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ABSTRACT Isozymes are enzymes that differ in sequence but catalyze the same
chemical reactions. Despite their apparent redundancy, isozymes are often retained
over evolutionary time, suggesting that they contribute to fitness. We developed an
unsupervised computational method for identifying environmental conditions under
which isozymes are likely to make fitness contributions. This method analyzes pub-
lished gene expression data to find specific experimental perturbations that induce
differential isozyme expression. In yeast, we found that isozymes are strongly en-
riched in the pathways of central carbon metabolism and that many isozyme pairs
show anticorrelated expression during the respirofermentative shift. Building on
these observations, we assigned function to two minor central carbon isozymes, aco-
nitase 2 (ACO2) and pyruvate kinase 2 (PYK2). ACO2 is expressed during fermentation
and proves advantageous when glucose is limiting. PYK2 is expressed during respira-
tion and proves advantageous for growth on three-carbon substrates. PYK2’s dele-
tion can be rescued by expressing the major pyruvate kinase only if that enzyme
carries mutations mirroring PYK2’s allosteric regulation. Thus, central carbon
isozymes help to optimize allosteric metabolic regulation under a broad range of
potential nutrient conditions while requiring only a small number of transcriptional
states.

IMPORTANCE Gene duplication is one of the main evolutionary paths to new pro-
tein function. Typically, duplicated genes either accumulate mutations and degrade
into pseudogenes or are retained and diverge in function. Some duplicated genes,
however, show long-term persistence without apparently acquiring new function. An
important class of isozymes consists of those that catalyze the same reaction in the
same compartment, where knockout of one isozyme causes no known functional
defect. Here we present an approach to assigning specific functional roles to seem-
ingly redundant isozymes. First, gene expression data are analyzed computationally
to identify conditions under which isozyme expression diverges. Then, knockouts are
compared under those conditions. This approach revealed that the expression of
many yeast isozymes diverges in response to carbon availability and that carbon
source manipulations can induce fitness phenotypes for seemingly redundant
isozymes. A driver of these fitness phenotypes is differential allosteric enzyme regu-
lation, indicating isozyme divergence to achieve more-optimal control of metabo-
lism.
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Isozymes are distinct proteins within a single organism that can catalyze the same
biochemical reactions. Although some isozymes differ in localization, substrate spec-

ificity, or cofactor preference, there are also many isozymes that are not differentiated
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by these criteria. The genome of budding yeast (Saccharomyces cerevisiae) contains
many duplicate genes encoding isozymes that have persisted since the ancient dupli-
cation of the whole genome that led to the evolution of the modern Saccharomyces (1).
Only a small fraction of these yeast gene duplications remain, strongly suggesting that
the remaining ones, including those that encode isozymes, must somehow have
contributed to evolutionary fitness.

Several explanations, both complementary and at times conflicting, have been
advanced for the retention of such isozymes (and of gene duplicates more generally).
One is gene dosage, in which multiple gene copies contribute to maintaining adequate
total enzyme levels. Papp et al. have argued that many isozyme pairs can be explained
by gene dosage, since in a flux-balance model reactions catalyzed by isozymes tended
to carry higher flux (2). However, a subsequent study using experimentally determined
fluxes estimated that less than 20% of isozyme pairs catalyzed high-flux reactions (3).
Additionally, in some high-flux reactions, such as aconitase and pyruvate kinase reac-
tions, one “major” isozyme but not the other “minor” isozyme has been found to be
essential under laboratory conditions.

Another potential explanation involves genetic backup, i.e., the ability of isozymes
to compensate for the deletion of their partners. However, since genetic backup cannot
be directly selected, it is generally agreed that this is more likely to be a side effect of
isozyme retention than the cause (4). Kafri et al. demonstrated that some isozymes
change in expression after deletion of their partners (“transcriptional reprogramming”)
and argued that selection for robustness against nongenetic noise could give rise to
both transcriptional reprogramming and genetic backup (5, 6); however, a follow-up
study reported that transcriptional reprogramming was confirmed in only �11% of
tested isozyme pairs (7).

Isozymes are often differentially regulated, suggesting a role in fine-tuning meta-
bolic capabilities (8). A well-understood example of such fine-tuning involves the seven
hexose transporters of S. cerevisiae (HXT1 to HXT7), some of which are high-affinity/
low-flux transporters and others low-affinity/high-flux transporters. Collectively, these
transporters allow yeast to import hexose optimally under a wide variety of environ-
mental conditions (9). Another form of fine-tuning involves optimization for growth
under specific (and less commonly studied) environmental conditions, and it has been
argued that isozymes contribute to such optimization (2, 10, 11). However, thus far,
existing computational and experimental tools have not proven to be well suited to
finding the most relevant environmental conditions for explaining the existence of
isozymes. For example, flux balance analysis (FBA) models metabolism at the level of
reactions, not genes, and is therefore intrinsically unable to differentiate between
isozymes (2, 12, 13).

High-throughput fitness assays are, in principle, well suited to identifying the
function of isozymes. Most isozymes have been knocked out in Saccharomyces cerevi-
siae and the growth rate and competitive fitness of the resulting strains measured (3,
11, 14–16). A large number of isozyme deletions, however, have failed to show
substantial fitness defects under laboratory growth conditions. For example, in a recent
study that measured competitive fitness with high precision, 65% of the assayed
isozyme deletions had relative fitness levels of �0.99 and some “minor” isoforms, such
as the pyruvate kinase isozyme PYK2, even showed a slight fitness advantage (15). A
limitation of such studies, including those that go beyond single gene deletions to
measure fitness defects of double deletion strains (17) or triple deletion strains (18), is
that they have been conducted under only a few environmental conditions, mainly
using growth on rich media or defined media with amino acids, with glucose (and
sometimes ethanol [EtOH] or glycerol) as the carbon source. The genetic tools that
enable these massively parallel assays also tend to use amino acid auxotrophies as
selectable markers; growth of these knockout strains therefore requires nutritional
supplements that can themselves contribute to growth, which is less than ideal for
studying the function of genes in central metabolism (19).

In contrast, transcriptional profiling has been conducted under a much wider array
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of experimental conditions. Thus, an alternative approach to identifying the function of
isozymes is to mine compendia of gene expression data, with the aim of identifying
conditions under which isozymes may contribute to fitness. Indeed, previous studies
have noted that the differential expression of isozymes is a feature of many microarray
experiments (20, 21). However, existing expression analyses (5, 21) have tended to
focus on identifying transcriptional coregulation of isozymes with other enzymes or
processes. They have not focused on generating hypotheses about which environ-
ments are specifically associated with isozyme expression divergences (and hence
potentially with function).

Here we developed methods for systematically associating isozymes with specific
environmental perturbations and used these methods to identify an important role for
isozymes in adapting to changes in carbon source availability. This observation is
intriguing given that many (though not all) metabolic isozymes date from the putative
events that might have led Saccharomyces to adopt a bifurcated lifestyle, primarily
fermenting when glucose is present and respiring otherwise (in what is called the
“Crabtree effect”) (22–24). It suggests a rationale for the retention of isozymes over
evolutionary time, providing flexibility to central metabolism and, in particular, to
central carbon metabolism. We tested for such flexibility experimentally, by growing
cells lacking specific isozymes in alternative carbon sources. In two cases, we found
growth defects for isozyme deletions on nonstandard carbon sources, associating for
the first time a specific functional role with the gene(s) that encode the function. These
experimental results provide support for the idea that central carbon metabolic
isozymes have been retained over evolutionary time to optimize the metabolism of
diverse carbon sources.

RESULTS
Differentially expressed isozymes are prevalent in central carbon metabolism.

We began by assembling a list of metabolic isozymes (see Materials and Methods).
Among 77 metabolic isozyme pairs in yeast, we found that 24 were differentiated by
compartment, e.g., mitochondria versus cytosol, leaving 53 colocalized metabolic
isozymes. We found that, like duplicated yeast genes in general (24), these 53 isozymes
are enriched for genes involved in central carbon metabolism (see Fig. S1 in the
supplemental material) (Fisher’s test P � 5.7 � 10�7). Nearly every step in glycolysis and
gluconeogenesis can be catalyzed by two or more enzymes, and storage carbohydrate
metabolism and the pentose phosphate pathway also contain many isozyme pairs. In
contrast, while many metabolic enzymes are involved in amino acid de novo biosyn-
thesis, these pathways contain comparatively few isozymes. Indeed, in the Yeast
Pathway database (25), 8% (51/632) of reactions overall are shown to be catalyzed by
isozymes; however, in the pathways of glycolysis, gluconeogenesis, and fermentation,
this number rises to 67% (8/12; Bonferroni-Holm-corrected Fisher’s test P � 5.6 � 10�4).
The pentose phosphate pathway and tricarboxylic acid (TCA)/glyoxylate cycle are also
enriched for reactions catalyzed by isozymes, but these were not significant after
correction (Bonferroni-Holm corrected Fisher’s test P � 0.15 and P � 0.092, respectively;
see Table S1 in the supplemental material).

We also note that metabolic isozymes were strongly enriched for genes dating from
the whole-genome duplication (WGD) of yeast (65% of isozymes date from the WGD,
compared with 19% of the genome; Fisher’s test P � 10�22). Compared to non-WGD
yeasts, post-WGD yeasts such as Saccharomyces cerevisiae are more likely to exhibit the
Crabtree effect, i.e., are more likely to ferment glucose to ethanol even in the presence
of oxygen. In addition, post-WGD yeast are more likely to be able to survive without the
mitochondrial genome (i.e., to be “petite positive”) (22). These observations raise the
possibility that selective pressures related to carbon metabolism, and, in particular, to
transitions between fermentation and respiration, may have driven the retention of
metabolic isozymes.

We wanted to determine whether isozyme pairs tend to act together as a functional
unit or whether, alternatively, each isozyme has a discrete role. If the former is the case,
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we would expect a strong tendency for isozymes to be coexpressed; if the latter, we
would expect anticorrelation or no correlation in expression. To address this issue, we
assembled a large compendium of gene expression data consisting of more than 400
data sets (each comprising at least 6 arrays) and calculated the correlation of each
isozyme gene pair’s expression within each data set.

We focused on identifying negative correlations between isozymes across arrays
from single experimental data sets, in contrast to looking at the expression levels of
genes across all arrays in the compendium, for three main reasons. First, gene expres-
sion levels are difficult to compare across experiments from different laboratories and
different array technologies, and our compendium includes several different single- and
double-channel array platforms. In contrast, gene correlations calculated within single
experiments can be made comparable using relatively simple normalization procedures
(26, 27). Gene correlations within data sets have also been shown to be more infor-
mative about function than correlations computed across an entire compendium (26,
27). Second, we expect negative correlation of isozyme expression to be observed
during experiments that capture the transition between environments where one
isozyme is preferred to another. Typical biclustering methods discard information
about which arrays come from a single experiment and therefore can group single
arrays from unrelated experiments, a result that is less straightforward to interpret.
Third, when gene transcripts are measured by microarray, cross-hybridization can occur
for genes with high nucleotide sequence identity (28, 29), leading to artifactual positive
correlation. Given that many isozyme pairs in yeast have closely related nucleotide
sequences, focusing on negative correlation mitigates this technical bias.

In our compendium, we found that, overall, isozymes appeared to be anticorrelated
less often than random gene pairs (Bonferroni-Holm-corrected Wilcox test P � 0.031)
and more often than members of the same protein complex (P � 1.0 � 10�4) but did
not differ significantly from other genes within the same metabolic pathway (P � 0.83;
Fig. 1A). When the correlation of isozyme pairs over the entire expression compendium
was visualized, it became clear that this intermediate level of anticorrelation could be
explained by the existence of two distinct clusters of isozymes; a minority of isozyme
pairs appeared to be highly correlated across most of the compendium, while a
majority showed strong anticorrelation under a subset of conditions (Fig. 1B). Based on
how often (i.e., in how many experiments) an isozyme pair was observed to show
anticorrelated expression (false-discovery-rate [q] value of �0.1), we used logistic
regression (see Materials and Methods) to classify the pair as either more like genes
from the same protein complex (consistent with a role in dosage) or more like a pair of
randomly selected genes (suggesting independent roles for the individual isozymes).
We found that 17 isozyme pairs resembled random pairs �6� more closely than they
resembled pairs drawn from the same protein complexes; at the same threshold, 9 pairs
more closely resembled members of the same protein complex (Fig. S2A).

As described in the introduction, one explanation for isozyme retention reflects
gene dosage; that is, having multiple copies of an enzyme may enable increased total
enzyme expression (30). If isozymes were retained strictly for the purpose of increased
dosage, we would not expect them to be differentially expressed. The prominence of
anticorrelated pairs therefore demonstrates that gene dosage alone does not explain
the continued retention of the majority of our 53 isozyme pairs, in contrast to some
previous assertions (2) but in accord with those by Ihmels et al. (10). Further, duplicated
genes can evolve at either similar or divergent rates; we would expect this asymmetry
to be higher for functionally divergent genes and less pronounced for the pairs best
explained by dosage (31–33). Indeed, when we estimated the levels of this asymmetry,
we found that genes in the more “complex-like” isozyme pairs that we identified had
evolved at more similar rates than “random-like” pairs (Wilcox test P � 0.0053), a result
that is in line with previous literature comparing divergence in sequence to divergence
in function (31–33). Additionally, there was little overlap of coexpressed metabolic
isozymes and those isozymes catalyzing high-flux reactions, as defined in a previous
study (3), further arguing against a predominant role for dosage for this set of genes;
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only the GAPDH (glyceraldehyde-3-phosphate dehydrogenase; TDH1-3) and hexokinase
(HXK1/GLK1) enzymes appeared in both lists. Indeed, it appears that a majority of
isozyme pairs are strongly anticorrelated in a condition-dependent manner, suggesting
a role for these pairs in adaptation to different environments.

A set of 21 isozyme pairs shows strong differential expression with changing
carbon availability. Visualizing the anticorrelation of isozyme pairs also revealed that
many were differentially expressed in the same data sets. This suggested that specific
experimental conditions may be particularly relevant to explaining isozyme retention.
We therefore wanted to identify the specific experimental perturbations leading to
isozyme expression anticorrelation. Building on related work (5, 21, 34) (see also the
note in Text S1 in the supplemental material), we first simply sorted the transcriptional
data sets (each containing several individual arrays; for example, a heat shock time
course would represent one “data set” [27]) by the number of isozyme pairs in each that
were anticorrelated. Data sets with the highest levels of differential expression of
isozyme pairs included those from many experiments related to the carbon source

FIG 1 Many isozyme pairs are differentially expressed. (A) Box plots of anticorrelation among isozyme pairs compared with (i) members of the same protein
complex, (ii) members of the same metabolic pathway, and (iii) random gene pairs. Isozyme pairs are more likely to show differential expression than genes
in the same complex (Bonferroni-Holm-corrected 2-sided Wilcox test P value, 1.0 � 10�4) but less likely than random genes (Holm-corrected P � 0.031). (B)
Isozyme pairs separate into two broad categories, depending on how often they are anticorrelated. The matrix displayed shows the correlation (yellow) or
anticorrelation (blue) of isozyme pairs (rows) for every data set (columns) in the compendium. Intensity data correspond to the significance of the
(anti)correlation (q value). Hierarchical clustering performed using an uncentered Pearson’s correlation reveals two main clusters of isozyme pairs; a minority
are strongly correlated over most of the compendium, while the majority show condition-dependent anticorrelation.
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(Table S2). An alternative analysis by partitioning around medoids (PAM) clustering of
the differential expression matrix revealed similar results (Fig. S2B).

If anticorrelation between isozymes were really associated with a specific experi-
mental perturbation, then experiments involving similar perturbations should be more
likely to show isozyme anticorrelation, while unrelated experiments should be less
likely. To identify cases where both criteria were true, we first needed to assess the
relatedness of the experiments in our compendium. We reasoned that similar experi-
mental perturbations should cause similar genes to be differentially expressed. There-
fore, we grouped the experiments into clusters, based on which genes showed the
strongest expression changes. This was accomplished by quantifying the variance of
each gene within each data set and then clustering the variance vectors using con-
sensus k-means clustering, with the number of clusters determined by Akaike infor-
mation criterion (AIC) analysis (35) (see Materials and Methods). This method was
effective at grouping data sets reflecting similar experimental perturbations. For ex-
ample, one cluster of data sets included diauxic shift time courses (36–38), carbon
starvation time courses (39), a panel of mutants with and without glucose (40), and a
15-day wine fermentation (41).

After clustering these data sets, we could identify clusters of similar experiments in
which the correlation of isozyme pairs was consistently negative. Additionally, to
ensure that the associations that we found were not only associated with but also
specific to an experimental condition, we also required that isozyme pairs be signifi-
cantly more differentially expressed in a given cluster of experiments than in experi-
ments from the rest of the compendium, using a one-tailed rank sum test (see Fig. 2A
and Materials and Methods).

FIG 2 Twenty-one isozyme pairs are associated with the metabolism of alternative carbon sources. (A) Outline of method for association of isozyme pairs with
particular data set clusters. In step 1, data sets are grouped into clusters of related experimental conditions (see Materials and Methods). Three of the resulting
clusters are shown, with representative data sets. In step 2, for each data set cluster and each isozyme pair, we test whether that pair is anticorrelated within
that cluster, and if so, whether it is significantly more anticorrelated within that cluster than in other data sets. We show as an example the CDC19/PYK2 pair,
which passes these criteria only within the first cluster of data sets (related to diauxic shift). This suggests that the CDC19/PYK2 pair is associated with the
respirofermentative transition. BY/RM, a cross of the lab strain BY4716 and the wine strain RM-11 (95); glu, glucose. (B) A set of 21 isozyme pairs was specifically
differentially expressed in two clusters of data sets having to do with metabolism of alternative carbon sources. Separately, 5 other pairs appeared to be
associated with sporulation and meiosis. Each filled cell indicates that significant anticorrelation of the given isozyme pair was observed within a given data
set cluster, with the intensity of the cell corresponding to the q value (the false-discovery-rate analog of a P value). Asterisks denote the 21 isozyme pairs
significantly associated with the diauxic shift and glucose perturbations. gal, galactose.
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Indeed, we found that a core set of 13 isozyme pairs tended to be particularly
strongly anticorrelated under a cluster of conditions having to do with diauxic shift/
glucose limitation, and a partially overlapping set of 14 pairs was strongly anticorre-
lated in a cluster of data sets containing several glucose pulse/upshift experiments;
those pairs numbered 21 in total (Fig. 2B). We also found that, for instance, 6 isozyme
pairs were specifically associated with meiosis and sporulation and 9 pairs with aerobic
versus anaerobic growth. In all, these analyses suggest that 21 of our 53 pairs were
differentiated primarily by gene expression on carbon sources and 16 by gene expres-
sion under other conditions, leaving 16 pairs that were not associated with a cluster of
experiments. These findings highlight the ability of this method, applied to a large
expression compendium, to associate subgroups of anticorrelated isozymes not only
with stress in general but also with more-specific environmental stressors.

Examining the original expression data from diauxic shift and glucose removal
experiments revealed a clear visual pattern of anticorrelation (Fig. 3A) which was
conserved across different yeast strains (Fig. S3) (42) and even across species, as shown
using data from the most diverged Saccharomyces sensu stricto yeast, Saccharomyces
bayanus (now called Saccharomyces uvarum) (Fig. 3B) (43). Taken together, these results
suggest that a core set of central carbon metabolic isozymes may be involved in
adaptation to nonfermentable carbon sources.

We next sought to assign function to “minor” metabolic enzymes, using the aconi-
tase isozyme ACO2 as an example of an isozyme that is selectively expressed when
glucose is available, and the pyruvate kinase isozyme PYK2 of an example of the
converse, an isozyme selectively expressed in the absence of glucose. Additionally,

FIG 3 Anticorrelation of 21 isozyme pairs in response to glucose availability. (A) Gene expression profiles of isozymes that are associated with the transition
from using glucose to using alternative carbon sources. Array data were collected from several diauxic shift and carbon removal experiments; data show
induction of one member of the pair (yellow) and repression of the other (blue) across the diauxic shift. Intensity data correspond to fold change. Genes are
grouped into isozyme pairs. (B) Gene expression signatures of isozymes are conserved over evolutionary time. Isozymes were mapped to their syntenic
orthologs in Saccharomyces uvarum. The data representing expression of these orthologs in S. uvarum during the diauxic shift (94) show the same overall
pattern as that seen with the original isozymes in Saccharomyces cerevisiae (compare panel A).
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both ACO2 and PYK2 have isozyme paralogs (ACO1 and CDC19) with profound deletion
phenotypes but have subtle (ACO2) or no (PYK2) recorded deletion phenotypes them-
selves.

Aconitase 2 is required for efficient “glycolytic respiration.” Aconitases are
iron-sulfur proteins that catalyze the second step of the TCA cycle, taking citrate to its
isomer, isocitrate, via aconitate. This reaction does not require redox or nucleotide
cofactors and does not take place at a branch point in metabolism; however, it is
required for �-ketoglutarate synthesis and TCA cycle turning.

Yeast has two aconitase isozymes, ACO1 and ACO2, both of which are mitochondrial;
deletions of ACO1 and ACO2 are synthetically lethal (13). In analyzing the microarray
data described above, we noticed that ACO1 is repressed by glucose and expressed
on glucose removal, while ACO2 has the opposite transcriptional pattern. ACO1 is
the “major” isozyme, and its deletion has been shown to be severely defective on
respiratory carbon sources, such as glycerol, ethanol, and lactate (44). Its expression
in the absence of glucose is consistent with the activation of TCA turning. Given
that yeast prefer to ferment in the presence of glucose, the function of the ACO2
isozyme was unclear, although a high-throughput competitive fitness screen had
led to a previous report that an aco2� strain had a growth defect in minimal
medium with glucose (14).

We began our experimental studies with an aco2� mutant strain by studying its
growth in glucose minimal medium. We observed no growth defect during the
exponential phase in glucose minimal medium, indicating that residual expression of
ACO1 is sufficient to support synthesis of �-ketoglutarate and associated amino acid
products (e.g., glutamate, glutamine, and lysine). Growth of the aco2� deletion strain,
however, saturated earlier than growth of the wild type (wt) in glucose minimal
medium (Fig. 4B, inset). This suggests that ACO2 plays an increasingly important role as
glucose becomes limiting.

On limiting glucose, wild-type S. cerevisiae continues to perform glycolysis but,
instead of fermenting the resulting pyruvate to ethanol, activates respiration to make
more ATP. We refer to this state as “glycolytic respiration,” as distinguished from
“gluconeogenic respiration,” in which cells respire using 2- and 3-carbon substrates
such as ethanol, glycerol, or acetate (Fig. 4A). We hypothesized that the function of the
ACO2 isozyme is to support glycolytic respiration. To test this hypothesis, we grew the
aco2Δ strain on minimal medium with trehalose as the carbon source. Trehalose, a
glucose-glucose disaccharide, is cleaved extracellularly by S. cerevisiae; this produces
glucose at a low rate (45), inducing sustained glycolytic respiration. On trehalose, the
aco2Δ deletion had a fitness disadvantage of 25% (Fig. 4B), confirming that this
aconitase isozyme supports glycolytic respiration. Furthermore, we observed no defect
of the aco2Δ deletion under conditions of growth on minimal media with gluconeo-
genic carbon sources (Fig. S4A and B), indicating that the metabolic role of the aco2Δ
mutant is specific to glycolytic and not gluconeogenic respiration.

We also profiled the metabolome of the aco2Δ mutant and compared it with that
of the wild type, using chemostat culture to maintain steady-state growth on limiting
glucose. Consistent with lowered aconitase activity, the aconitate levels were some-
what elevated and �-ketoglutarate depleted (Fig. 4C). We also observed increases in the
levels of compounds in the de novo NAD� biosynthesis pathway from tryptophan, such
as kynurenic acid (Fig. S5). This connection to NAD� biosynthesis aligns with previous
observations that a deletion of bna1 (a key NAD� biosynthetic gene) is synthetically
sick with the aco2Δ mutant (i.e., the double deletion is less fit than expected from single
deletion phenotypes) (46). Further work is required to identify the molecular mecha-
nism underlying this phenotype.

Pyruvate kinase 2 is required for efficient growth on three-carbon substrates.
We next studied growth of the pyruvate kinase isozyme encoded by the PYK2 gene, an
example of an isozyme that is selectively expressed in the absence of glucose. Pyruvate
kinase catalyzes the last step of glycolysis, taking phosphoenolpyruvate (PEP) to
pyruvate and producing ATP from ADP. This step of glycolysis is highly regulated from
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yeast (47) to humans (48). The “major” yeast isozyme is known as CDC19 (where “CDC”
is from “cell division cycle”: a cdc19 deletion causes arrest at the G1/S transition). It is
expressed in the presence of glucose, and its activity requires high cytosolic fructose-
1,6-bisphosphate (FBP) levels, which are produced when glucose is abundant. The PYK2
isozyme lacks such regulation by fructose-1,6-bisphosphate. Deletion of CDC19 is lethal
on glucose, but deletion of PYK2 has no known phenotype on either glucose or ethanol
(49). Because it does not require activation by fructose-1,6-bisphosphate (FBP), it has
been suggested that PYK2 may contribute to fitness specifically when glucose is
limiting (50); however, we found that the pyk2Δ deletion exhibits no growth defect on
trehalose, arguing against this hypothesis (Fig. 5A). While ethanol-fed cells must also
make pyruvate, they appear to do so primarily from the TCA cycle via malic enzyme
(MAE1) (49), rendering pyruvate kinase unimportant.

S. cerevisiae grows better on a mixture of glycerol and ethanol than on ethanol
alone. While this glycerol could potentially be used to make pyruvate via PEP, the pyk2Δ
deletion strain displayed no growth phenotype on glycerol/ethanol (Fig. 5A). This raised

FIG 4 Deletion of the minor aconitase isozyme aco2 results in a selective growth defect on trehalose,
indicating impaired glycolytic respiration. (A) Schematic of metabolism across the diauxic shift. In the
presence of high levels of glucose (left), S. cerevisiae prefers to ferment glucose to ethanol. As glucose
becomes limiting (center), S. cerevisiae continues to use glucose but converts it into acetyl-CoA (AcCoA)
and, eventually, CO2, in so doing driving TCA cycle turning and oxidative phosphorylation. We term this
state “glycolytic respiration.” Finally, when glucose is exhausted, S. cerevisiae uses ethanol to make
acetyl-CoA as well as sugar phosphates through gluconeogenesis. We refer to this state as gluconeogenic
respiration. DHAP, dihydroxyacetone phosphate; GAP, glyceraldehyde-3-phosphate; FBP, fructose-1,6-
bisphosphate; PEP, phosphoenolpyruvate; OA, oxaloacetate. (B) Growth of wild-type (wt) and aco2�
strains on minimal medium with trehalose, which is digested extracellularly to provide a steady but
limiting amount of glucose, revealed a growth defect for the aco2� mutant during gluconeogenic
respiration. In contrast, under conditions of growth on glucose (inset), the aco2 deletion mutant had no
growth defect in the log phase and began to show a growth defect only when glucose became limiting.
Data represent biological duplicates. (C) During steady-state growth under conditions of limiting glucose,
the level of aconitate was slightly elevated (115% of the wild-type level) and that of �-ketoglutarate
decreased (45% of the wild-type level) in the aco2� mutant compared to the wild type. Bar plots
represent averages of results from four technical replicates (with repeated sampling from one chemostat
per strain). �KG, �-ketoglutarate.
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the possibility that in cells fed glycerol-ethanol, as with cells fed ethanol alone, pyruvate
is made via MAE1. We confirmed this via experiments with [13C]glycerol and liquid
chromatography-mass spectrometry (LC-MS); upon uniformly feeding the cells 13C-
labeled glycerol and unlabeled ethanol, while glucose-6-phosphate labeled from glyc-
erol as expected, alanine (which is made by transamination of pyruvate) remained
primarily unlabeled (Fig. 5B). In contrast, feeding the cells [1-13C]ethanol led to labeling
in both malate and alanine. This indicates a lack of reliance on pyruvate kinase in
glycerol-ethanol-fed cells. Indeed, the pyk2Δ deletion strain showed no difference from
the wild-type strain with respect to labeling patterns (Fig. 5B).

In light of the results described above, we hypothesized that PYK2 would be
required on carbon sources that (i) result in insufficient fructose-1,6-bisphosphate levels
to activate CDC19 and (ii) require pyruvate kinase activity to make pyruvate. We further
reasoned that 3-carbon substrates would meet those requirements. While glycerol is a
common 3-carbon substrate, Saccharomyces cerevisiae cannot grow on glycerol mini-
mal medium without amino acids, presumably because of an inability to maintain
cytosolic redox balance (glycerol is more reduced than glucose) (51). We therefore
searched for another 3-carbon substrate that could sustain growth as the sole carbon
source. S. cerevisiae has two dihydroxyacetone kinases, DAK1 and DAK2, that enable
slow but sustained growth on the triose dihydroxyacetone (DHA) (52). DHA enters
metabolism through glycolysis/gluconeogenesis, rather than through the TCA cycle, so
during growth on DHA, pyruvate should be made using pyruvate kinase rather than
malic enzyme. Since CDC19 is turned off in the absence of glucose (both transcription-

FIG 5 Deletion of the minor pyruvate kinase isozyme PYK2 results in a selective growth defect on dihydroxyacetone, a three-carbon sugar.
(A) Growth of wild-type and pyk2� strains on glucose, trehalose, and glycerol/ethanol minimal media, revealing no defect for PYK2
deletion. (B) 13C labeling shows that, for wild-type yeast growing on glycerol/ethanol minimal medium, glucose-6-phosphate was labeled
from both glycerol and ethanol, but alanine (a proxy for pyruvate) and malate were labeled exclusively from ethanol. Thus, glycerol is not
used to make pyruvate. The PYK2 deletion did not affect these labeling patterns. Labeling patterns represent averages of results from
biological triplicates. (C) Schematic of glycolysis and TCA cycle, comparing the metabolism of glucose, glycerol/ethanol medium, and
dihydroxyacetone. (D) Growth of wild-type and pyk2� strains on dihydroxyacetone minimal medium revealed a growth defect for pyk2�.
Data represent results from biological duplicates. (E) At the steady state under conditions of limiting dihydroxyacetone, phosphoenol-
pyruvate changed only slightly in concentration (87% of wild-type level), while the concentrations of pyruvate (pyr; down 3.5-fold),
acetyl-CoA (AcCoA; down 6.7-fold), and ATP (down 8.4-fold) were substantially decreased. Bar plots represent averages of results from four
technical replicates (with repeated sampling from one chemostat per strain). (F) Growth on synthetic glycerol (glycerol/CSM-Arg-Asp)
medium was normal in the wild-type strain and in the strain in which pyk2� was rescued with the FBP-insensitive mutant CDC19E392A but
was nearly abolished for pyk2� and pyk2� rescued with wild-type CDC19. Bars represent the final OD600 of biological duplicates.
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ally and allosterically), the majority of the flux through pyruvate kinase should be
catalyzed by PYK2 (Fig. 5C).

Indeed, we observed that deletion of pyk2 inhibited growth on DHA (Fig. 5D).
Further, during continuous culture on dihydroxyacetone, while phosphoenolpyruvate
(PEP) levels remained close to wild-type levels, the pyk2Δ deletion strain was depleted
in pyruvate kinase’s products (pyruvate and ATP). The downstream pyruvate product,
acetyl-coenzyme A (acetyl-CoA), was also depleted. This pattern of metabolite levels is
consistent with impaired pyruvate kinase activity in this mutant (Fig. 5E; see also
Fig. S5).

Further, while laboratory yeast do not grow on a strict minimal medium with
glycerol, amino acid supplementation can restore growth. For example, “complete
supplement mixture” (CSM), containing selected amino acids and nucleobases, is
sufficient to permit growth on glycerol (51). In Saccharomyces cerevisiae, amino acid
degradation does not always yield carbon skeletons that can enter central carbon
metabolism; instead, the carbon skeletons of many amino acids either are used only in
amino acid biosynthesis or are discarded in the form of fusel alcohols via the Ehrlich
pathway, which has been speculated to play an important role in maintaining redox
balance (53). The only amino acids in CSM known to be catabolized to central carbon
intermediates are L-aspartate and L-arginine. To allow growth on glycerol without the
confounding influence of other potential carbon sources, we therefore constructed a
synthetic glycerol medium supplemented with a version of CSM lacking these amino
acids (CSM-Arg-Asp).

During its growth on glycerol with CSM-Arg-Asp, we observed that the pyk2Δ
deletion strain was severely impaired relative to the wild-type strain (Fig. 5F). In
contrast, previous studies have found no such defect in pyk2Δ mutants during growth
on synthetic complete media containing all amino acids. Together, these results
indicate a previously unappreciated role for the pyruvate kinase isozyme PYK2 in
allowing metabolism of three-carbon substrates.

Finally, we wanted to definitively test our hypothesis about the mechanism by
which PYK2 permits growth on three-carbon substrates, that is, that PYK2 enables
growth on glycerol and dihydroxyacetone because, unlike CDC19, it does not require
allosteric activation by FBP, which is depleted in the absence of glucose. Since CDC19
expression is repressed under nonfermentative conditions, however, it might also be
possible that the presence of either of the two pyruvate kinases allows growth under
3-carbon conditions and that the relevant difference between PYK2 and CDC19 is
associated with regulation at the promoter level.

To distinguish between these two possibilities, we performed two rescue experi-
ments in which, using the delitto perfetto method (54), we kept the promoter of PYK2
completely intact but replaced the PYK2 coding sequence with either wild-type CDC19
or the E392A point mutant of CDC19, which allows CDC19 activity regardless of the FBP
concentration (55, 56). Rescue with wild-type CDC19 did not improve growth on
glycerol with CSM-Arg-Asp; rescue with the E392A allele, in sharp contrast, restored
growth completely (Fig. 5F). Similar results, including partial rescue by the wild-type
CDC19 allele and complete rescue by the E392A allele, were also observed for dihy-
droxyacetone (Fig. S4C). These results support our hypothesis that the PYK2 gene was
retained in Saccharomyces cerevisiae because of an “escape from adaptive conflict”
(57–59); the presence of PYK2 allowed the cell to control CDC19 activity through
allosteric activation, which has previously been shown to be important for adapting to
short-term glucose removal (60), while also resolving the incompatibility between this
regulation and growth on three-carbon substrates.

DISCUSSION

Through computational analysis of a large compendium of expression data, we
found that a set of colocalized metabolic isozymes is differentially expressed in re-
sponse to glucose availability and that this differential expression is conserved over
evolutionary time. We then experimentally found condition-specific contributions to
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fitness for two of these isozymes, ACO2 and PYK2. In the case of ACO2, the deletion
shows only a subtle defect on glucose but a defect of 25% on trehalose (i.e., limiting
glucose). In the case of PYK2, the deletion shows no defect on glucose, ethanol, or
glycerol-ethanol but a defect of 42% on dihydroxyacetone and nearly complete growth
inhibition when glycerol was the sole carbohydrate source. Also, another study con-
firmed that the acetyl-CoA synthase isozymes ACS1 and ACS2, identified as part of the
same cluster of differentially expressed isozymes returned using our method, display
opposite phenotypes on fermentable and nonfermentable carbon sources (61), further
supporting the validity of this approach.

The conclusion that even so-called “minor” isozymes make important contributions
to fitness that cannot be easily buffered is in line with other recent genome-scale
analyses. One recent study first predicted fitness costs for gene deletions using a flux
balance model, then calculated the evolutionary rates of these genes using sequence
analysis, and finally asked whether genes with larger predicted deletion phenotypes
evolved more slowly. The authors demonstrated this expected relationship appeared
only when isozymes were assumed to be nonredundant, as opposed to being individ-
ually dispensable (62). Furthermore, a study analyzing experimentally determined
deletion phenotypes concluded that even closely related, nonessential duplicates
actually made distinct, condition-specific contributions to fitness, with effect sizes that
are likely large enough for purifying selection to have retained them both (63). Finally,
another study integrating experimental data with several bioinformatic estimates of
functional divergence concluded that hardly any paralogous pairs are truly functionally
redundant (64). Together, these lines of inquiry reinforce the conclusion that failure to
find fitness differences in standard media does not indicate dispensability; the differ-
ences in fitness that led to retention of a gene may often be detected only under very
specific growth conditions. As in the examples we provided here, careful analysis of the
relevant biochemical pathways may often be required to infer the appropriate envi-
ronments in which the differences in fitness can be made manifest.

Among the 53 colocalized isozyme pairs that we identified, our analysis was able to
associate the differential expression of 37 pairs with an experimental condition. This
leaves 16 whose expression levels were strongly positively correlated, suggesting a
potential primary role for gene dosage effects. However, few of these 16 pairs catalyze
high-flux reactions according to Kuepfer et al. (3), suggesting that even in those cases,
dosage may not represent the primary explanation. Furthermore, some metabolic
isozymes that did not show gene expression differences in our analysis have been
reported to be differentially regulated at the level of protein concentration. For
example, ENO1 and ENO2, the cytosolic enolases, display opposite changes in abun-
dance due to glucose availability in assays performed by chromatography followed by
activity analysis (65). This is consistent with the observation that deletion of eno2, but
not eno1, caused abnormal cell cycle progression during standard growth (66). How-
ever, ENO1 and ENO2 were found to be highly correlated across our expression
compendium. This may be either because their mRNAs are hard to distinguish by
microarray or because their primary regulation occurs at the level of translation,
posttranslational modification, or protein stability. Greater availability of RNA sequenc-
ing and quantitative proteomics data will therefore be valuable for this type of analysis
in the future.

For isozymes that are differentiated by condition-specific expression, dosage may
still have played an important role in their initial evolutionary selection. For example,
Conant and Wolfe argue that loss of duplicates outside glycolysis may have led to
higher flux through glycolysis and thus to a competitive fitness advantage shortly
following the whole-genome duplication in yeast (30). In this model, further special-
ization of isozymes occurred shortly following the whole-genome duplication. Such
further specialization likely provided an evolutionary benefit through escape from
adaptive conflict; gene duplication allows the expression level and/or enzymatic activ-
ity of a protein to be tailored to two different conditions, where a single protein would
have to “split the difference” and would thus be imperfectly adapted to both (58). Note
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also that dosage may be more important as a current selective pressure for other
classes of duplicated genes, such as those encoding ribosomal proteins, which are
overrepresented among whole-genome duplicates (2, 24).

What kinds of adaptive conflict might drive isozyme differentiation? One conflict is
between affinity and speed (Km versus kcat), as exemplified by the hexose transporters.
Another kind of conflict arises from differing allosteric regulatory requirements, as
exemplified by the pyruvate kinases. Allosteric regulation of pyruvate kinase by
fructose-1,6-bisphosphate (FBP) is conserved from bacteria (67) to human (68). Re-
cently, it has been recognized that ultrasensitive (i.e., cooperative) activation by FBP
enables pyruvate kinase activity to turn “on” and “off” in a switch-like manner in
response to glucose availability (60). In bacteria, similar allosteric activation has also
been observed for not only pyruvate kinase but also the other main PEP-consuming
enzyme, PEP carboxykinase (56). Such switch-like regulation facilitates growth in oscil-
lating glucose environments and prevents futile cycling in gluconeogenic ones. It is
problematic, however, for substrates that enter metabolism via lower glycolysis. They
must rely on simultaneous “downward” flux through pyruvate kinase on the one hand
and on “upward” flux through fructose-bisphosphate aldolase to produce 6-carbon
sugars on the other. “Downward” flux requires high levels of FBP to activate pyruvate
kinase, while “upward” flux requires low levels of FBP to render net FBP formation by
aldolase thermodynamically favorable. Here, we show that the solution involves ex-
pression of PYK2, whose activity does not depend on high FBP levels.

It is notable that even though the differential allosteric regulation characteristics of
CDC19 and PYK2 have been known for 20 years, and despite extensive interest in
pyruvate kinase isozymes due to the strong association of the mammalian pyruvate
kinase M2 isozyme with cancer (69), no functional role for PYK2 had been previously
identified. Indeed, a recent competitive fitness study assaying more than 400 growth
conditions revealed a growth phenotype under at least one condition for 97% of yeast
genes but did not find any fitness defect for the pyk2Δ deletion (16).

Another study (70) expressed both CDC19 and PYK2 from nonnative promoters to
tune pyruvate kinase function experimentally, concluding that lower pyruvate kinase
activity was accompanied by an increase in oxidative metabolism and oxidative stress
resistance. This is in line with previous reports indicating that lower growth rates, such
as the authors show occur with pyruvate kinase downregulation, induce both respira-
tion and stress-protective machinery in yeast (20, 71) which includes intracellular
glutathione, an important antioxidant (72). However, that work did not describe a
specific functional role for PYK2 and did not provide experimental evidence explaining
the retention of PYK2 in wild-type yeast. Here, we demonstrated that the Pyk2p protein
product specifically, and not Cdc19p, is important for efficient growth on three-carbon
substrates.

Despite decades of research on yeast physiology, dihydroxyacetone was identified
as a sole carbon source for S. cerevisiae only in 2003 (52). Further, even though glycerol
is a commonly used nonfermentable carbon source in yeast biology, it has almost
always been used in rich or extensively supplemented media, which contain other
potential carbon sources (51). A full understanding of the role of yeast isozymes in
central metabolism will likely go hand in hand with a more complete understanding of
potential modes of carbon metabolism. More generally, many functions of yeast
metabolic genes and enzymes may become manifest only when growth and viability
are studied in a wider variety of environments. Because prolonged propagation on
glucose may have led to the loss of certain metabolic capabilities (e.g., xylose catab-
olism) in laboratory yeast strains (73), study of natural isolates may also be important.

An important dichotomy in our findings is that between the conditions that control
isozyme expression and those in which isozymes are functionally important. A similar
duality between the genes induced under a particular condition and the genes
necessary for growth in that condition has been previously observed (74–76). Here, we
found that expression of a large subset of isozymes is controlled by glucose availability
and, indeed, experimentally confirmed that two “minor” isozymes play important roles
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when glucose is minimally available or absent. Yet this broad characterization in terms
of gene expression belies the much more complex and specific functional roles for
these isozymes. For example, ACO2 is expressed at the highest levels in the presence
of glucose and yet ACO2 is functionally important only when glucose is scarce: this
indicates that its expression under high-glucose conditions actually reflects preparation
for future times when glucose is limiting. Similarly, the absence of glucose induces
expression of PYK2, and yet PYK2 is useful only in the case of carbon sources that feed
into lower glycolysis, bypassing the metabolite (and key allosteric regulator) fructose-
1,6-bisphosphate. Thus, a set of isozymes render yeast central carbon metabolism more
flexible, allowing a small number of fundamental transcriptional states to produce
optimal enzyme activities across a broad range of potential environmental conditions.

MATERIALS AND METHODS
Identifying metabolic isozymes of the same compartment. Our criteria for identifying isozymes

relevant to our study were as follows. (i) The proteins had to perform the same reaction. We drew our
initial list of protein pairs meeting these criteria from the reconstructed metabolic model of Saccharo-
myces cerevisiae iLL672 (3). (ii) The proteins had to have the same small molecules as products and
reactants, as detailed in the Yeast Pathway Database (25); we therefore excluded, for example, the
protein mannosyl-O-transferases PMT1 to PMT6, since these enzymes have different proteins as sub-
strates. (iii) We included only isozymes annotated as preferring the same cofactors (e.g., NADP� versus
NAD�) in the Saccharomyces Genome Database (77). (iv) We considered only those isozymes whose
products and reactants were in the same subcellular compartment (i.e., excluding transporters). (v) We
excluded isozymes that were annotated to different compartments (e.g., mitochondria versus cytosol)
(78) (24 pairs). Our final list comprised 53 isozyme pairs and 85 genes in total, some having two or more
partners (e.g., the three glyceraldehyde-3-phosphate dehydrogenases TDH1, TDH2, and TDH3).

To test whether the pathways were enriched for isozymes, the pathways were drawn from the Yeast
Pathway database (25) and then combined into the categories shown in Fig. S1 in the supplemental
material. (In testing “central carbon metabolism,” we included all reactions from “glycolysis, gluconeo-
genesis, fermentation,” “pentose phosphate pathway,” and “TCA cycle.”) The proportion of reactions
catalyzed by isozymes in each category was calculated, and the two-tailed Fisher’s exact test was used
to establish significance (Table S1).

Assessing anticorrelation of metabolic isozymes. (i) Processing of gene expression data.
Microarray data from the Gene Expression Omnibus (GEO) (79) and SPELL (27) were downloaded,
processed, and divided into single-experiment data sets as described in Text S1 in the supplemental
material. We then constructed an m � n binary matrix of anticorrelation B such that the value
corresponding to each entry bm,n was 1 if gene pair m was anticorrelated at a significance threshold q
value of �0.1 in data set n. The B matrix was sorted by columns from most to least anticorrelation
(�m bm,n); the top 10 data sets with the most highly anticorrelated pairs are listed in Table S2. To
determine whether the isozyme pairs separated naturally into multiple groups, B was also clustered
using partitioning around medoids (PAM) with k � 3 clusters, yielding two coherent clusters (Text S1).

(ii) Comparison of isozymes with other types of proteins. We compared the levels of differential
expression of isozymes with other pairs of genes. Lists of genes in protein complexes came from a
high-throughput pulldown/mass spectrometry assay; only “core” complexes (i.e., sets of proteins that
copurified most often) were used (80). We then computed the proportion of arrays in which a given gene
pair was differentially expressed, pm � ��n bm,n�⁄n. Here, as described above, the value corresponding to
bm,n was 1 if the value for correlation rx,y,d was significantly less than 0 at a q value of 0.1 (81) and was set
to 0 otherwise; row m corresponds to gene pair (x, y), and column n corresponds to data set d. The
distributions of pm values were compared via the nonparametric two-tailed Kolmogorov-Smirnov test.

(iii) Testing differential expression within data set clusters. For the cluster data sets, per-gene
standard deviations were computed for every set. Missing values in the resulting m � n matrix, with m
as the number of genes and n as the number of data sets, were imputed using KNNimpute with 10
neighbors (82), discarding first genes and then data sets with more than 70% missing values. Standard
deviations were logged after adding a constant equal to half the smallest standard deviation in a given
data set. Next, the matrix was first subjected to column normalization (i.e., mean-subtracted and divided
by standard deviation) and then to row normalization to ensure that genes or data sets with larger
dynamic ranges did not dominate the clustering. This is an approach related to that described by
Tavazoie et al. (83).

To ensure the robustness of the clustering, consensus k-means clustering (35) was then performed
for k ranging from 2 to 50. Briefly, in this consensus clustering, 125 subsamples of the original matrix were
generated, sampling 80% of the rows and 80% of the columns. These subsamples were clustered via
k-means, and the resulting clusterings were converted into a “consensus matrix” giving the proportion
of subsamples in which two data sets clustered together; this consensus matrix was then hierarchically
clustered and cut to give k groups. For each value of k, Akaike information criterion (AIC) was calculated
[i.e., RSS(k) � 2Mk, where RSS is the residual sum of squares with k clusters and M is the length of each
vector] (84). AIC was then minimized, yielding k � 16 clusters.
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To test for specificity of differential expression within data set clusters, for each isozyme pair �i1,i2�
and cluster of data sets C, we stipulated two criteria. First, we required that the average normalized
correlation of the pair �i1,i2� tended to be negative in data sets d within the cluster C as follows:

1

|C|
�
d�C

atanh�ri1,i2,d���Nd � 3� � 0

Here, ri1,i2 is the Pearson correlation of isozymes i1 and i2, and Nd is the number of observations in data
set d. atanh is the hyperbolic arctangent function, used to perform a Fisher z-transform.

Second, we tested whether the normalized correlation of the pair zi1,i2,d � atanh�ri1,i2,d���Nd�3�
tended to be less within the cluster than outside it, i.e., zi1,i2,�d�C��zi1,i2,�d�C�, using a one-tailed rank sum
test. P values for this test were corrected according to the q value method of Storey and Tibshirani (81),
and a cutoff q value of �0.1 was applied.

Strain construction, media, and growth conditions. (i) Strains. Prototrophic aco2� and pyk2�
deletion strains were provided by David Hess and Amy Caudy from their prototrophic deletion collection
(85). The final prototrophic deletion strains had the genotype MAT� yfgΔ::KanMX can1�::STE3pr-SpHIS5
his3Δ0 lyp1Δ, where yfg represents either aco2, pyk2, or ho (for the wild type). For the rescue experiments
(Fig. 5E and F), either wild-type CDC19 or cdc19-E392A was introduced into the native PYK2 promoter
using the delitto perfetto allele replacement method (54). Starting with DBY12000, a MATa HAP1-positive
(HAP1�) and GAL2� derivative of FY4 (86, 87), PYK2 was knocked out using the pCORE construct, which
contains an antibiotic resistance cassette (KanMX) and a counterselectable marker (URA3); selection for
resistance to Geneticin yielded a pyk2Δ::CORE strain. URA3 was then knocked out to allow use of the
counterselectable marker. CDC19 (wt or E392A) was then amplified using primers with overhangs
homologous to this construct. The resulting PCR products were then transformed into the pyk2Δ::CORE
knockout, and transformants were selected based on loss of the counterselectable marker (i.e., resistance
to 5-fluoroorotic acid [5-FOA]), yielding pyk2Δ::CDC19 and pyk2Δ::cdc19-E392A strains in a ura3Δ back-
ground. Finally, these strains were mated to a strain with wild-type URA3; sporulation and dissection
yielded a fully prototrophic strain with the genotype MATa pyk2Δ::CDC19(wt/E392A). Strains were
compared to the DBY12000 wild-type parent strain.

(ii) Medium recipes. Minimal media for batch cultures were prepared using 6.7 g/liter yeast nitrogen
base (YNB; Difco) and an appropriate carbon source. The final concentrations of carbon sources were 20
g/liter for glucose (YNB-glucose), 100 g/liter for trehalose per Jules et al. (45) (YNB-trehalose), 20 g/liter
each for glycerol and ethanol (YNB-glycerol/ethanol), and 9 g/liter (100 mM) for dihydroxyacetone per
Boles et al. (49) (YNB-DHA). Minimal media for chemostats were prepared according to the glucose-
limited chemostat medium (CM-glucose) recipe reported previously by Dunham and Mitchell (88); for
DHA-limited chemostats (CM-DHA), 8 mM DHA was substituted for 8 mM glucose. Synthetic glycerol
medium (glycerol/CSM-Arg-Asp.) was prepared using YNB without ammonium and 3% glycerol, plus the
following nitrogen bases and L-amino acids: 10 mg/liter adenine, 20 mg/liter His, 50 mg/liter Ile, 100 mg/
liter Leu, 50 mg/liter Lys, 20 mg/liter Met, 50 mg/liter Phe, 100 mg/liter Thr, 50 mg/liter Trp, 50 mg/liter
Tyr, 20 mg/liter uracil, and 140 mg/liter Val.

(iii) Batch cultures. Wild-type (hoΔ) and isozyme deletion (aco2Δ and pyk2Δ) strains were struck out
on yeast extract-peptone-dextrose (YPD). For growth curve analyses, a different colony was picked for
each biological replication, placed into YNB-glucose, and grown overnight. Overnight cultures were then
set back in YNB-glucose for at least one doubling period. For growth curve analyses on glucose, the
cultures were then set back such that the optical density at 600 nm (OD600) was close to 0.1. For growth
curve analyses on YNB-trehalose and YNB-dihydroxyacetone, log-phase cultures grown in glucose were
set back into media containing either trehalose or dihydroxyacetone and allowed to double at least twice
in the new medium; cultures were then set back to an OD600 of 0.1 to start the growth curve analysis.
For the experiment measuring final density on glycerol/CSM-Arg-Asp., cultures were inoculated into
synthetic dropout (SD) media, washed 3� in YNB without ammonium, and then set back to an initial
OD600 of 0.05 in glycerol/CSM-Arg-Asp.; the final OD600 was measured after 16 days.

(iv) Chemostat cultures. Wild-type and isozyme deletions were struck out onto a YPD plate and then
inoculated in CM-glucose (for glucose-limited chemostats) or in minimal medium with YNB, dihydroxy-
acetone, and 0.05% glucose (CM-DHA-glucose, for DHA-limited chemostats). For CM-DHA-glucose
experiments, the cultures grown overnight were allowed to grow an additional day. The cultures grown
overnight were then used to inoculate one chemostat per strain/medium combination, with media
limited for either glucose or for dihydroxyacetone (see medium recipes). Batch mode proceeded for 1
day for glucose-limited chemostats and 3 days for DHA-limited chemostats. The working volume of each
chemostat was 300 ml. After the batch mode step, pumps were turned on such that the dilution rate was
approximately 0.018/h. Mean and median cell volume and cell number levels were assayed using the
Coulter counter. Each chemostat was sampled four times for each of the metabolites after Coulter
counter readings, and the medium pH levels were stabilized.

Metabolite sampling and normalization. (i) Metabolite pool size sampling from chemostats.
Metabolites were sampled according to the procedure described previously by Crutchfield et al. (89). A
5-ml volume of chemostat culture was filtered, and metabolism was immediately quenched using 1.5 ml
of �20°C 40:40:20 acetonitrile (ACN)-MeOH-H2O. Samples were then concentrated by drying with
nitrogen gas and subsequent resuspension in 100% high-pressure liquid chromatography (HPLC) water.
These samples were then analyzed via reversed-phase ion-pairing liquid chromatography coupled to a
Thermo Fisher Scientific Exactive instrument with high mass accuracy, allowing untargeted analysis (90,
91). Samples were collected in quadruplicate. Medium filtrate samples were analyzed using two triple-
quadrupole mass spectrometers, one running in positive mode (Finnigan TSQ Quantum Ultra) that was
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coupled to hydrophilic interaction liquid chromatography (HILIC) (92) and one in negative mode (TSQ
Quantum Discovery Max) that was coupled to reversed-phase ion-pairing liquid chromatography (93) as
previously described (72).

Data were normalized by total cell volume as described previously by Boer et al. (72) and then log
transformed. In Fig. 4 and 5, each sample from a deletion strain was compared to the corresponding
wild-type sample run immediately before. In Fig. S5, the data were similarly normalized for run order
(which was not confounded with either strain background or nutrient limitation). Briefly, a linear model
represented by y � ax 	 b 	 
 was fitted to each metabolite vector y, using run order as the regressor
x. The residuals (
) were then kept and visualized as a heat map, after subtracting the average levels of
metabolites in the wild-type strain under conditions of glucose limitation.

(ii) Metabolite labeling experiments. Metabolites were labeled by transferring cultures into media
with either [U-13C]glycerol and [U-12C]ethanol or [2-13C]EtOH and [U-12C]glycerol. Labeled substrates
were provided by Cambridge Isotopes. After 8 h of growth in the labeled medium, metabolism was
quenched, and extracts were then concentrated 3� and analyzed with LC-MS as described above. Three
biological replicates were sampled per strain and condition. Isotope labeling patterns were corrected for
natural abundance and impurity of the tracer (�1% 12C) using the least-squares method.

Data availability. The source code used to perform the analyses is available from http://www
.bitbucket.org/pbradz/isozymes. Steady-state metabolite ion counts are provided in Data Set S1 and Data
Set S2 in the supplemental material.
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