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Nutritional disorders have become a major public health issue, requiring

increased targeted approaches. Personalized nutrition adapted to individual

needs has garnered dramatic attention as an e�ective way to improve

nutritional balance and maintain health. With the rapidly evolving fields of

genomics and nutrigenetics, accumulation of genetic variants has been

indicated to alter the e�ects of nutritional supplementation, suggesting

its indispensable role in the genotype-based personalized nutrition.

Additionally, the metabolism of nutrients, such as lipids, especially omega-3

polyunsaturated fatty acids, glucose, vitamin A, folic acid, vitamin D, iron,

and calcium could be e�ectively improved with related genetic variants. This

review focuses on existing literatures linking critical genetic variants to the

nutrient and the ways in which these variants influence the outcomes of

certain nutritional supplementations. Although further studies are required in

this direction, such evidence provides valuable insights for the guidance of

appropriate interventions using genetic information, thus paving the way for

the smooth transition of conventional generic approach to genotype-based

personalized nutrition.

KEYWORDS

personalized nutrition, nutritional supplementation, nutrient, genotype, single

nucleotide polymorphisms, nutrigenetics

Introduction

Nutrition disorders, such as obesity, cardiovascular disease, and diabetes, primarily

driven by the unhealthy diet and/or lifestyle, are the leading cause of premature deaths

worldwide (1). Adherence to dietary guidelines, with the recommended intake of specific

nutrients, is necessary for health maintenance at the population level (2). However,

this one-size-fits-all approach does not consider interindividual variations, which result
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from varying responses to nutrients owing to different

genetic predispositions, metabolic phenotypes, and microbial

compositions. Therefore, personalized nutrition, which is

adapted to individual needs, has been proposed to meet

this challenge.

The concept of “personalized” or “precision” has been

widely used since the Precision Medicine Initiative was

launched in the United States in 2015 (3). Similar to

precision medicine, personalized nutrition refers to the

use of unique information about an individual to tailor

nutritional interventions, including advice, products,

and services, to assist them to gain improved health

benefits than those derived using generic, population-based

approaches. With the advances in “omics,” such as genomic,

transcriptomic, proteomic, metabolomics, microbiome and

data technology, personalized nutrition has gradually become

a reality (4, 5). Among them, genomics has evolved to

the post-genomic era, and genomic information has been

widely used to tailor personalized nutrition for certain

nutritional supplementations, yielding the interdisciplinary

science called nutrigenetics. According to the International

Society of Nutrigenetics/Nutrigenomics (ISNN), the future

of personalized nutrition should include three levels: “(1)

conventional nutrition based on general guidelines for

population groups by age, gender, and social determinants;

(2) individualized nutrition that adds phenotypic information

about the current nutritional status of individuals, and (3)

genotype-directed nutrition based on rare or common gene

variations” (6). This statement highlights future efforts from

general dietary guidelines to stratified and genotype-based

personalized approaches.

Genotype-based nutritional intervention has been evidently

useful for individuals with genetic defects and has helped

them effectively improve their health (7), especially for

individuals with rare genetic disorders such as phenylketonuria,

galactosemia, and vitamin D-resistant rickets (8). Till date,

with the aid of candidate-gene approaches or genome-

wide association studies (GWAS), several single nucleotide

polymorphisms (SNPs) have been identified to have influence

over the absorption, distribution, metabolism, excretion, and

signal transduction of macronutrients and micronutrients

(9–12). In this regard, a few genotypes have been further

highlighted to discriminate individuals based on sensitivity to

certain nutritional interventions, expanding the understanding

of the implementation of personalized nutrition (13–20).

In this review, we summarize the critical genotypes that

influence the levels of macronutrients and micronutrients

and provide the evidence that genotypes may interact with

nutritional supplementation or diet to alter nutritional response

or disease risk (Figure 1; Table 1). The aim of this review

is to provide insights into the use of nutritional genotypes

to guide individuals to determine appropriate nutritional

supplementation and ultimately achieve optimal health benefits.

Genotype-based supplementation of
macronutrients

Lipids and ApoE polymorphism

Lipids are an essential class of hydrophobic biomolecules

that include phospholipids, sterols, and triglycerides (TG). They

are involved in maintaining energy balance, sustaining vital

processes, controlling food intake, and regulating growth and

reproduction. However, intake of excessive lipids, such as TG

and low-density lipoprotein cholesterol (LDL), may lead to an

increased risk of metabolic diseases.

Apolipoprotein (ApoE), its three isoforms, namely ApoE2,

ApoE3, and ApoE4 encoded by ε2, ε3, and ε4 haplotype,

respectively, plays key roles in the transport of cholesterol

and functioning of cholesterol and other lipids in the

brain (Figure 2A). This haplotype system comprises two

non-synonymous SNPs rs429358 (T/C) and rs7412 (T/C) in

the exon of ApoE, where ε2 haplotype is represented by TT, ε3

represented by TC, and ε4 represented by CC. Furthermore,

rs769449 exhibits strong linkage disequilibrium with rs429358

(21). The ε4 allele, contributing to impaired LDL binding,

has been positively associated with an increased risk of

numerous diseases, such as cardiovascular diseases (CVDs)

and Alzheimer’s disease (AD). A study of 544 patients with

hypertension or coronary heart disease indicated that ApoE ε4

carriers exhibited high total cholesterol, TG, and LDL levels (22).

In addition, the ApoE ε4 allele has been reported as the strongest

genetic risk factor for sporadic AD in genome-wide association

meta-analyses (9).

Evidence suggests that the genotyping for ApoE may help

develop a highly targeted approach to disease prevention.

Adherence to Mediterranean diet, a well-known healthy

dietary pattern, may lower AD related anatomical or clinical

symptoms in individuals without ε4 genotype (23). In addition,

long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) may

have a protective role in individuals without ε4 (24, 25). On

the contrary, the association of unfavorable diet with increased

disease risk in ε4 carriers has been reported. Diets high in

saturated fatty acids may increase AD risks by seven folds in

ε4 carriers than in non-carriers (26). Moreover, compared to ε4

non-carriers, afternoon snacks with a high glycemic load have

been significantly associated with cognitive decline in ε4 carriers

(13). These studies suggested that ε4 carriers might require a diet

containing healthier lipids to prevent AD onset.

Lipids and FTO polymorphism

Fat mass and obesity-associated gene (FTO), involved in the

expression of fat deposition and metabolism-related hormones

and genes, is the first gene associated with obesity. Furthermore,

SNP rs9939609, as well as the proxy SNP rs1121980 of FTO
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FIGURE 1

Overview of interactions of nutrients and genes involved in the nutritional metabolism, distribution, and signal transduction. Created with

BioRender.com.

FIGURE 2

Summary of SNPs for APOE and FADS1 in lipids synthesis or metabolism. (A) E�ect of ApoE recycling and aggregation on lipoprotein. Very

low-density lipoprotein (VLDL) containing triglycerides (TG), apolipoprotein E (encoded by ApoE), apolipoprotein B-100 (encoded by ApoB-100)

and cholesteryl ester (CE) that was synthesized in the liver and then secreted into the blood. The VLDL partially degreased by lipoprotein lipase

(encoded by LPL) and converted to intermediate-density lipoprotein (IDL). On one hand, IDL was hydrolyzed into low-density lipoprotein (LDL)

by triglyceride lipase (encoded by HTL). On the other hand, IDL and high-density lipoprotein (HDL) could mutual conversion by exchanging TG

and CE with cholesteryl ester transfer protein (encoded by CETP). In addition, nascent VLDL could be formed by acquisition of ApoE and ApoC

from HDL. (B) Overview of FADS1 and FADS2 genes in desaturation steps necessary for polyunstatured fatty acid (PUFA) biosynthesis. For

omega-6 biosynthesis, linoleic acid (LA) was absorbed from diet and converted to γ-Linoleic acid, Dihomo-γ-Linoleic acid by fatty acid synthase

2 (encoded by FAS2) and the elongase of very long chain fatty acid 5 (encoded by ELOVL5). Subsequently, the dihomo-γ-Linoleic acid was

converted into long chain highly unsaturated PUFAs, including arachidonic acid (AA), adrenic acid, 24: (4n-6), 24: 5n-6, 22:5n-6 and 22:5n-6

PUFAS by fatty acid synthase 1 (encoded by FADS1), ELOVL2 and FADS2. For Omega-3 biosynthesis, α-Linoleic acid was absorbed from diet and

converted to stearidonic acid and eicosapentanoic acid by FADS2 and ELOVL5, respectively. Subsequently, the eicosapentanoic acid was

converted into long chain highly unsaturated PUFAs, including eicosapentanoic acid (EPA), dococosapentanoic acid (DPA), 24:5n-3, 24:6n-3 and

docosahexanoic acid (DHA) by FADS1, ELOVL2 and FADS2, respectively. Created with BioRender.com.
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has been correlated with obesity and diabetes (27). Maha et al.

showed that FTO rs9939609 A/A genotype was significantly

associated with impaired fasting glucose and insulin resistance

(28). In addition, higher serum leptin and lower high-density

lipoprotein levels were observed in the homozygotes of the

FTO rs9939609 risk genotype (AA) compared to those with

the TT genotype in overweight adults (29), suggesting the

need of precise interventions for these high-risk population. In

fact, individuals genetically predisposed to obesity particularly

benefit by regulating dietary intake (30, 31) or following

personalized diet (32), suggesting a crucial role of FTO in

personalized nutrition.

n-3 PUFA and FADS polymorphism

n-3 PUFA, such as eicosapentaenoic acid (EPA) and

docosahexaenoic acid (DHA) are essential for maintaining

health by contributing to organ development, membrane

fluidity, and inflammation status. EPA and DHA can be

synthesized by desaturases and elongases through the PUFA

biosynthetic pathway, wherein fatty acid desaturase (FADS)

enzymes including FADS1 and FADS2, are rate-limiting step

enzymes (33) (Figure 2B).

GWAS on serum n-3 and n-6 PUFA showed that

FADS1/FASD2 strongly affected serum PUFA levels (8).

Additionally, Szilvia et al. demonstrated that all haplotypes

carrying the FADS1 rs174546 minor allele were associated with

lower1-5 desaturases (D5D) activity, which has been associated

with plasma long-chain PUFA and lipid levels in 1,144 European

adolescents (34). Previous studies also indicated that the FADS1

rs174546 C/T allele was an important determinant of plasma TG

concentrations (35). In addition, several other FADS1 SNPs have

been significantly associated with PUFA levels, such as rs174537

(including three variants G/G, G/T, and T/T) and rs174547

(C/T) (36–38).

Cumulative evidence suggested that the link between PUFA

intake and the risk of CVD could be altered using genetic

differences in FADS (39). In a large cohort study, α-linoleic

acid (ALA) intake was inversely associated with ischemic

stroke in rs174546 TT genotype carriers with low D5D activity

(14). Moreover, the findings that infants who received fish oil

supplements exhibited significantly higher erythrocyte DHA

levels were only noticed in homozygous for the minor rs174546

as well as other linkage disequilibrium SNPs (40). Nevertheless,

more studies are required to employ FADS1 genotyping to

personalized nutrition.

Glucose and TCF7L2 polymorphism

Glucose metabolic disorders may play an important

role in the pathogenesis of diabetes, CVD, cerebrovascular

diseases, and hypertension. SNPs in genes such as TCF7L2,

GCKR, G6PC2, and ALOX5 play an important role

altering in glucose metabolism (41–45). Among them,

Transcription Factor-7-Like-2 (TCF7L2), which belongs

to the T-cell factor/lymphoid enhancer factor (TCF/LEF)

family, is the most common susceptibility gene for type 2

diabetes mellitus (T2DM) (46). Studies have further identified

that TCF7L2 rs7903146 polymorphism was associated with

glucose homeostasis and obesity-related parameters. A meta-

analysis of 115,809 subjects indicated that TCF7L2 rs7903146

polymorphism was significantly associated with susceptibility

to T2DM (47). It was also reported that TCF7L2 rs7903146 T

allele was associated with elevated glycated-hemoglobin levels in

healthy individuals (11). Moreover, Li et al. indicated significant

associations between rs7903146 and body mass index or waist

circumference and elevated blood glucose levels (48).

The interaction of TCF7L2 and diet on glucose homeostasis

has been actively investigated. Lu et al. indicated that

TCF7L2 rs7903146 polymorphism affected glucose tolerance

and free fatty acid metabolism in adults. They also found

that monounsaturated fatty acid concentrations and percentages

were greater in females with the TT genotype than in those

with the CC genotype in oral glucose tolerance test, and

that TT carriers with high HOMA-IR exhibited significantly

higher fasting free fatty acid concentrations, lower disposition

index, and elevated glucose area under the curve than CC

carriers (15). These results indicated that TCF7L2 SNP-based

intervention can be helpful for regulating glucose levels using

dietary intervention.

Genotype-based supplementation of
micronutrients

Vitamin A and BCMO1 polymorphism

Vitamin A, a fat-soluble vitamin, is derived from two

different sources: the preformed vitamin A from animal-based

food, and carotenoids with provitamin A activity from plant-

based products (49). The conversion of β-carotene from dietary

carotenoids to retinal is the first step in the utilization of

vitamin A (Figure 3) (50). Vitamin A plays an important role

in maintaining visual function, promoting cell proliferation and

differentiation, enhancing immune function, promoting body

growth and bonemetabolism, and improving hemoglobin levels.

Vitamin A deficiency may cause dry eye, infectious diseases

such as measles, malaria, diarrhea and respiratory infections,

resulting in severe complications such as growth retardation,

anemia and even death.

β-carotene 15,15’-monooxygenase 1 (BCMO1) is the most

critical enzyme involved in retinoid metabolism (51). Leung

et al. identified two common nonsynonymous SNPs (R267S:

rs12934922; A379V: rs7501331) in the open reading frame of
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FIGURE 3

BCMO1 on transport, signaling and degradation of vitamin A metabolism. Retinol from diet is transported throughout the vasculature and

oxidized by retinol dehydrogenase 10 (encoded by RHD10) and alcohol dehydrogenases (encoded by ADHs) into retinal and then oxidized into

retinoic acid (RA) by aldehyde dehydrogenase 1A1, A2, and A3 (encoded by ALDH1A1-3). Retinal was also reversible generation to vitamin A by

short-chain dehydrogenase/reductase (encoded by DHRS3). β-carotene was another alternative pathway which conversed to retinal by

β-carotene-15,15-dioxygenase (encoded by BCMO1). Subsequently, on one hand, RA will be combined with binding to cellular retinol binding

protein 2 (CRBP2) and then activate gene expression together with retinoid-X-receptor (RXR), retinoic acid receptor (RAR) and retinoic acid

receptor element (RARE). On another hand, RA can di�use from cell and degraded by cytochrome P450 26A1 (CYP26) enzyme. Created with

BioRender.com.

BCMO1 with 42 and 24% variant allele frequencies, respectively

(52). In vitro R267S + A379V double mutant exhibited reduced

BCMO1 activity by 57%, whereas female carriers with A379V

alone or both R267S and A379V variant alleles exhibited a

reduction of 32 and 69%, respectively, in the conversion of beta-

carotene to retinol (52). Recently, in a study with 693 Filipino

children and adolescents showed that A379V TT variant was

inversely related to vitamin A status (53). These results suggested

that the polymorphisms in BCMO1 should be considered for

future vitamin A-supplementation recommendations.

Several studies have investigated plasma or tissue response

in carriers of vitamin A variants with carotenoid-rich diet.

For example, in a 3-week cross-over intervention, 23 healthy

subjects were daily provided with juices containing lycopene and

β-carotene, and then classified as strong or weak responders

based on their plasma carotenoids response profile. BCMO1

was found to modify these responses, as A/T vs. C genotype

in BCMO1 rs12934922 appeared to be associated with plasma

β-carotene changes, while BCMO2 did not show similar

effect partially due to its low frequency (54). Another study

examined 11 polymorphisms in putative genes associated with

carotenoid metabolism, and BCMO1 rs12934922 was found

to exhibit the strongest effect on carotenoid responses, with

the T-allele resulting in elevated lycopene accumulation in

plasma and prostate tissue (16). These studies suggested that

genetic variations, particularly in BCMO1 rs12934922, could

influence the degree of plasma response to dietary carotenoids,

thereby highlighting the need to examine this genotype when

considering personalized vitamin A supplementation.

Folic acid and MTHFR polymorphism

Vitamin 9, naturally occurring as folic acid, is synthesized by

plants and microorganisms. It cannot be synthesized by humans

due to the lack of a complete folate biosynthetic pathway.

Furthermore, as folic acid is involved in the biosynthesis of

nucleotides, amino acids, and certain vitamins, humans must

ingest and absorb folic acid derived from diet (55). Folate

deficiency can cause many diseases in both young and old age

(56), such as fetal pathologies, neural tube disease (57), anemia

(58), and depression (59).

As 5,10-methylenetetrahydrofolate reductase (MTHFR) is

a key enzyme in folic acid metabolism, its polymorphism

can decrease enzyme activity by 60%, resulting in disorders

associated with folate metabolism as well as a variety of other

diseases (Figure 4). Till date, 14 rare mutations with severe

enzymatic deficiencies and one mutation rs1801133 (C677T)

with a milder enzymatic deficiency in MTHFR have been

reported (60, 61). In addition, serum folic acid concentrations

were lower in individuals with the MTHFR rs1801133 TT

genotype than in individuals with the CC or CT genotypes (62).

Moreover, the risk genotype of rs1801133 has been found to

be associated with various diseases, including diabetes, CVDs,

cancer, and vascular disorders (62, 63). Several studies have also

revealed that MTHFR polymorphisms might be associated with

the elevation levels of homocysteine, thus exacerbating CVD

risk (64).

Studies on MTHFR have been successfully used to develop

disease prevention strategies. In the China Stroke Primary

Prevention Trial, the antihypertensive drug enalapril, in

addition to folic acid supplementation, significantly reduced

the risk of stroke in adults with hypertension, while MTHFR

rs1801133 TT genotype did not benefit those with low baseline

folic acid levels even upon folic acid supplementation, implying

that higher dosage of folic acid is needed for individuals at

risk of CVD with disadvantageous MTHFR genotype (17).

Interestingly, riboflavin (vitamin B2), the co-factor for MTHFR

in folate metabolism, has also been used to regulate blood

pressure (65, 66) or homocysteine levels (67), but such
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FIGURE 4

Overview of the function of MTHFR on folate metabolism. The

folic acid is reverted to dihydrofolate (DHF) and subsequently to

tetrahydrofolate (THF) by dihydrofolate reductase (encoded by

DHFR), and then THF was conversed to

methylenetetrahydrofolate (5,10-MTHF). On the other hand,

THF involved in the cycle of glycine synthesis from serine with

vitamin B6 (VB6) catalysis. Subsequently, 5,10-MTHF was

reverted to methylated tetrahydrofolate (5-MTHF) by

methylenetetrahydrofolate reductase (encoded by MTHFR) and

vitamin B2 (VB2) catalysis. 5-MTHF will be transform into THF

and participated into homocysteine-methionine cycle by

5-methyltetrahydrofolate-homocysteine methyltransferase

(encoded byMTR) and methionine synthase reductase (encoded

by MTRR) under vitamin B12 (VB12) catalysis. Created with

BioRender.com.

beneficial effects were only reported in the rs1801133 TT group,

suggesting that vitamin B2 might compensate for the loss

of MTHFR activity. In summary, these studies help improve

the implementation of more precise and effective folic acid

recommendations while consideringMTHFR polymorphisms.

Vitamin D and GC polymorphism

Vitamin D is an important fat-soluble vitamin, which is

primarily synthesized in the skin upon exposure to ultraviolet

B radiation (UVB) in sun exposure. In the circulation,

vitamin D and its products are transferred into the liver

and kidneys by vitamin D binding proteins (VDBP, encoded

by GC) (Figure 5). Vitamin D regulates the absorption of

calcium and phosphorus, maintains the levels of blood calcium

and phosphorus levels, and promotes normal bones and

teeth development. However, the widespread distribution of

VDBPs in the body indicates its unconventional role beyond

calcium and phosphorus regulation, including regulation of

cell proliferation and differentiation, synthesis, and secretion of

cytokines and other hormones. Moreover, vitamin D is critical

in preventing cancer, immune diseases, and diseases of the

endocrine system.

Several VDBP polymorphisms have been identified to affect

vitamin D levels that contribute to health outcomes (68), with

the most common polymorphisms being rs4588 and rs7041 in

GC, which may correlate with serum vitamin D levels (70, 71).

Spyridon et al. demonstrated that mothers with the CC genotype

for rs2298850 and rs4588 polymorphisms showed elevated

25(OH)D concentrations (72). Dong et al., also showed that GC

SNPs including rs17467825, rs4588, rs2282679, rs2298850, and

rs1155563, were significantly associated with maternal 25(OH)D

concentrations (73). Furthermore, a recent study confirmed the

rs4588 and rs7041 polymorphisms were more frequent in the

T2DM patients, compared to the control group (74). These

results showed that rs4588, rs7041, and other GC SNPs may be

correlated with not only serum vitamin D status but also the risk

of T2DM.

Ongoing studies have shown that genetic predisposition

related to the vitamin D metabolic pathway could modify

the response of 25(OH)D after vitamin D supplementation

or UVB exposure. Nimitphong et al. (69) reported that GC

rs4588 CC carriers exhibited an increase in 25(OH)D levels

compared to those with risk genotypes CA or AA, upon

daily vitamin D3 supplementation for 3 months; however, this

interaction was not observed for vitamin D2 supplementation.

Nonetheless, when more genes were included, the effects of

genetic variants persisted. In addition, Nissen et al. indicated

that carriers of all four risk alleles of GC rs4588 (A) and

CYP2R1 rs2060793 (G) were the least benefitted from the

consumption of vitamin D3-fortified food or UVB exposure

(73). Moreover, in a larger randomized controlled trial, Yao et al.

verified that the subjects with the risk genotype of GC exhibited

a significantly lower increase in 25(OH)D response after 20-

week vitamin D3 supplementation, and that the genetic factors,

evaluated as genetic risk score encompassing four variants

of GC, VDR and CYP2R1 genes exerted greater impact on

25(OH)D response than did non-genetic factors (75). Therefore,

these studies suggested that genetic factors, perhaps more

important than non-genetic factors, could provide valuable

insights for appropriate vitamin D recommendations, as those

with the risk genotype of GC and other vitamin D metabolism-

related genes may require increased vitamin D consumption or

UVB exposure.

Iron and TMPRSS6 polymorphism

Iron, as an essential trace element, regulates vital

physiological processes in the body, including DNA synthesis,

electron transport and oxygen transport. As iron homeostasis

and metabolism are tightly regulated, iron surplus or deficiency

can lead to various diseases (76).

Transmembrane protease serine 6 (TMPRSS6), which is

responsible for iron absorption and recycling, is critical

for iron homeostasis. GWAS have shown that TMPRSS6

variants were most associated with serum iron, soluble

transferrin receptor, and hemoglobin levels (12). Specifically, the

TMPRSS6 rs855791 T genotype with a non-synonymous amino
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TABLE 1 Summary of nutrigenetic evidence for the role of nutritional supplementation in personalized nutrition.

Nutrition Gene SNP Common
Allele

Risk
Allele

Risk
Genotype

Health issue Studies for genotype-based
personalized nutrition*

Ref

Lipid ApoE rs429358

rs7412

T

T

C

C

ε4: C/C Cardiovascular and

Alzheimer’s Disease

(1) ApoE non-ε4→ (Mediterranean diet→

↓AD risk)

(18)

(2) ApoE non-ε4→ (PUFA→ ↓cognitive

decline)

(19, 20)

(3) ApoE ε4→ (Saturated fat→ ↑AD risk) (21)

(4) ApoE ε4→ (High glycemic load snack→

↑cognitive decline)

(11)

FTO rs1121980 C T CT, TT Obesity and appetite (1) FTO rs1121980 (T) ↑(Personalized

intervention→ weight loss)

(25–27)

n-3 PUFA FADS1 rs174546 C T CT, TT Cardiovascular disease (1) FADS1 rs174546 (TT)→ (ALA→ ↓ischemic

stroke)

(12)

(2) FADS1 rs174546 (TT)→ (DHA

supplementation→ ↑erythrocyte DHA)

(35)

Glucose TCF7L2 rs7903146 C T CT, TT Diabetes and obesity (1) TCF7L2 rs7903146 (TT)→ (OGTT

→ ↑plasma free fatty acid, glucose response)

(13)

Vitamin A BCOM1 rs12934922 A T AT, TT Dry eyes, delayed growth, and

infectious diseases

(1) BCOM1 rs12934922 (A/T)↑(dietary

carotenoid→ plasma β-carotene response)

(47)

(2) BCOM1 rs12934922 (T)↑(dietary carotenoid

→ plasma and prostate carotenoid response)

(14)

Folic acid MTHFR rs1801133 C T CT, TT Fetal pathologies, neural tube

disease, anemia, hypertension

(1) MTHFR rs1801133 (TT) ↓ (folic acid

supplementation→ ↓stroke risk)

(15)

(2) MTHFR rs1801133 (TT)→ (Vitamin B2

supplementation→ ↓blood pressure)

(58, 59)

(3) MTHFR rs1801133 (TT)→ (Vitamin B2

supplementation→ ↓ homocysteine)

(60)

Vitamin D GC

CYP2R1

rs4588

rs10741657

C

A

A

G

CA, AC,

AG, GG

Rickets, osteoporosis, diabetes

mellitus, tuberculosis and

chronic obstructive

pulmonary disease

(1) GC rs4588 (A)+ CYP2R1 rs10741657 (G)

↓(UVB treatment or vitamin D3 fortified food

→ plasma 25(OH)D response)

(65)

(2) GC rs4588 (CC) ↑(VD3

supplementation→ plasma 25(OH)D

response)

(67, 68)

Fe TMPRSS6 rs855791 C T CT, TT Iron-deficiency anemia,

diabetes mellitus

(1) TMPRSS6 rs855791 (T)↓(iron

supplementation→ serum hemoglobin, iron

and ferritin response)

(69)

Ca CaSR rs17251221 A G AG, GG Nephrolithiasis, and

Alzheimer’s disease

Unknown

* For simplicity, studies were expressed as “genotype(s) modify (diet→ outcome).” For example, “BCO1-rs12934922 (A/T)↑(dietary carotenoid→ plasma carotenoid response)” means that BCO1-rs12934922 (A/T) genotype showed stronger response

to dietary carotenoid for plasma β-carotene, compared to its counterpart genotype. AD: Alzheimer’s disease; PUFA: polyunsaturated fatty acid; ALA: α-linoleic acid; OGTT: oral glucose tolerancetest.
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FIGURE 5

The function of GC on vitamin D synthesis, transport, and metabolism. 7-dehydrocholestrol is converted to pre-vitamin D3 and then to vitamin

D in the skin under ultraviolet radiation b (UVB) exposure. Vitamin D is also absorbed from diet and then transferred by binding with vitamin D

binding protein (VDBP, encoded by GC) into liver to form 25(OH)D by 25-hydroxylase (encoded by CYP2R1), and then transferred into the

kidney by VDBP which form the active metabolite 1,25(OH)2D by 1α-hydroxylase (encoded by CYP27B1). The latter is then transferred to

targeted tissue to combine with binding to vitamin D receptor (VDR), and then activate gene expression together with retinoid-X-receptor (RXR)

and vitamin D response element (VDRE). Created with BioRender.com.

acid substitution (A736V) reduced the enzymatic activity of

TMPRSS6. Furthermore, each copy of the minor alleles A and

G of the rs855791 polymorphism decreased serum ferritin by

4.50 g/L and by 5.00 µg/L, respectively, in under-2-year-old

children in Indonesia (77). Pei et al. also demonstrated that

homozygotes with the TMPRSS6 rs855791C genotype mitigated

iron deficiency anemia in women at reproductive age, especially

in those with menorrhagia (78). A recent study showed that

the rs855791polymorphism was significantly associated with

decreased iron levels in the participants from Saudi Arabia (79).

Moreover, Gan et al. revealed that the rs855791 and rs4820268

polymorphisms were both significantly associated with plasma

ferritin, hemoglobin levels, iron overload risk, and T2DM risk

in a Chinese population (80), suggesting the role of TMPRSS6 in

iron homeostasis as well as disease risk.

Since not only iron deficiency, but also iron overload can

exert adverse effects, it is critical to tailor personalized iron

supplementation to ensure iron homeostasis. De Falco et.al.

(81) indicated that for patients with persistent iron-deficiency

anemia, carriers of the TMPRSS6 rs855791 risk allele (T)

exhibited reduced serum iron changes upon oral iron

supplementation. Nevertheless, further studies are warranted to

investigate the effects of TMPRSS6 in the management of iron

nutritional status.

Calcium and CaSR polymorphism

Calcium is one of the primary constituents of human body,

and its active form is vital to maintain the integrity of cell

membranes, regulate excitation of muscles, and monitor various

functions of cells. Calcium deficiency is associated with diseases

of a variety of tissues and systems, such as bone, endocrine,

cardiovascular and cerebrovascular, nervous, digestive, urinary,

reproductive, and nervous systems (82), all of which could be

prevented with the use of calcium supplementation (83, 84).

Calcium-sensing receptors (CaSRs), members of the family

of G protein-coupled receptors, are mainly located in the

parathyroid gland and maintain the homeostasis of calcium by

regulating the secretion of parathyroid hormone (85). A GWAS

of 20,611 individuals of European ancestry showed that the

rs17251221 polymorphism was associated with elevated serum

calcium levels and accounted for 0.54% of the variance, and

that the G allele of the same polymorphism was also associated

with higher serum magnesium levels, lower serum phosphate

levels, and lower bone mineral density in the lumbar spine (86).

Another genome-wide meta-analysis on serum calcium revealed

that a missense variant rs1801725 accounted for 1.26% of the

variance in serum calcium levels, with the strongest association

exhibited in individuals of European descent, whereas similar

association was observed for rs17251221 in individuals of Indian

Asian descent (87). However, to the best our knowledge, no

studies have determined the effects of the interaction between

the CaSR genotype and dietary intervention on calcium levels or

health outcomes, thereby necessitating further investigation for

the precise management of calcium levels.

Conclusion and prospect

With the rapidly progressing fields of nutrigenetics,

accumulation of genetic variants has been identified to influence

both macronutrient and micronutrient levels, as well as

individual responses to dietary intake. Such variants are valuable

to develop appropriate personalized dietary interventions,

thus ensuring the transition of generic dietary guidelines to

genotype-directed nutrition.
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However, several challenges may hinder the widespread

adoption of personalized nutrition. Firstly, nutrition-related

diseases, such as CVDs and T2DM, are considered as polygenic

in nature, and are thus influenced by multiple genes with

small or medium effects. Therefore, polygenic risk scores of

more than a few variants may provide more information to

predict the outcome of personalized nutritional intervention

(88). Secondly, diseases result from the interaction of genes and

environmental factors. For example, individuals with genetic

predisposition to obesity may have increased odds of weight gain

compared to general population when they consume the same

amount of sugar-sweetened beverages (89). In this regard, deep

phenotyping using advanced “omics” technologies including

epigenomics, transcriptomics, proteomics, metabolomics, and

microbiome may help to discover the underlying gene-

environment interactions and explain the missing hereditary

(90, 91). Thirdly, “omics” technologies generate a large amount

of data, requiring the use of advanced analytical methods such

as machine learning (92, 93), which has been applied in multiple

stages of personalized nutrition, including blood glucose

monitoring (94), body weight management (95), disease risk

assessment (96) and nutritional management (97). For example,

by integrating blood biomarkers, diet, anthropometrics, and

gut microbiota, a machine-learning algorithm could accurately

predict the postprandial glycemic response, and therefore

assisting in blood glucose homeostasis (4). Fourthly, the efficient

implementation of personalized nutrition requires accurate

intervention of health professionals and good compliance from

individuals, thus requiring novel digital tools or tracking devices

to bridge the gap between them (98).

In conclusion, genotype-based nutritional studies have

highlighted the critical role of SNPs in the regulation of

macronutrient and micronutrient levels, which are fundamental

for health. Although further studies are required for the

adequate implementation of personalized nutrition into

healthcare research and practice, current evidence indicates

the necessity of incorporating more genetic variants into

personalized nutritional interventions to achieve improved

nutrient levels and health outcomes and reduce the burdens of

nutritional disorders on healthcare services.
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