effect in the normal sample.

980 | Sun et al.

http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw069/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbw069/-/DC1
https://academic.oup.com/bib


Known indel detection in a public data set

For the seven tumors with known deletions in exon 19, we con-
ducted alignment by both STAR and GSNAP and called variants
by five callers. As shown in Table 6, GATK HaplotypeCaller is
the only one who consistently performed well for both STAR
and GSNAP alignment with perfect sensitivity. However, other
callers were dependent on the alignment. In general,
UnifiedGenotyper, FreeBayes and VarScan performed better for
the GSNAP alignment but BCFtools was more variable. This ob-
servation is consistent with the data from the simulated and
our internal lung tumor samples.

Discussion

RNA-seq is the most common modality of gene expression
profiling and it is becoming increasingly popular in clinical set-
tings for precision medicine, as it measures the dynamic gene
activity of the genome for a specific tissue type. Application of
RNA-seq to a tumor allows subclassification from expression
for treatment selection and outcome prediction, fusion tran-
script or mutation detection for targeted therapies [37].
Although SNVs are readily detected [1–3], indel detection is
much more challenging and is an unexplored territory, mostly
because RNA is complicated by alternative splicing and most
commonly used RNA alignment programs do not conduct local
alignment or perform poorly. In this study, we evaluated both
alignment and variant caller impacts on indel detection using
both real and simulated samples with known indels. We com-
pared both single-sample variant and paired somatic mutation
calling. We found that alignment is a critical step for intermedi-
ate indel detection. TopHat family RNA-seq mapping programs
do not align reads with intermediate indels or align minimally
when HISAT2 is used. Most variant calling programs would
miss intermediate indels from these aligners, except the case
that there are sufficient soft-clipped reads triggering realign-
ment by HaplotypeCaller (Figure 4C and D, Table 2). To reliably
detect intermediate indels, additional alignment by indel-sensi-
tive aligners such as BWA-MEM is needed for unmapped reads
from the initial alignment. The combined alignment then can
be used for most variant callers. For longer reads (�100), STAR
works almost equally well as GSNAP, but for shorter RNA-seq
reads (50 or shorter), GSNAP is much more sensitive and recom-
mended. For indel calling of a single sample, GATK
HaplotypeCaller is the most robust one, as it can use soft-
clipped reads to infer indels, unlike others that need indels
marked and correctly positioned by aligners. Strelka works well

in somatic indel detection. Comparisons with exome-seq data
show a high concordance and all expected important indels are
detectable in RNA-seq, which strongly supports the feasibility
of detecting both SNVs and indels from RNA-seq when appro-
priate alignment and variant calling programs are selected.

In this study, we opted primarily to use the real sequencing
data of both exome-seq and RNA-seq with known important
indels for the evaluation of various tools and algorithms. This
not only allows us to assess the real-life challenges of the data
and analysis but also the performance of the tools in detecting
the critical and actionable mutations for clinic. Although the
simulated data are commonly used, they are generally gener-
ated from reference genome and do not reflect the complexity
of real data, for example, sample across contamination or
adapter sequences. However, simulated data can provide an
overall picture of aligner and caller performance as shown in
this work.

The RNA-seq sequence reads with indels not mapped to the
reference genome not only affect the indel detection but also
the downstream gene expression quantification or alternative
splicing detection. As shown in our evaluation, when an aligner
does not align any reads with intermediate indel, there is a sig-
nificant coverage drop around the indel region. The deletion
reads can account a third to a half of total reads. As they are not
counted in gene expression, it may affect downstream differen-
tial expression analysis between samples with and without the
indel. The significant drop may also potentially lead to a false
alternative splicing event at this exon.

The incomplete alignment may have some implications to
other sequencing applications. For example, DNA methylation
sequencing such as whole genome methylation sequencing,
reduced representation bisulfite sequencing (RRBS) or targeted
bisulfte sequencing can be used for variant detection or copy
number estimation and many data processing pipelines use
Bowtie or Bowtie 2 for alignment [38–40]. Similar to what is
observed for RNA-seq here, users would not expect to detect
any indels from such data sets if Bowtie 1 is used. If most of
reads around indel positions are not aligned, it may affect
methylation estimate. Combined with the HaplotypeCaller with
realignment on the top of the alignment from Bowtie 2, most
indels can be detected for sequencing with longer reads, al-
though it may be less sensitive for shorter reads such as RRBS
often containing shorter reads.

The study also confirms the observation reported previously
that although there is high concordance for SNVs or somatic SNVs
between RNA-seq and exome-seq, a significant proportion of pri-
vate variants is present in either platform [1, 41]. The commonly

Table 6. Known indel detection by different combinations of aligner and caller in a public data set

Sample ID STAR GSNAP

GATK HT GATK UGT FreeBayes BCFtools VarScan GATK HT GATK UGT FreeBayes BCFtools VarScan

ERR164550 1 1 1 0 0j1 1 1 1 0 1j1
ERR164559 1 1 1 1 0j1 1 1 1 1 1j1
ERR164560 1 0 0 1 0j0 1 1 1 1 1j1
ERR164563 1 0 0 0 0j0 1 1 1 0 1j1
ERR164569 1 0 0 1 0j0 1 1 1 0 1j1
ERR164585 1 1 1 1 0j1 1 1 1 0 1j1
ERR164613 1 1 0 1 0j1 1 1 1 0 1j1
Sensitivity 1 0.57 0.43 0.72 0.00j0.57 1 1 1 0.29 1.00j1.00

HT ¼ HaplotypeCaller; UGT ¼ UnifiedGenotyper. 1 in the table for the indel reported and 0 for not reported. For VarScan, the number before the bar is for using

SAMtools version v1.2 and after for the SAMtools version v0.1.13.
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called variants generally account for one-third of total variants or
even less from each for SNVs. This number is even lower for
indels. These can be explained largely by different genomic re-
gions that get sequenced, uneven coverage of targeted region or
differential expression among different genes in RNA-seq [41]. It is
also possible that RNA-seq is noisier than DNA-seq. Despite small
fraction, RNA editing may also contribute to the difference.

This study did not evaluate all available RNA-seq alignment
and variant calling programs but most common ones with
known better performances [23, 24, 42]. As the goal of the study
was to detect indel, the common tools that can only detect som-
atic SNVs at the time of this work were not included such as
MuTect, JointSNVMix and SomaticSniper. MutTect and VarScan
2 were reported as more sensitive tools for somatic SNVs [43].
The caveat from these data suggests that VarScan 2 (or VarScan
for SNVs/Indels in nonpaired samples) is highly dependent on
alignment tools, and intermediate pileup generation by
SAMtools and intermediate indels most likely are missed.

The framework of RNA-seq variant detection with sensitive
indel detection after STAR or GSNAP alignment has several ad-
vantages and can be easily expanded for other genomic features
such as fusion transcript detection by STAR-Fusion (https://
github.com/STAR-Fusion/STAR-Fusion) and gene expression
quantification. Comprehensive and accurate characterization of
a tumor would provide critical information for precision medi-
cine. RNA-seq is an excellent tool to achieve that promise with
accurate characterization of targetable genomic abnormalities.

Key Points

• RNA-seq is the most commonly used sequencing ap-
plication to monitor gene regulation activity but can
be used for mutation, fusion transcript and alternative
splicing detection.

• Full utilization of these genomic information can
maximize the potential of personalized medicine.

• Commonly used RNA-seq alignment and variant call-
ing programs perform poorly in detecting intermediate
long indels (>2 bases) that are clinically actionable.

• Strategies are laid out for indel detection in RNA-seq.
• High sensitivity and specificity of these strategies are

demonstrated in real RNA-seq samples with known
indel mutations.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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