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Background: Axillary lymph node (ALN) metastasis is seen in encapsulated papillary carcinoma (EPC), 
mostly with an invasive component (INV). Radiomics can offer more information beyond subjective 
grayscale and color Doppler ultrasound (US) image interpretation. This study aimed to develop radiomics 
models for predicting an INV of EPC in the breast based on US images.
Methods: This study retrospectively enrolled 105 patients (107 masses) with a pathological diagnosis of 
EPC from January 2016 to April 2021, and all masses had preoperative US images. Of the 107 masses, 64 
were randomized to a training set and 43 to a test set. US and clinical features were analyzed to identify 
features associated with INVs. Then, based on the manually segmented US images to obtain radiomics 
features, the models to predict INVs were built with 5 ensemble machine learning classifiers. We estimated 
the performance of the predictive models using accuracy, the area under the receiver operating characteristic 
(ROC) curve (AUC), sensitivity, and specificity.
Results: The mean age was 63.71 years (range, 31 to 85 years); the mean size of tumors was 23.40 mm 
(range, 9 to 120 mm). Among all clinical and US features, only shape was statistically different between EPC 
with INVs and those without (P<0.05). In this study, the models based on Random Under Sampling (RUS) 
Boost, Random Forest, XGBoost, AdaBoost, and Easy Ensemble methods had good performance, among 
which RUS Boost had the best performance with an AUC of 0.875 [95% confidence interval (CI): 0.750–
0.974] in the test set.
Conclusions: Radiomics prediction models were effective in predicting the INV of EPC, whereas clinical 
and US features demonstrated relatively decreased predictive utility.
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Introduction

Encapsulated papillary carcinoma (EPC) accounts for 
less than 2% of all breast cancers with a generally good 
prognosis (1). EPC is often accompanied by an in situ or 
invasive component (INV) (2). EPC has an axillary lymph 
node (ALN) metastasis rate of 1.1–18.8% (3,4). Clinical 
management of EPC may be altered depending on the 
presence of an INV (5-7). Core needle biopsy is an accurate 
and commonly used modality to diagnose preoperative 
pathology of breast cancer. However, it has been reported 
that the accuracy of core needle biopsy for EPC is low 
(33.3%), and even the accompanying INV failed to be 
diagnosed in 60% of cases (3). The presence of an INV in 
EPC impacts treatment, however, preoperative biopsy is not 
always accurate.

Ultrasound (US) is an important screening modality 
for breast cancer. Previous studies (3,8,9) have shown that 
EPC often presents as a complex cystic and solid mass 
with circumscribed margin, oval to round shape, and 
abundant blood flow within the parenchymal component or 
papillary structures. US has a diagnostic accuracy of 62.0% 
for EPC (3). Hassan et al. (7) suggested that EPC with 
uncircumscribed margins predict postoperative pathology 
with invasion, but core needle biopsy failed to diagnose it. 
Speer et al. suggested that an irregular mass is more often 
associated with the diagnosis of invasive EPC (8). However, 
no US imaging features have been demonstrated to 
differentiate in situ versus invasive EPC (8,10). Therefore, 
studies on INVs of EPC are few and limited to descriptive 
studies, and there is still a gap in predictive studies. 

Radiomics is a high-throughput process of extracting a 
large number of quantitative imaging features from digital 
medical images and converting them into high-dimensional, 
mineable data (11). A radiomics approach can surpass the 
limitations of US images that are limited to subjective 
US interpretation (11). US-based radiomics has been 
increasingly developed in the diagnosis, prediction, and 
prognosis of diseases. For example, Wang et al. (12) used 
deep learning radiomics of elastography for assessing liver 
fibrosis stages, with an area under the receiver operating 
characteristic (ROC) curve (AUC) of 0.85 and above. Yu 
et al. (13) successfully developed an US-based radiomics 
nomogram to predict ALN metastasis in early-stage invasive 
breast cancer, with an AUC of 0.81. 

This study aimed to develop a radiomics model for 
predicting INVs of EPC based on US images. To the best 
of our knowledge, this is the first article related to the study 

of breast EPC using a radiomics approach. 

Methods

Patients

A total of 111 patients (113 masses) were consecutively 
included in this retrospective study from January 2016 
to April 2021. All masses were diagnosed as EPC by 
surgical pathology and underwent preoperative breast 
US examinations in Fudan University Shanghai Cancer 
Center. The inclusion criteria were as follows: (I) EPC, 
and (II) visible on US examinations. A total of 6 patients 
were excluded, 3 due to having undergone breast surgery 
in other hospitals, 2 because they only exhibited a small 
amount of EPC (focal area), and 1 because of invisibility 
on US examinations. Finally, 107 masses (105 patients) 
were enrolled for analysis. In a ratio of 3:2, 64 masses were 
randomly assigned to a training set (52 EPC without INV; 
12 EPC with INV) and 43 masses were assigned to a test set 
(36 EPC without INV; 7 EPC with INV).

This retrospective study was conducted in accordance 
with the Declaration of Helsinki (as revised in 2013). The 
study was approved by the Ethics Committee of Fudan 
University Shanghai Cancer Center (No. 2107238-18), and 
the requirement for individual consent for this retrospective 
analysis was waived. 

Clinicopathological features

Clinicopathological data were obtained from medical 
records including age, palpable ALN, ALN metastasis, the 
status of human epidermal growth factor receptor 2 (HER2), 
estrogen receptor (ER), progesterone receptor (PR), and 
histological type. 

ER or PR positivity refers to immunohistochemistry 
(IHC) staining ≥1% (14). HER2 positivity is determined 
by any of the following tests: (I) immunohistochemistry 3+, 
or complete and intense member staining >30% of invasive 
cancer cells; (II) HER2/CEP17 ratio >2.2/2.0 measured by 
fluorescence in situ hybridization test; and (III) HER2 gene 
copy number >6.0 signal/nucleus by chromogenic in situ 
hybridization (15,16). 

US image acquisition

US images were obtained using several machines, such as 
SuperSonic Aixplorer US scanner (Supersonic Imagine 



Quantitative Imaging in Medicine and Surgery, Vol 13, No 10 October 2023 6889

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6887-6898 | https://dx.doi.org/10.21037/qims-22-1069

S.A., Aix en Provence, France) with a 7–15 MHz linear 
transducer, GE Logiq E9 (GE Healthcare, Waukesha, WI, 
USA) with a 6–15 MHz linear transducer, Toshiba Aplio 
500 (Toshiba Medical Systems Corporation, Tochigi, Japan) 
with a 5–10 MHz linear transducer. US screening was 
conducted by several radiologists who have 3–20 years of 
respective experience. 

US image processing and analysis

US features analysis
All US images underwent independent and blinded review 
by 2 radiologists and were evaluated based on the Breast 
Imaging-Reporting and Data System 5th edition (17). If 
the radiologists had inconsistent results, an agreement was 
reached by consensus. Vascularity was evaluated according 
to Adler’s index (0, I, II, or III) (18), and 0, I for less flow, 
II, III for abundant flow. Since 8 masses did not have color 
Doppler US images, only 99 masses were included.

Region of interest segmentation
Breast masses segmentation was manually delineated along 
the boundary of the entire lesion by a radiologist with 6-year 
experience using freely available software (LabelMe; https://
github.com/airsimonhan/label-for-dicom-ima).

Feature extraction and selection
A total of 461 radiomics features were extracted from the 
region of interest (ROI) of each US image. The features 
include 16 self-made shape features, 16 self-made histogram 

features, 19 self-made texture features, 23 gray-level co-
occurrence matrix (GLCM) features, 13 gray-level run-
length matrix (GLRLM) features, 13 gray-level size zone 
matrix (GLSZM) features, 5 neighborhood gray-tone 
difference matrix (NGTDM) features, and 356 wavelet 
features. All radiomics features used mutual information for 
univariate features selection and 30 features were selected 
for building prediction models. The names of the selected 
features can be found in Table 1.

Data sampling and building of radiomics models
If our imbalanced dataset is directly used to train the 
radiomics model, the model will predict all inputs into the 
majority class (EPC without INV) to maximize the accuracy 
of the prediction. The minority class (EPC with INV) is 
usually more important in clinical situations. Therefore, 
we need to improve the capability of the radiomics model 
to discriminate the minority class, and data resampling can 
solve the problem of classes imbalance.

SMOTEENN (19) was used to perform data sampling 
for the features in the training set. It is a method combing 
over-sampling and under-sampling using synthetic minority 
oversampling technique (SMOTE) and edited nearest 
neighbors (ENN). During the data sampling, firstly 
SMOTE increases the examples in the minority class by 
randomly interpolating between the examples. Then, if the 
class label of one example differs from the class of at least 
2 of its 3 nearest neighbors, ENN will remove it from the 
dataset. In general, SMOTEENN reduces the gap between 
the numbers of examples in the 2 classes and increases the 
between-class distance. As a result, the classifier can more 
easily find the decision boundary between 2 classes, thus 
improving the prediction performance.

We used 5 ensemble machine learning classifiers to build 
radiomics models for predicting EPC with INV, including 
XGBoost, AdaBoost, Balanced Random Forest, Easy 
Ensemble, and Random Under Sampling (RUS) Boost. We 
established the new training set after data sampling using 
SMOTEENN. The classifiers were trained on the new 
training set and evaluated on both the original training set 
and the test set.

The radiomics flow chart is shown in Figure 1.

Statistical analysis

All data were analyzed using SPSS version 20 (IBM Corp., 
Armonk, NY, USA). To determine related clinical and US 
features with INVs of EPC, continuous variables were 

Table 1 INVs-related radiomics features 

Feature type Feature name

Shape feature Entropy of normalized radius histogram

Diameter of equivalent circle

Grayscale feature Histogram range

Boundary-based 
texture features

Standard deviation of annular region

Variance contrast of inside and outside

GLRLM Low gray

GLSZM High gray-level zone emphasis

NGTDM Complexity

Wavelet features 22 features

INV, invasive component; GLCM, gray-level co-occurrence 
matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level 
size zone matrix; NGTDM, neighbor gray tone difference matrix.

https://github.com/airsimonhan/label-for-dicom-ima
https://github.com/airsimonhan/label-for-dicom-ima
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analyzed using the t-test or Mann-Whitney U test, whereas 
categorical variables were analyzed using the chi-square or 
Fisher’s exact test. This study estimated the performance 
of the radiomics models using accuracy (ACC), AUC, 
sensitivity (SENS), and specificity (SPEC). Statistical 
significance was considered when P<0.05.

Results

Clinical and pathological characteristics

Within a total of 105 patients, 5 were male and 100 were 
female. The mean age was 63.71 years (range, 31 to  
85 years); the mean size of tumors was 23.40 mm (range, 9 
to 120 mm). Of 107 masses, 88 presented EPC without INV, 
19 EPC with INV. A total of 70 masses (65.4%) presented 
isolated EPC (Figure 2), 18 EPC with carcinoma in situ (17 
ductal carcinomas in situ, 1 intraductal papillary carcinoma), 
19 EPC with INV [14 invasive ductal carcinoma (Figure 3), 
3 with synchronous invasive ductal carcinoma and ductal 
carcinoma in situ, 1 invasive carcinoma with neuroendocrine 
differentiation, 1 invasive cribriform carcinoma]. Some 
65 masses (68.4%) presented luminal A, followed by 

luminal B (28 masses, 29.5%), and only 2 masses were 
triple-negative breast cancer. We were unable to subtype  
12 masses due to HER2 score 2+ and without a fluorescence 
in situ hybridization test. Axillary ultrasonography showed 
no suspicious ALNs in all patients. Of the patients who 
underwent ALN management, 4 had ALN metastases. 

EPC patients with INV had a slightly younger mean 
age and were less likely to be postmenopausal than EPC 
patients without INV (61.32 vs. 64.23 years, 73.7% vs. 
78.0%) (Table 2). EPC with INV had more luminal B 
subtype, whereas EPC without INV had slightly more 
luminal A subtype.

Age, tumor size on US, family history of breast 
cancer, palpable ALN, and menopausal status were not 
significantly different between EPC with and without INV 
and between the training set and test set. The details of 
clinicopathological features are shown in Table 2.

US features between EPC without invasive carcinoma and 
EPC with invasive carcinoma

This study only presented hypoechoic and complex cystic 
and solid echo patterns. The most common features of EPC 

ACC

AUC

SENS

SPEC

Radiomics
model

Mutual
information

Feature
selection

Data
sampling

Performance
evaluation

Data
collection

Tumor
segmentation

ROI
crop

Feature
extraction

Dataset
split

TrainingTesting

Test set
N=43

Train set
N=64

Radiomics
features

Shape
Histogram

Texture
GLCM
GLRLM
GLSZM
Wavelet

XGBoost

AdaBoost

BRF

RUS Boost

Easy ensemble

SMOTEENN

Figure 1 Workflow for radiomics modeling. ACC, accuracy; AUC, area under the receiver operating characteristics curve; SENS, 
sensitivity; SPEC, specificity; ROI, region of interest; GLCM, gray-level co-occurrence matrix; GLRLM, gray-level run length matrix; 
GLSZM, gray-level size zone matrix. 
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were enhanced or combined posterior acoustic features 
and no accompanying signs of ductal dilatation (both 
89.8%). The following common features of EPC were the 
absence of calcification (86%), parallel orientation (83.2%), 
uncircumscribed margin (64.5%), abundant flow (63.6%), 
complex cystic and solid echo pattern (60.7%), and irregular 
shape (53.3%). 

A total of 15 EPC cases with INV (79.0%) demonstrated 
an irregular shape, whereas those without INV were 
significantly more likely to have an oval to round shape 
(52.3%). The shape was statistically significant between 
EPC with INV and those without (P=0.031). There were 
no statistically significant differences in other US features 
between the 2 groups. All details are shown in Table 3.

Radiomics models based on US images for predicting 
invasive carcinoma in the breast EPC

Of 461 radiomics features, 30 were related to INVs of EPC. 
Among the clinical and US features studied, only irregular 
shape was significantly associated with INV. However, since 
shape features were also included in the radiomic features, 
which overlap with those on US, irregular shape was not 
included in the final models. We used five ensemble machine 
learning classifiers to develop models, and RUS Boost had the 
best performance with AUC [95% confidence interval (CI)], 
ACC, SENS, and SPEC of 0.867 (0.753–0.96), 0.766, 0.917, 
and 0.731 in the training set, and 0.875 (0.750–0.974), 0.814, 
0.857, and 0.806 in the test set, respectively (Figures 4,5).  
In addition, the models built by Random Forest, XGBoost, 

A B C

Figure 2 US and pathological images of EPC. (A,B) Images show a pure EPC in a 43-year-old woman. In the upper inner and outer 
quadrants of the right nipple, there were several complex cystic and solid echoic lesions, size 20 mm × 11 mm × 17 mm, 7 mm × 4 mm,  
6 mm × 4 mm, with parallel orientation, round shape, circumscribed margins, and internal echo heterogeneity. Color Doppler US showed 
no obvious blood flow. (C) The pathological image of EPC (hematoxylin and eosin stain, ×10). US, ultrasound; EPC, encapsulated papillary 
carcinoma.

A B C

Figure 3 US and pathological images of EPC with frank invasion. (A,B) Images show an EPC with invasive ductal carcinoma in a  
63-year-old woman. In the upper outer quadrant of the right breast, there was an isoechoic nodule, size 40 mm × 28 mm × 34 mm, with 
parallel orientation, irregular shape, circumscribed margins, and internal heterogeneity with a small area of cystic cells. Color Doppler 
US showed strips of blood flow signal detected at the margins and internally, one of which has a RI of 0.76. (C) EPC with frank invasive 
carcinoma and invasive carcinoma (non-special type) adjacent to EPC (hematoxylin and eosin stain, ×10). US, ultrasound; EPC, encapsulated 
papillary carcinoma; RI, resistance index. 
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Table 2 Clinicopathological features and baseline of all cases, training set, and test set

Features
All cases 
(N=107)

EPC Set

Without INV 
(N=88)

With INV 
(N=19)

χ2/U/t P value
Training set 

(N=64)
Test set 
(N=43)

χ2/U/t P value

Age (years) 63.71±11.98 64.23±11.62 61.32±13.59 0.961 0.339 53 [45, 61] 53 [46, 61] −0.237 0.813

Tumor size on US (mm) 21 [16, 26] 20.0 [16, 25] 25 [18, 32] −1.942 0.052 20 [15, 26] 20.0 [15, 26] −1.963 0.050

Menopausal status† 0.167 0.683 0.297 0.586

Premenopausal 23 (22.8) 18 (22.0) 5 (26.3) 13 (21.0) 10 (25.6)

Postmenopausal 78 (77.2) 64 (78.0) 14 (73.7) 49 (79.0) 29 (74.4)

Family history of breast cancer 0.585 0.444 0.410 0.522

No 83 (77.6) 67 (76.1) 16 (84.2) 51 (79.7) 32 (74.4)

Yes 24 (22.4) 21 (23.9) 3 (15.8) 13 (20.3) 11 (25.6)

Palpable ALN 1.132 0.287 3.459 0.063

No 102 (95.3) 83 (94.3) 19 (100.0) 63 (98.4) 39 (90.7)

Yes 5 (4.7) 5 (5.7) 0 (0.0) 1 (1.6) 4 (9.3)

Breast tumor management – – – –

Partial mastectomy/breast 
conserving surgery

64 (59.8) 57 (64.8) 7 (36.8) 36 (56.3) 28 (65.1)

Total mastectomy 43 (40.2) 31 (35.2) 12 (63.2) 28 (43.7) 15 (34.9)

ALN management – – – –

SLNB 50 (46.7) 39 (44.3) 11 (57.9) 30 (46.9) 20 (46.5)

ALN dissection 8 (7.5) 5 (5.7) 3 (15.8) 7 (10.9) 1 (2.3)

None 49 (45.8) 44 (50.0) 5 (26.3) 27 (42.2) 22 (51.2)

ALN metastasis‡ – – – –

No 54 (93.1) 42 (95.5) 12 (85.7) 35 (94.6) 19 (90.5)

Yes 4 (6.9) 2 (4.5) 2 (14.3) 2 (5.4) 2 (9.5)

Subtypes§ – – – –

Luminal A 65 (68.4) 53 (69.8) 12 (63.2) 36 (64.3) 29 (74.4)

Luminal B 28 (29.5) 21 (27.6) 7 (36.8) 19 (33.9) 9 (23.0)

TN 2 (2.1) 2 (2.6) 0 (0.0) 1 (1.8) 1 (2.6)

Age in groups of all cases, EPC with INV and EPC without INV is presented as mean ± standard deviation, age in the training/test set 
and tumor size on US as median [interquartile range], and other features as number (frequency). †, 5 patients were male, 1 patient was 
unknown menopausal status, so there were only 101 masses; ‡, 49 patients did not undergo axillary lymph node surgery; §, 12 masses 
could not be subtyped due to HER2 score 2+ but no fluorescent in situ hybridization test. EPC, encapsulated papillary carcinoma; INV, 
invasive component; US, ultrasound; ALN, axillary lymph node; SLNB, sentinel lymph node biopsy; TN, triple negative. 
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Table 3 US features between EPC without INV and EPC with INV in 107 cases

Features EPC without INV (N=88), n (%) EPC with INV (N=19), n (%) χ2 P value 

Shape 6.931 0.031

Oval 10 (11.4) 2 (10.5)

Round 36 (40.9) 2 (10.5)

Irregular 42 (47.7) 15 (79.0)

Orientation 0.654 0.419

Parallel 72 (81.8) 17 (89.5)

Not parallel 16 (18.2) 2 (10.5)

Margin 2.110 0.146

Circumscribed 34 (38.6) 4 (21.1)

Uncircumscribed 54 (61.4) 15 (78.9)

Echo pattern 1.621 0.203

Hypoechoic 37 (42.0) 5 (26.3)

Complex cystic and solid 51 (58.0) 14 (73.7)

Posterior acoustic features 0.630 0.427

No changes and shadowing 10 (11.4) 1 (5.3)

Enhancement and combined 78 (88.6) 18 (94.7)

Calcifications 0.234 0.629

No 75 (85.2) 17 (89.5)

Yes 13 (14.8) 2 (10.5)

Vascular† 0.101 0.751

Less flow 30 (35.7) 6 (40.0)

Abundant flow 54 (64.3) 9 (60.0)

Ductal dilatation 0.020 0.969

No 79 (89.8) 17 (89.5)

Yes 9 (10.2) 2 (10.5)
†, only 99 patients had color Doppler flow imaging images. US, ultrasound; EPC, encapsulated papillary carcinoma; INV, invasive 
component. 

AdaBoost, and Easy Ensemble had moderate or good 
performance. The performance assessment indicators of the 
radiomics model are demonstrated in Table 4.

Discussion 

This study showed that grayscale and color Doppler US 
had limited predictive value in identifying an INV of EPC, 
with only shape predicting an INV. In contrast, various 
radiomics methods were able to predict the INV of EPC 

with high predictive performance. In this study, the mean 
age and tumor size on US were similar to those in another 
Chinese study sample of 111 EPC cases (63.71 vs. 62 years; 
23.40 vs. 22.5 mm) (3).

This study showed that the vast majority of EPC 
showed posterior acoustic enhancement and the absence of 
calcification, and more than half showed abundant blood 
flow, uncircumscribed margins, consistent with previous 
studies (3,8). However, this study showed that more than 
half of the EPC had irregularly shaped masses (53.3%), 
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Figure 4 The confusion matrix of five radiomics models for predicting INVs of EPC in the test set. (A) Confusion matrix of XGBoost 
method; (B) confusion matrix of AdaBoost method; (C) confusion matrix of Balanced Random Forest method; (D) confusion matrix of Easy 
Ensemble method; (E) confusion matrix of RUS Boost method. The number 1 refers to EPC with INV and 0 refers to EPC without INV. 
The color bar represents the number of masses corresponding to the predicted cases. INV, invasive component; EPC, encapsulated papillary 
carcinoma; RUS, Random Under Sampling. 

Figure 5 ROC curves of five radiomics models for predicting INVs of EPC. The AUC of XGBoost (blue lines), AdaBoost (orange 
lines), Balanced Random Forest (green lines), Easy Ensemble (red lines), and RUS Boost (purple lines) in the training (A) and test (B) set, 
respectively. ROC, receiver operating characteristic; INV, invasive component; EPC, encapsulated papillary carcinoma; AUC, area under 
the ROC curve; RUS, Random Under Sampling.
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which differed from the aforementioned suggestion 
that EPCs are mostly oval to round (57–65%) (3,8). We 
speculate that this discrepancy may be sample biased. In 
addition, this study found that EPC with INV showed more 
irregular shape, uncircumscribed margin, and enhanced 
or combined posterior acoustic feature compared to EPC 
without INV. Notably, a statistically significant difference 
in shape between EPC with and without INV was observed 
in this study. Speer et al. (8) indicated a higher likelihood of 
an INV in core needle biopsies of irregularly shaped EPC 
tumors, somewhat supporting the above findings. One of 
the more distinctive US features of EPC previously reported 
was that occasional hemorrhage in the cystic component 
may produce a fluid-debris level (9), however, tumors 
with higher histological grade are more likely to exhibit 
hemorrhagic necrosis (20). This may be partially explained 
by that EPCs with INV have an increased manifestation 
of cystic-solid mixed echogenicity and combined posterior 
acoustic features compared to EPC without INV.

In recent years, radiomics has been increasingly 
integrated with US, widely in breast cancer diagnosis, 
differential diagnosis, and molecular marker prediction. 
Previously, two-dimensional (2D) US-based radiomics 
features have been shown to have better efficacy in 
classifying breast cancer (AUC >0.9) (21,22) as well as in 
differentiating phyllodes tumors or triple negative breast 
cancer from fibroadenoma (23,24) or identifying the 
presence of microinvasion in ductal carcinoma in situ (25). 
There were also elastography-based radiomics studies 
with good breast cancer identification efficacy, including 
shear wave elastography radiomics with AUC of 0.917 (22)  
and strain US radiomics with AUC of 0.917 (26). The 
investigators also successfully explored the correlation of 

biological features in ultrastructural breast cancer, finding 
significant associations of quantified US features with 
hormone receptor status, molecular subtype, histological 
grade, Ki-67, and P53 (27,28). Compared to breast 
magnetic resonance images (MRI), US radiomics has been 
less studied because of the relative difficulty in extracting 
features due to the low resolution of US, the blurred 
boundaries of some lesions, the irregularity of the imaged 
area, the high level of noise, and the high level of operator 
dependency. However, the development of MRI has be 
somewhat limited because of its high price and imaging 
complexity. US is widely used in clinical diagnosis because 
of its low price and rapid imaging. With the development 
of radiomics algorithms, including the use of new machine 
learning and deep learning algorithms, and the construction 
of US image homogenization algorithms, the development 
of US will continue to advance in the future.

To the best of our knowledge, this study is the first 
to use a radiomics approach to predict the presence or 
absence of accompanying INVs in EPC. In this study,  
30 radiomics features related to INVs were selected from 
a large number of radiomics features (n=461), including 
7 categories of shape, grayscale, boundary-based texture, 
wavelet features, GLRLM, GLSZM, and NGTDM. The 
best performing model was based on RUS Boost, which had 
good performance in both training and test sets, with AUCs 
(95% CI) of 0.867 (0.753–0.961) and 0.875 (0.750–0.974), 
respectively. The 4 remaining methods also had good 
predictive power with an AUC in the test set of 0.843–0.855. 
Therefore, the prediction ACC of several radiomics models 
developed in this study was higher than 0.767 for INV, 
which was significantly higher than that of core needle 
biopsy (40%). The present study showed that radiomics 

Table 4 Performance of the radiomics models based on US images for predicting invasive carcinoma in the breast EPC

Model 
Training set Test set

ACC AUC (95% CI) SENS SPEC ACC AUC (95% CI) SENS SPEC

XGBoost 0.750 0.885 (0.797–0.967) 0.917 0.712 0.791 0.855 (0.724–0.952) 0.714 0.806 

AdaBoost 0.750 0.870 (0.771–0.962) 0.917 0.712 0.767 0.845 (0.696–0.960) 0.714 0.778 

Balanced Random Forest 0.797 0.938 (0.866–0.990) 1.000 0.750 0.791 0.845 (0.693–0.962) 0.857 0.778 

Easy Ensemble 0.766 0.867 (0.771–0.960) 0.917 0.731 0.791 0.843 (0.679–0.967) 0.714 0.806 

RUS Boost 0.766 0.867 (0.753–0.961) 0.917 0.731 0.814 0.875 (0.750–0.974) 0.857 0.806

US, ultrasound; EPC, encapsulated papillary carcinoma; ACC, accuracy; AUC, area under receiver operating characteristic curve; CI, 
confidence interval; SENS, sensitivity; SPEC, specificity; RUS, Random Under Sampling.
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methods have a significant advantage in the prediction of 
INVs and several radiomics methods demonstrated high 
predictive accuracy. Thus, it suggested that US images 
contain microscopic features that reflect the pathological 
component, which can be explored and provided to the 
clinic using the radiomics approach.

The current treatment modality for EPC is surgical wide 
excision. However, it has also been suggested that treatment 
needs to consider its accompanying components. When 
cases with an INV are present, more attention needs to be 
paid to the incision margins and vigilant scanning of the 
ALNs to avoid missing suspicious ALNs or other important 
features. Ultimately, it has the potential to advance 
individualized patient care and reduce the need to consider 
additional procedures such as re-resection or sentinel lymph 
node biopsy due to the presence of an INV.

Our study has some limitations. First, the study was 
conducted retrospectively. Since US images were performed 
by several examiners and obtained from several US 
machines, image homogeneity was poor. However, given 
that future clinical applications will also be performed with 
different radiologists and US machines, this deficiency 
reflects real-world clinical practice with varied image 
quality. Of course, considering that the acquisition of 
radiomics features is greatly influenced by the quality of the 
images, it is still necessary to standardize the acquisition 
criteria of US images as much as possible in the future, 
including grayscale, depth, and cross-section, and also to 
increase the number of images saved to make the extracted 
features more stable and avoid outliers. Liu et al. (29) 
designed a 3 normalization module to normalize multicenter 
data. Therefore, image processing can also be performed 
using image normalization algorithms to homogenize 
images from different sources before studying them, which 
may reduce the influence of the subjectivity of US images 
to some extent. Second, this study was conducted in a 
single-center and lacked an external validation set. After we 
develop a unified image standard, we will continue to add 
cases from other hospitals in the future to train the model 
to improve accuracy and stability.

Conclusions

The US-based radiomics model has good performance in 
predicting EPC with an INV and can provide additional 
information to clinicians when determining the treatment 
management for EPC.
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