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ABSTRACT

Background: Secretome refers to the total set of molecules secreted or surface-shed by stem 
cells. The limitations of stem cell research have led numerous investigators to turn their 
attention to the use of secretome instead of stem cells. In this study, we intended to reinforce 
antifibrotic properties of the secretome released from adipose-derived stem cells (ASCs) 
transfected with miR-214.
Methods: We generated miR-214-transfected ASCs, and extracted the secretome 
(miR214-secretome) from conditioned media of the transfected ASCs through a series of 
ultrafiltrations. Subsequently, we intravenously injected the miR-214-secretome into mice 
with liver fibrosis, and determined the effects of miR-214-secretome on liver fibrosis.
Results: Compared with that by naïve secretome, liver fibrosis was ameliorated by 
intravenous infusion of miR-214-secretome into mice with liver fibrosis, which was 
demonstrated by significantly lower expression of fibrosis-related markers (alpha-smooth 
muscle actin, transforming growth factor-β, and metalloproteinases-2) in the livers as well 
as lower fibrotic scores in the special stained livers compared with naïve secretome. The 
infusion of miR-214-secretome also led to lesser local and systemic inflammation, higher 
expression of an antioxidant enzyme (superoxide dismutase), and higher liver proliferative 
and synthetic function.
Conclusion: MicroRNA-214 transfection stimulates ASCs to release the secretome with 
higher antifibrotic and anti-inflammatory properties. miR-214-secretome is thus expected 
to be one of the prominent ways of overcoming liver fibrosis, if further studies consistently 
validate its safety and efficiency.
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INTRODUCTION

Liver fibrosis ultimately leads to adverse consequences, such as liver cirrhosis, portal 
hypertension, hepatocellular carcinoma, and hepatic failure, making it a major cause of 
mortality and morbidity worldwide.1 Advanced liver fibrosis exhibits the accumulated 
extracellular matrix (ECM) constituents, such as collagen, proteoglycan, and laminin, in 
the liver parenchyma.2,3 In response to chronic liver injuries, macrophages and platelets 
release transforming growth factor-β (TGF-β) that is a potent activator of hepatic stellate 
cells (HSCs).3 Subsequently, activated HSCs transdifferentiate into myofibroblastic cells that 
then participate in synthesis and reorganization of connective tissue, becoming a principal 
producer of ECM components.4-6 However, the detailed molecular mechanisms underlying 
liver fibrosis are very intricate and still largely unknown.

MicroRNA (miRNA) refers to a small non-coding RNA molecule containing about 20 to 
24 nucleotides that function in RNA silencing and post-transcriptional regulation of gene 
expression. MicroRNAs are incorporated into an RNA-induced silencing complex via 
complementary base-pairing within mRNA molecules. Consequently, these mRNA molecules 
are silenced, thereafter moving to the targeted site wherein they play a role in translational 
inhibition or destabilization of the target mRNA molecule. MicroRNAs act as essential 
players in a number of diseases, including liver fibrosis7-12; they participate in the process of 
liver fibrosis, by either promoting or inhibiting it.13-15

We have performed several in vitro and in vivo experiments to find a way to ameliorate liver 
diseases using secretome.16-21 Secretome herein refers to the total set of molecules secreted 
or surface-shed by stem cells. The reasons why we used secretome instead of stem cells 
include 1) the instability of stem cells, such as the potential of malignant transformation, 
2) proven mechanism of action of stem cells that is secretome-mediated, and 3) the easy 
accessibility of secretome. As a means of enhancing the therapeutic potential of secretome, 
we had attained the secretome from adipose-derived stem cells (ASCs) that had been 
transfected with miR-214.22-26 In general, miR-214 is known to exhibit an antifibrotic effect 
by inhibiting connective tissue growth factor (CCN2) that promotes the activation of HSCs.22 
However, several studies also reported that miR-214 promotes HSCs, thereby prompting 
liver cirrhosis.22,24 The pathophysiological roles of miR-214 in liver fibrosis remain largely 
unknown. In this study, we hypothesized that the secretome released from miR-214-
transfected ASCs (miR-214-secretome) exhibits higher antifibrotic potential than that of 
naïve secretome in the mouse model of liver fibrosis.

METHODS

Preparation of cells
The lipoaspirated fat was digested by 0.1% collagenase (Sigma-Aldrich, St. Louis, MO, USA) 
in saline and collected after centrifugation. Cells were plated into culture flask in low-glucose 
Dulbecco's Modified Eagle's Medium (DMEM; Thermo Fisher Scientific, Waltham, MA, USA) 
supplemented with 10% FBS (Thermo), 100 U/mL of penicillin (Thermo), and 0.1 mg/mL of 
streptomycin (Thermo). ASCs were incubated at 37°C in humidified chamber containing 5% 
carbon dioxide and medium was changed every 3 days.
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Transfection of miR-214 into ASCs
ASCs were transfected with miRNA-214 (miR-214; Exiqon, Germatown, MD, USA) using 
Lipofectamine RNAiMAX Reagent (Thermo) in medium per well. After 72 hours of 
transfection, the cells were morphologically observed by the inverted microscope. The cell 
numbers were counted with an automatic cell counter (Countess; Invitrogen, San Diego, 
CA, USA) using trypan blue solution. Transfected cells were processed for cell phenotyping 
or differentiated into adipogenic and osteogenic progenitor cells. For the characterization 
of cells, the immunophenotypes of naïve or transfected ASCs were determined by flow 
cytometry analysis (Cytomics FC500 flow cytometer; Beckman Coulter, Fullerton, CA, USA) 
using FITC-conjugated CD31, CD45, and CD73 antibodies and PE-CD105 antibodies (BD 
Pharmingen, San Jose, CA, USA). Isotype controls were performed with antibodies against 
IgG for samples. For the identification of multilineage differentiation potential, ASCs were 
cultured in STEMPRO® differentiation media (adipogenesis and osteogenesis differentiation 
kits; Gibco, Carlsbad, CA, USA) for 3–4 weeks. The cells were stained with Oil Red O or 
Alizarin Red for the identification of lipid vesicles (in adipocytes) and calcium deposits (in 
osteocytes), respectively. Nucleus visualization was accomplished with DAPI counterstaining. 
The cells were analyzed with a FASC Canto II (BD Biosciences, San Jose, CA, USA).

Design of animal study
We used five-week male BALB/c mice (Orient Bio, Seongnam, Korea) in this study. We then 
compared the effects of the MCM in an in vivo model of thioacetamide (TAA)-induced hepatic 
fibrosis model. The in vivo model was generated by subcutaneous injection of TAA (200 mg/
kg, three times a week for 5 weeks) into the mice. The mice were intravenously infused with 
normal saline (0.1 mL of saline; n = 14), control secretome (0.1 mL equivalent of the 25-fold 
concentrated secretome obtained from 105ASCs after 24 hours culture in serum-free medium, n 
= 14), or miR-214-secretome (0.1 mL equivalent of the 25-fold concentrated serum-free medium 
obtained from 105ASCs transfected with miR-214, n = 14) once a week for 2 weeks, respectively.

Real-time quantitative PCR
Total cell RNA was extracted using TRIzol reagent (Invitrogen) according to the 
manufacturer's instructions. Reverse transcription was performed with 1 μg RNA using 
RT-Premix kit (TOYOBO, Osaka, Japan) according to the manufacturer's instructions. The 
primers used for SYBR Green real-time quantitative (q) PCR were as follows: TGF-β1, forward  
5′-CCCCACTGATACGCCTGAGT-3′ and reverse 5′-AGCCCTGTATTCCGTCTCCTT-3′; MMP-2 
forward 5′-CAGGGAATGAGTACTGGGTC-3′ and reverse 5′-ACTCCAGTTAAAGGCAGCAT-3′;  
α-SMA forward 5′-CCAGAGCAAGAGAGGGATCC-3′ and reverse 5′-TGTCGTCCCAGTTGGT 
GATG-3′; GAPDH, forward 5′-CGACTTCAACAGCAACTCCCACTCTTCC-3′ and reverse 
5′-TGGGTGGTCCAGGGTTTCTTACTCCTT-3′. The reaction was performed using an 
Applied Biosystems Step one plus Real-Time PCR system (Thermo). After normalization 
to the GAPDH gene, the expression levels for each target gene were calculated using the 
comparative threshold cycle method. The data are presented as the mean ± standard 
deviation (SD) from three independent experiments.

Western blot analysis
Liver specimens obtained from mice were lysed using the EzRIPA Lysis kit (ATTO Corporation; 
Tokyo, Japan), and quantified by Bradford reagent (Bio-RadHercules, CA, USA). Proteins 
were visualized by western analysis using the following primary antibodies (1:1,000 dilution) 
at 4°C overnight and then with HRP-conjugated secondary antibodies (1:2,000 dilution) for 
1 hour at 25°C. From Cell Signaling Technology (Beverly, MA, USA), we obtained primary 
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antibodies against PCNA (proliferating cell nuclear antigen), TGF-β1 (transforming growth 
factor-β1), α-SMA (alpha-smooth muscle actin), TIMP-1 (Metallopeptidase inhibitor 1), 
MMP-2 (Matrix Metallopeptidase-2), β-actin, and horseradish peroxidase (HRP)-conjugated 
secondary antibody. Specific immune complexes were detected using the Western Blotting 
Plus Chemiluminescence Reagent (Millipore, Bedford, MA, USA).

Enzyme-linked immunosorbent assay (ELISA)
Blood samples were collected from each mouse, centrifuged for 10 minutes at 9,500 g, and 
serum was collected. The concentrations of mouse interleukin (IL)-6 and tumor necrosis 
factor (TNF)-α were measured by sandwich ELISA (Biolegend, San Diego, CA, USA) according 
to the manufacturer's instructions.

Special staining including Immunohistochemistry
Masson's trichrome staining and Sirius red staining were performed using the Sirius red 
staining kit and Masson's trichrome staining kit (Polysciences, Warrington, PA, USA), 
respectively, according to the manufacturer's protocol. For immunohistochemistry (IHC) 
analysis, formalin-fixed, paraffin-embedded tissue sections were deparaffinized, rehydrated 
in an ethanol series and subjected to epitope retrieval using standard procedures. Antibodies 
against of α-SMA, superoxide dismutase (SOD), and albumin (all from Cell Signaling 
Technology, MA, USA) were used for IHC staining. The samples were then examined under a 
laser-scanning microscope (Eclipse TE300; Nikon, Tokyo, Japan) to analyze the expression of 
these antibodies.

Statistical analysis
All data were reported using means ± SD. Statistical analysis was performed using SPSS (Ver. 
11.0; SPSS Inc., Chicago, IL, USA). Statistical comparison among groups was determined using 
Kruskal-Wallis test. Probability values of P < 0.05 were regarded as statistically significant.

Ethics statement
Human ASCs were obtained from lipoaspirated fat with informed consent of the volunteers. 
This research was approved by Institutional Review Board (IRB No. 700069-201407-BR-002-
01) of Hurim BioCell Co. Ltd. (Seoul, Korea). Animal studies were carried out in compliance 
with the guidelines of the Institute for Laboratory Animal Research, Korea (IRB No: CUMC-
2018-0175-01).

RESULTS

Determination of stability of miR-214-transfected ASCs
Fig. 1A shows the schematic illustration of this study. We obtained miR-214-secretome 
from conditioned media in which miR-214-transfected ASCs had been cultured for 48 
hours. Subsequently, we planned to intravenously infuse the miR-214-secretome into the 
mice with liver fibrosis, and to determine the effects of miR-214-secretome on liver fibrosis. 
We first intended to determine the stability of miR-214-transfected ASCs. To achieve this 
goal, we determined surface marker expression and multilineage differentiation ability 
of the miR-214 transfection ASCs. Transfecting miR-214 into ASCs did not alter the gross 
morphology of cultured ASCs (Fig. 1B). Similar to non-transfected ASCs, the miR-214 
transfection ASCs expressed mesenchymal stem cell markers (CD73 and CD105) and did not 
express hematopoietic stem cell markers (CD31 and CD45) (Fig. 1C). Finally, we successfully 
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differentiated miR-214-transfected ASCs into adipocytes and osteocytes, demonstrating the 
preserved multilineage differentiation potential of ASCs following miR-214 transfection (Fig. 1D).

Antifibrotic effects of the miR-214-secretome in mice with liver fibrosis
Here, we intended to determine antifibrotic effects of miR-214-secretome in the mice with 
liver cirrhosis (n = 21) as well as those with preserved liver function (n = 21). The mouse 
model of liver fibrosis was established by subcutaneous injection of TAA (200 mg/kg) three 
times a week for 5 weeks. Subsequently, the mice in each group were intravenously infused 
with normal saline (n = 14), control secretome (200 mg/kg; n = 14), or miR-214-secretome 
(200 mg/kg; n =14) once a week for 2 weeks. The mice were euthanized for obtaining the 
specimens on the seventh day post-infusion.

We first performed RT-PCR using the liver specimens for the determination of the RNA 
expression of fibrosis-related markers, such as α-SMA, TGF-β, and MMP-2 in each group  
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Fig. 1. Determination of stability of miR-214-transfected ASCs. (A) A schematic illustration of study concept. microRNA-214 secretome is obtained from 
conditioned media in which miR214-transfected ASCs were cultured for 48 hours. Subsequently, we intravenously infused miR-214-secretome into mice with liver 
fibrosis, and determined the effects of miR-214-secretome on liver fibrosis. (B) Comparison of gross morphology between ASCs either or not transfected with 
miR-214. Transfecting miR-214 into ASCs did not alter the gross morphology of cultured ASCs. (C) Flow cytometry analysis of expressions of surface markers on 
ASCs transfected with miR-214. The miR-214-transfected ASCs were negative for CD31 and CD45 (hematopoietic stem cell markers) and positive for CD73 and 
CD105 (mesenchymal stem cell markers), similar to non-transfected ASCs. (D) Validation of preserved differentiation potential after transfecting ASCs with miR-
214. Adipogenic (Left) and osteogenic (Right) differentiation of miR-214-transected ASCs was identified using Oil Red O and Alizarin red stains, respectively (Scale 
bars = 200 µm). Values are presented as mean ± standard deviation of three independent experiments. 
ASCs = adipose-derived stem cells, MCM = the secretome released from miR-214-transfected ASCs, HSC = hepatic stellate cell. 
*P < 0.05.
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(Fig. 2A). Although level of these markers increased significantly in the fibrotic liver 
specimens, the infusions of either naïve secretome or miR-214-secretome into the mice with 
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Fig. 2. Antifibrotic effects of the miR-214-secretome in mice with liver fibrosis. The mice with or without liver fibrosis were intravenously infused with normal saline, 
control secretome, or miR-214-secretome two times a week for 1 week. (A) RT-PCR results demonstrating mRNA expression levels of α-SMA, TGF-β1, and MMP-2 in 
liver specimens of each group. The infusions of either naïve secretome (CM) or miR-214-secretome (MCM) into mice with liver fibrosis significantly reduced the RNA 
expression of these markers. miR-214-secretome groups showed significantly reduced expression of MMP-2 compared with naïve secretome group. (B) Results of 
western blot analysis demonstrating the effects of miR-214-secretome on the expression of various markers in mice with liver fibrosis. The infusion of the miR-214-
secretome induced higher expression of PCNA, which reflects hepatocyte proliferation, as well as lower expression of fibrosis-related markers (α-SMA, TIMP-1, 
TGF-β1, and MMP-2) in the liver specimens than naïve secretome. Values are presented as mean ± standard deviation of three independent experiments. 
α-SMA = alpha-smooth muscle actin, CM = the secretome obtained from ASCs after 48-hour incubation, MCM = the secretome released from miR-214-transfected 
ASCs, TGF-β = transforming growth factor-β, MMP-2 = metalloproteinases-2, PCNA = proliferating cell nuclear antigen, TIMP-1 = tissue inhibitor of metalloproteinases-1. 
*P < 0.05.
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liver fibrosis significantly reduced the RNA expression levels of these markers (P < 0.05). 
There was no significant difference in RNA expression levels of α-SMA and TGF-β between 
naïve secretome and miR-214-secretome groups. However, miR-214-secretome groups showed 
significantly reduced expression of MMP-2 compared with naïve secretome group (P < 0.05).

Next, we performed western blot analysis for comparing the levels of various markers in 
each group, including a proliferation marker (PCNA) and fibrosis-related markers (α-SMA, 
TIMP-1, TGF-β, and MMP-2) (Fig. 2B). Although the expression of PCNA was decreased in the 
fibrotic liver specimens, it was significantly increased in both secretome groups (P < 0.05). In 
addition, we found that the expression of fibrosis-related markers was significantly decreased 
after the infusions of either naïve secretome or miR-214-secretome into mice with liver 
fibrosis (P < 0.05). While comparing the two secretome groups, miR-214-secretome group 
significantly decreased the expression of all the fibrosis-related markers compared with that 
in naïve secretome group (P < 0.05).

Effects of miR-214-secretome on the liver enzymes and systemic inflammation
We performed serological analyses using blood samples on the seventh day post-infusion to 
compare the serum levels of AST and ALT in each group (Fig. 3A). Serum levels of AST and 
ALT were significantly elevated in mice with liver fibrosis; however, infusion of either kinds 
of secretome significantly reduced the elevated levels of AST and ALT (P < 0.05). Especially, 
miR-214-secretome significantly decreased serum levels of AST and ALT compared to that by 
naïve secretome (P < 0.05).

We next performed ELISA using blood samples on the seventh day post-infusion to compare the 
serum levels of pro-inflammatory cytokines, such as IL-6 and TNF-α, in each group (Fig. 3B). In 
mice with liver fibrosis, secretome infusions significantly reduced serum levels of IL-6 and TNF-α 
compared with saline infusion (P < 0.05). Especially, miR-214-secretome infusion induced the 
most significant reduction of these cytokines (P < 0.05).

Effects of miR-214-secretome on the histology of the liver
To compare histological changes in each group, we performed various staining procedures 
reflecting the degree of inflammation and fibrosis, such as hematoxylin and eosin (HE), 
Masson's trichrome, and Sirius red staining. HE stains demonstrated that, although 
inflammation driven by TAA deranged the histological architecture of the liver, infusion 
of either kinds of secretome significantly recovered it (Fig. 4A). When comparing both 
secretome groups, miR-214 group exhibited higher degree of recovery from inflammation. 
Masson's trichrome and Sirius red stains demonstrated the superior antifibrotic activities 
of secretome infusions (P < 0.05). Between two secretome groups, miR-214-secretome 
group showed significantly higher amelioration of fibrosis compared to that by the control 
secretome group (P < 0.05) (Fig. 4B and C).

Effects of miR-214-secretome on immunohistochemical staining of the liver
For further elucidation of the role of miR-214-secretome, we performed the IHC staining of 
the liver specimens using antibodies reflecting fibrosis (α-SMA), antioxidant activity (SOD), 
and liver synthetic function (albumin). With respect to α-SMA IHC staining, infusion of miR-
214-secretome significantly reduced the expression of α-SMA compared to saline infusion 
(P < 0.05) (Fig. 5A). With respect to SOD IHC, infusion of miR-214-secretome increased the 
expression of SOD compared to saline infusion (P < 0.05) (Fig. 5B). With respect to albumin 
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IHC staining, infusion of miR-214-secretome significantly increased the expression of 
albumin compared to that by saline infusion (P < 0.05) (Fig. 5C).

DISCUSSION

In this study, we intended to validate the superior antifibrotic potential of miR-214-
secretome over naïve secretome in mice with liver fibrosis. We first generated the ASCs that 
had been transfected with antifibrotic miR-214, and extracted the miR214-secretome from 
conditioned media of the transfected ASCs through a series of ultrafiltrations. Liver fibrosis 
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Fig. 3. Effects of miR-214-secretome on liver enzymes and systemic inflammation. (A) Serological analysis using blood samples on seventh day post-infusion for 
the comparison of the serum levels of AST and ALT in each group. Infusion of either kinds of secretome significantly reduced the elevated levels of AST and ALT in 
the mice with liver fibrosis. Particularly, miR-214-secretome (MCM) significantly decreased serum levels of AST and ALT than naïve secretome (CM). (B) Results of 
ELISA using blood samples on seventh day post-infusion for the comparison of the serum levels of pro-inflammatory cytokines, such as IL-6 and TNF-α, in each 
group. In mice with liver fibrosis, secretome infusions significantly reduced serum levels of IL-6 and TNF-α than saline infusion. Of them, miR-214-secretome 
infusion induced the most significant reduction of these cytokines. Values are presented as mean ± standard deviation of three independent experiments. 
CM = the secretome obtained from ASCs after 48-hour incubation, MCM = the secretome released from miR-214-transfected ASCs, AST = aspartate transaminase, 
ALT = alanine transaminase, IL-6 = interleukin 6, TNF-α = tumor necrosis factor-α. 
*P < 0.05.
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was ameliorated by intravenous infusion of miR-214-secretome into mice with liver fibrosis, 
which was demonstrated by significantly lower expression of fibrosis-related markers as well 
as lower fibrotic scores of special liver stains in the livers infused with miR-214-secretome than 
the livers infused with naïve secretome. The infusion of miR-214-secretome also led to the 
lesser local and systemic inflammation, higher expression of an antioxidant enzyme (SOD), 
and higher proliferative and synthetic functions of the liver. Taken together, we speculated 
that miR-214 transfection into ASCs led to reconditioning ASCs to release the secretome with 
higher antifibrotic and anti-inflammatory properties than those of naïve secretome.
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Numerous investigators have turned their attention from stem cells to secretome after 
recognizing the limitations of stem cell research. Although still attractive due to its 
intrinsic advantages, stem cell research presents several challenges, including immune-
mediated rejection, senescence-induced genetic instability or loss of function, and limited 
cell survival.26 Moreover, the major obstacle in the clinical application of stem cells is 
the possibility of malignant transformation.27-31 Meanwhile, accumulating evidence has 
indicated that secretome released from stem cells exhibits similar potential as stem cells 
because the principal action of stem cells is mediated by the secretome.32-39 Our previous 
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experiments using secretome also demonstrated that secretome has similar, at least not 
inferior, therapeutic potential as stem cells in ameliorating hepatic failure.17-21,40

Utilizing secretome from ASCs is one of the highly attractive ways of conducting stem cell 
research because adipose tissue itself is also considered as an endocrine organ. Mature 
adipocytes secrete a variety of proteins, collectively called adipokines, including adiponectin, 
leptin, plasminogen activated inhibitor 1, resistin, visceral adipose tissue-derived serine protease 
inhibitor (vaspin), and several proinflammatory cytokines.41-47 Moreover, ASCs are expected 
to be superior to mature adipocytes in terms of the number and concentration of secretory 
proteins. Lee et al.48 analyzed the components of human ASC secretome that had been induced 
by TNF-α using liquid chromatography–mass spectrometry. They identified 187 secretory 
proteins, including IL-6, IL-8, CXCL6 and MCP-1, cathepsin L, matrix metalloproteases, protease 
inhibitors, and pentraxin 3, all of which are known to be important mediators of inflammatory 
and immunomodulatory responses. They also revealed that the components and levels of these 
mediators vary according to the stimulatory duration and concentration of TNF-α.

There are two ways of applying secretome for a variety of disease models: without processing 
it and with processing it. It can lead to favorable and productive consequences to use 
secretome without processing. Moreover, the use of secretome without processing is worth 
considering because the components of secretome considerably vary according to its external 
environment that can be easily modified. We have attempted several ways of harnessing 
stem cells to release secretome with desired components, including hypoxic conditioning, 
chemical conditioning using lipopolysaccharides, and stimulating stem cells with pathogenic 
materials.17,18,20 Here, we validated a novel way of stimulating ASCs to release secretome 
with desired components via transfecting ASCs with miRNAs that had been implicated in the 
pathogenesis of a targeted disease.

MicroRNA-214 is one of the representative antifibrotic miRNAs known to be a direct negative 
regulator of CCN2.22 CCN2 is a complex matricellular molecule that is produced downstream 
of TGF-β signaling and directly regulates the functions of activated HSCs, including 
mitogenesis, chemotaxis, adhesion, matrigenesis, and fibrogenesis.49 Therefore, CCN2 is 
considered as an essential regulator of TGF-β signaling during the fibrotic process. Quiescent 
HSCs exhibit depressed level of CCN2 because miR-214 inhibits CCN2 expression by its 
direct binding to the CCN2 3′ untranslated region (UTR).49 However, activated HSCs exhibit 
higher level of CCN2, which is related to lower level of miR-214, demonstrating reciprocal 
expressions of miR-214 and CCN2 during the progression of liver fibrosis.22

However, the role of miR-214 needs to be more clearly determined by further studies. In 
our experiments, for example, MCM showed significant antifibrotic effects on fibrotic 
liver, but not on normal liver, but increased fibrosis-related markers. For example, in our 
experiment, whereas MCM showed significant antifibrotic effects on fibrotic livers, it also 
increased the expression of fibrosis-related markers in the nonfibrotic livers, although 
statistically insignificant. This suggests that miR-214 may have a profibrotic effect in certain 
circumstances. Denby et al.50 reported that genetic deletion of miR-214 in mice significantly 
attenuated renal fibrosis induced by unilateral ureteral obstruction, suggestive of profibrotic 
effects of miR-214. In the heart, genetic deletion of miR-214 led to increased fibrosis through 
repression of sodium/calcium exchanger 1 (Ncx1), a key regulator of calcium influx.51 These 
findings suggest that the pathological role of miR-214 in fibrosis could be different according 
to organs and individual environment.
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Until now, miR-214 had been investigated exclusively with respect to HSCs.22-26 In this study, we 
first transfected miR-214 into ASCs, and investigated whether miR-214-transfected ASCs release 
the secretome with higher antifibrotic properties. Intravenous infusion of miR-214-secretome 
significantly reduced the expression of fibrosis-related markers, and reduced the serum levels 
of pro-inflammatory mediators in the in vivo model of liver fibrosis, demonstrating its superior 
antifibrotic and anti-inflammatory properties over naïve secretome. We thus speculated that 
miR-214 transfection into ASCs leads to reconditioning of ASCs to release the secretome with 
higher antifibrotic and anti-inflammatory properties than those of the naïve secretome.

We speculated that there are two ways of utilizing miR-214-secretome for clinical application. 
The first way is to deliberately refine the process of attaining miR-214-secretome for 
maximizing the antifibrotic efficiency of miR-214-secretome. The refinements include the 
determination of optimal concentration of miR-214, timing and duration of transfection 
and culturing, and whether or not to add supplementary physicochemical conditioning. 
The second way is to identify the causable factors among secretome components. Recently, 
a variety of studies have utilized proteomic approach to identify proteins the abundance 
levels of which are altered by a disease.52-54 Mass spectrometry-based proteomic analysis 
now allows for measurement of the absolute or relative abundance of thousands of proteins 
simultaneously, representing a powerful analytic tool used in numerous clinical laboratories 
worldwide. Therefore, proteomics and mass spectrometry technologies could provide a 
promising approach for direct identification of specific therapeutic proteins in secretome. 
However, it is still questionable whether it is possible to identify a few therapeutic proteins 
because therapeutic effects of secretome could be attributed to the cumulative effect of rising 
and falling concentrations of various proteins constituting the secretome.

In conclusion, our study demonstrated that miR-214 transfection into ASCs reconditioned 
ASCs to release secretome with higher antifibrotic and anti-inflammatory properties. 
Specifically, liver fibrosis was ameliorated by intravenous infusion of miR-214-secretome 
into mice with liver fibrosis, which was demonstrated by significantly lower expression of 
fibrosis-related markers in the livers as well as lower fibrotic scores in the special stained 
livers compared with naïve secretome. The infusion of miR-214-secretome also led to the 
lower degree of local and systemic inflammation, higher expression of an antioxidant enzyme 
(SOD), and higher liver proliferative and synthetic functions. MicroRNA-214-secretome is 
thus expected to be a potential agent that can be used for overcoming liver fibrosis, if future 
studies can validate its safety and efficiency in preclinical experiments and clinical trials.
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