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Abstract Lysosomes play important roles in cellular degradation to maintain cell homeostasis. In

order to understand whether and how lysosomes alter with age and contribute to lifespan

regulation, we characterized multiple properties of lysosomes during the aging process in C.

elegans. We uncovered age-dependent alterations in lysosomal morphology, motility, acidity and

degradation activity, all of which indicate a decline in lysosome function with age. The age-

associated lysosomal changes are suppressed in the long-lived mutants daf-2, eat-2 and isp-1,

which extend lifespan by inhibiting insulin/IGF-1 signaling, reducing food intake and impairing

mitochondrial function, respectively. We found that 43 lysosome genes exhibit reduced expression

with age, including genes encoding subunits of the proton pump V-ATPase and cathepsin

proteases. The expression of lysosome genes is upregulated in the long-lived mutants, and this

upregulation requires the functions of DAF-16/FOXO and SKN-1/NRF2 transcription factors.

Impairing lysosome function affects clearance of aggregate-prone proteins and disrupts lifespan

extension in daf-2, eat-2 and isp-1 worms. Our data indicate that lysosome function is modulated

by multiple longevity pathways and is important for lifespan extension.

Introduction
Lysosomes are dynamic organelles responsible for macromolecule degradation and catabolite recy-

cling. Lysosomes also serve as a signaling hub to integrate nutritional, energy and growth factor

information and coordinate cellular responses through key regulatory modules docked on the lyso-

somal surface (Lawrence and Zoncu, 2019). By acting as centers of degradation, recycling and sig-

naling, lysosomes play crucial roles in a variety of fundamental processes to maintain cell and tissue

homeostasis. Lysosomal dysfunction is associated with a number of age-related pathologies, which

suggests the importance of lysosome function in the aging process (Carmona-Gutierrez et al.,

2016).

Aging is considered as a process of gradual deterioration of physiological functions that leads to

decreased survival and increased risk of death (López-Otı́n et al., 2013). One of the most universal

hallmarks of aging is the decline in protein homeostasis (López-Otı́n et al., 2013). Studies in a vari-

ety of organisms have uncovered age-dependent accumulation of misfolded and damaged proteins,
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which may impair cell function and homeostasis, leading to the development of age-related diseases

(Cuervo and Dice, 2000; Terman and Brunk, 2004; Martinez-Vicente et al., 2005). Misfolded,

aggregated and damaged proteins can be removed by the proteasome or cleared through the

autophagy-lysosome pathway. As the key organelle for cellular degradation, lysosomes exhibit age-

related changes such as increased size, number and content; increases and decreases in lysosomal

hydrolase activity have also been reported (Truschel et al., 2018; Sarkis et al., 1988; Cuervo and

Dice, 1998; Hayflick, 1980; Bolanowski et al., 1983; Yoon et al., 2010; Cuervo, 2010). Moreover,

vacuolar acidity reduces during replicative aging in budding yeast, and lysosomal pH appears to

increase with age in the C. elegans intestine (Hughes and Gottschling, 2012; Baxi et al., 2017). In

addition, there is evidence for increased lysosomal gene expression with age, which is considered as

a compensatory response to altered protein homeostasis (de Magalhães et al., 2009; Cellerino and

Ori, 2017). Therefore, the causal connection between age-associated lysosomal changes and accu-

mulation of abnormal proteins remains unclear.

Like many other biological processes, the aging process is subjected to regulation. Intrinsic and

extrinsic longevity regulatory pathways have been identified that play evolutionarily conserved roles.

One such pathway is the insulin/IGF-1 signaling (IIS) pathway, which controls aging in C. elegans,

insects and mammals, and extends the lifespan of these organisms when attenuated (Anisimov and

Bartke, 2013). In worms, reducing IIS, such as through mutation in the daf-2 gene, which encodes

the sole C. elegans insulin/IGF-1 receptor, leads to significantly increased adult longevity

(Kenyon et al., 1993). The extension of longevity by reduced IIS involves a phosphorylation cascade

that ultimately results in nuclear translocation of the DAF-16/Forkhead box (FOXO) and the SKN-1/

Nuclear factor-erythroid-related factor 2 (NRF2) transcription factors and subsequent transcriptional

regulation of their target genes (Murphy and Hu, 2013; Tullet et al., 2008). DAF-16 and SKN-1

have both distinct and overlapping functions in lifespan extension under the condition of reduced IIS

(Tullet et al., 2008; Ewald et al., 2015). The heat-shock transcription factor HSF-1 also acts down-

stream of the IIS pathway. HSF-1 may collaborate with DAF-16 to regulate the expression of chaper-

one genes, thus contributing to the longevity of daf-2 mutants (Hsu et al., 2003). In addition to

down-regulation of the IIS pathway, increased longevity can be achieved by reducing food intake or

impairing mitochondrial function. Both caloric restriction and mild inhibition of mitochondrial respira-

tion extend the lifespan of many organisms (Kenyon, 2010). In worms, the feeding-defective eat-2

mutation significantly lengthens the lifespan, and this requires the function of PHA-4/FOXA and

SKN-1/NRF2 transcription factors (Lakowski and Hekimi, 1998; Panowski et al., 2007; Park et al.,

2010). Reducing mitochondrial function may produce a low dose of stressors such as reactive oxy-

gen species (ROS), which elicit protective adaptive responses and induce pro-longevity effects

through DAF-16, SKN-1 and the hypoxia-inducible factor HIF-1 (Ventura, 2017; Senchuk et al.,

2018; Schmeisser et al., 2013; Lee et al., 2010; Yang and Hekimi, 2010). The different longevity

regulatory pathways are not completely independent but may utilize overlapping mechanisms as

they share downstream transcription factors.

Consistent with the evidence that declining protein homeostasis serves as an aging marker, long-

lived worms can preserve their proteome with age. Several hundred proteins with diverse functions

have been identified that become more insoluble with age in wild-type C. elegans (David et al.,

2010). The increased protein insolubility and aggregation, however, is significantly delayed or even

halted in long-lived daf-2 worms (David et al., 2010). The mechanisms by which daf-2 mutants main-

tain protein homeostasis are not fully understood. In daf-2 animals, there is increased autophagy

activity, which is important for lifespan extension in these mutants (Meléndez et al., 2003;

Guo et al., 2014; Lapierre et al., 2013). Lysosome function is essential for clearance of autophagic

substrates. Constitutive autophagy activity leads to more severe defects when lysosome function is

compromised (Sun et al., 2011). Overexpression of XBP-1s, the activated form of the UPRER tran-

scription factor, is found to increase lysosome activity to promote clearance of toxic proteins and

extend C. elegans lifespan (Imanikia et al., 2019). However, it is unclear whether and how lysosome

activity is modulated by longevity-promoting pathways, or how lysosomes contribute to protein

homeostasis and lifespan extension.

In this study, we employed cell biology assays to examine lysosomal changes with age in C. ele-

gans. We found that various lysosomal properties are altered, which indicates that lysosome activity

declines with age. The age-associated lysosomal changes are suppressed in multiple different long-
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lived mutant worms, which exhibit increased expression of lysosome genes. Our data suggest that

lysosome activity is modulated by longevity pathways and is essential for lifespan extension.

Results

Lysosomes undergo age-associated alternations in C. elegans
We examined lysosome morphology using the NUC-1::CHERRY reporter in C. elegans adults at dif-

ferent ages. Lysosomes appeared mainly as small puncta at day 1 of adulthood in hypodermis, while

short tubules were observed at day 3 (Figure 1A,B). The tubular lysosomal structures were increased

in both length and abundance at day 5, leading to formation of an extensive tubular network at day

9 (Figure 1C,D,I). The tubular lysosomal network was still observed in the hypodermis at day 15 of

adulthood, indicating that it persisted during aging (Figure 1—figure supplement 1A). In aged

adults, the number of vesicular lysosomes reduced gradually but the mean volume of each lysosome

increased, while the total volume of lysosomes also increased significantly (Figure 1J–L). Similar

changes in lysosome morphology, number and volume were also observed in body wall muscle cells

and intestinal cells with age even though tubular lysosomal structures were less abundant in these

two tissues compared to hypodermis (Figure 1—figure supplement 1C–H).

We next examined whether other lysosomal properties, including dynamics, acidification and

degradation activity, are altered in worms with increased age. To examine lysosome dynamics, we

measured Pearson’s correlation coefficient to compare the colocalization of lysosomes in two time-

lapse image frames taken 60 s apart. We found a higher level of colocalization in adult hypodermis,

resulting in a higher Pearson’s correlation coefficient than in larvae (Figure 1M,N). This suggests

that lysosomes are less dynamic in adults. Consistent with this, the velocity of lysosomes was higher

in larvae than in adults (Figure 1O). The Pearson’s correlation coefficient did not change obviously in

adults from day 1 to day 9, but the velocity of lysosomes was significantly reduced at days 5 and 9,

which suggests that lysosome motility declines with age (Figure 1N,O). We examined lysosome

acidity by co-staining with LysoTracker Red (LTR) and LysoSensor Green DND-189 (LSG, pKa 5.2)

(Baxi et al., 2017). LTR is less sensitive to increased acidity than LSG and is used as a control for nor-

malizing the dye intake (Duvvuri et al., 2004). The fluorescence intensity ratio of LSG vs LTR (LSG/

LTR) is quantified to indicate lysosome acidity. We found that the LSG/LTR ratio in the intestine was

reduced in adults at days 3, 5 and 9 compared to day 1, which suggests that lysosome acidity

declines in aging adults (Figure 2A–D’’, I). The tubular lysosomal structures enriched in the hypoder-

mis of aged adults were weakly stained by LysoTracker Red but were not labeled by LysoSensor

Green, which suggests that lysosomal tubules may be less acidic than the vesicular ones (Figure 2—

figure supplement 1A–D). Cathepsin L (CPL-1) is synthesized as an inactive pro-enzyme, which is

converted to the active mature form in lysosomes through proteolytic removal of the pro-domain

(Stoka et al., 2016). The processing of endogenous CPL-1 can be examined by western blot and

quantified to indicate the degradation activity of lysosomes. We found that CPL-1 processing

reduced significantly in adults at days 5 and 9 compared to day 1, and pro-CPL-1 accumulated with

age (Figure 2N,O). These results suggest that lysosomal degradation activity decreases with age.

Altogether, these data suggest that lysosomes undergo a series of age-associated changes including

reduced vesicular but increased tubular morphology, increased mean and total volume, and

decreased acidity, motility and degradation activity.

Lysosome morphology and activity are well maintained in daf-2
mutants with age
We investigated whether these age-associated lysosomal changes are altered by longevity regula-

tory factors. Insulin/IGF-1 signaling (IIS) is an evolutionarily conserved aging regulatory pathway.

Mutations in the insulin/IGF-1 receptor DAF-2 double the lifespan of wild type (Kenyon et al.,

1993). We found that lysosomes in the daf-2(e1370ts) mutant, which has reduced function of DAF-2,

appeared as small puncta and short tubules, and they were not obviously changed with age in hypo-

dermis (Figure 1E–H and Figure 1—figure supplement 1B). daf-2(e1370ts) worms contained signifi-

cantly more vesicular lysosomes than wild type, and these vesicular lysosomes were smaller in size

(Figure 1J,K). The tubular lysosomes were shorter in length and they did not form a tubular network

in aged daf-2 adults (Figure 1I). The mean and total volume of lysosomes exhibited an age-
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Figure 1. Lysosomes exhibit age-associated changes that are suppressed in the long-lived mutant daf-2. (A–H) Confocal fluorescence images of the

hypodermis in wild type (WT; A–D) and daf-2(e1370) (E–H) expressing NUC-1::CHERRY at different ages (adult days 1, 3, 5, 9). White arrowheads

indicate vesicular lysosomes; white and yellow arrows indicate short and long lysosomal tubules, respectively. (I–L) Tubule length (I), number (J) and

volume (K, L) of lysosomes were quantified in wild type (WT) and daf-2(e1370) at different ages. At least 20 (I, J) or 10 (K, L) animals were scored in each

Figure 1 continued on next page
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dependent increase in wild type but remained unchanged in daf-2 adults from day 1 to day 9

(Figure 1K,L). Increased number and reduced mean volume of vesicular lysosomes were also

observed in body wall muscle cells of daf-2 mutants at different ages (Figure 1—figure supplement

1C,E,F). In the intestine of daf-2 mutants, the number and mean volume of vesicular lysosomes was

similar to that in wild type (Figure 1—figure supplement 1D,G,H).

We found that lysosomes in daf-2 adults at different ages were more dynamic than in wild type.

The Pearson’s correlation coefficient was lower, and the velocity of lysosomes was higher in daf-2

adults (Figure 1M–O). The lysosome velocity in daf-2 adults was similar to that in wild-type larvae.

The fluorescence intensity ratio of LSG/LTR at days 5 and 9 in daf-2 was higher than in wild type,

and it was similar to the LSG/LTR ratio in wild type at day 1 (Figure 2E–I). This suggests that lyso-

somal acidity is maintained in daf-2 worms with age. To further examine this, we fused the pH-sensi-

tive fluorescent protein pHTomato with NUC-1, and transiently expressed NUC-1::pHTomato using

the heat-shock promoter. At 24 hr post heat-shock treatment, NUC-1::pHTomato overlapped well

with the lysosomal membrane protein SCAV-3, indicating delivery of the fusion protein to lysosomes

(Figure 2—figure supplement 1E–G’’). pHTomato has a pKa close to 7.8 and thus exhibits

increased fluorescence when the pH is increased (Li and Tsien, 2012). The average fluorescence

intensity of NUC-1::pHTomato in each lysosome was quantified in the hypodermis. Loss of the lyso-

somal Ca2+ channel CUP-5 affects lysosome activity and acidity and causes increased pHTomato

intensity in lysosomes (Figure 2J,L,M; Hersh et al., 2002; Treusch et al., 2004; Sun et al., 2011;

Miao et al., 2020). We found that NUC-1::pHTomato intensity was significantly lower in daf-2

(e1370ts) mutants than in wild type (Figure 2J,K,M). By contrast, the average intensity of NUC-1::

CHERRY, which is insensitive to pH, was unchanged in daf-2 or cup-5 lysosomes compared with wild

type (Figure 2—figure supplement 1H–K). Collectively, these data suggest that lysosome acidity

increases in daf-2 worms. We next examined CPL-1 processing and found that significantly more

mature CPL-1 was produced in daf-2 worms than in wild type at different ages, which suggests that

the degradation activity of lysosomes is increased in daf-2 (Figure 2N,O). To corroborate this, we

examined lysosomal degradation activity using the NUC-1::CHERRY fusion protein. When delivered

to lysosomes, CHERRY is cleaved from the fusion protein by cathepsins, and the extent of cleavage

can be visualized by Western blot and quantified to indicate the degradation activity of lysosomes

(Miao et al., 2020). Consistent with the CPL-1 processing assay, we found significantly increased

CHERRY cleavage in daf-2 worms compared to wild type (Figure 1—figure supplement 1I,J).

The above results suggest that the properties of lysosomes – including morphology, dynamics,

acidity and degradation activity – are well maintained in daf-2 mutants, but not in wild type, with

age. To further test this, we examined lysosomes by high voltage electron microscopy (HVEM). At

day 1 of adulthood, 40% of wild-type lysosomes in hypodermis appeared as membrane-enclosed,

dense and spherical vesicles (Figure 3A,B,K). In addition, around 50% of wild-type lysosomes con-

tained both electron-dense and -lucent contents, with half of them extending electron-lucent tubules

(Figure 3D,E,K). In addition to the above two main classes, a few lysosomal tubules with either

dense (1.4%) or lucent (7.1%) contents were observed (Figure 3C,F,K). We found that the ultrastruc-

ture of lysosomes changed dramatically in wild type at day 5. The proportion of dense vesicular lyso-

somes reduced sharply from 40% to 3.7% (Figure 3K). Lysosomes with both dense and lucent

contents decreased markedly, and they did not extend tubules (Figure 3K). Instead, the majority of

hypodermal lysosomes at day 5 (81.4%) were lucent tubules that formed a tubular network, which is

Figure 1 continued

strain at each day. (M) Time-lapse images of lysosomes in the hypodermis in wild type (WT) and daf-2(e1370) expressing NUC-1::CHERRY at adult day

1, with time point 0 s in red and 60 s in green. The overlay (merge) shows lysosome movement over time. Pearson’s correlation coefficient and average

velocity of lysosomes were determined at the indicated stages and are shown in (N, O). At least 10 animals were scored in each strain at each stage. In

(I, J, K, L, N, O), data are shown as mean ± SD. One-way ANOVA with Tukey’s multiple comparison test (I) and two-way ANOVA with Fisher’s LSD test

(J, K, L, N, O) was performed to compare all other datasets with wild type at day 1, or datasets that are linked by lines. *p<0.05; **p<0.001. All other

points had p>0.05. N.S., no significance. Scale bars: 5 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Numerical data that are represented as a bar graph in Figure 1I–L,N,O.

Figure supplement 1. Lysosomes exhibit age-associated alterations in C. elegans.

Figure supplement 1—source data 1. Numerical data that are represented as a bar graph in Figure 1—figure supplement 1E–H and J.
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Figure 2. Lysosomal acidity and degradation activity are increased in daf-2. (A–H”) Confocal fluorescence images of the intestine in wild type (WT; A–

D”) and daf-2(e1370) (E–H”) adults at different ages stained by LSG DND-189 and LTR DND-99. (I) The relative intensity of LSG/LTR in wild type and

daf-2(e1370) at different ages was quantified. At least 10 animals were scored in each strain at each day. (J–L) Confocal fluorescence images of the

hypodermis at adult day 2 in wild type (WT; J), daf-2(e1370) (K) and cup-5(bp510) (L) expressing NUC-1::pHTomato controlled by the heat-shock (hs)

Figure 2 continued on next page
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in good agreement with the observations by fluorescence microscopy (Figures 1A,C and 3G,K). In

daf-2(e1370ts) mutants, most lysosomes at day 1 (70.8%) appeared as dense spherical vesicles that

were significantly smaller than in wild type (Figure 3H,L,M). In addition, vesicular lysosomes with

both dense and lucent contents were observed (Figure 3J,L). Importantly, the ultrastructure of lyso-

somes did not change obviously in daf-2 worms at day 5, except for a slightly higher percentage of

dense tubules (1.4% vs 7.1%) and a lower percentage of the dense-lucent vesicles (27.8% vs 17.1%;

Figure 3L). These HVEM data are consistent with the observations by fluorescence microscopy and

together they indicate that lysosomal morphology and properties are well maintained in daf-2

mutants with age.

Lysosome activity is increased in eat-2 and isp-1 mutants
Our data suggest that reducing IIS suppresses age-associated changes in lysosomal shape, size,

dynamics, acidity and degradation activity. We next examined whether lysosome patterns and activ-

ity are altered in two other long-lived mutants, eat-2 and isp-1, which extend lifespan through

restricted caloric intake and impaired mitochondrial respiration, respectively (Lakowski and Hekimi,

1998; Feng et al., 2001). We found that lysosome patterns in isp-1(qm150) and eat-2(ad1116)

mutants at different ages resembled those in daf-2(e1370ts), except that tubular lysosomal struc-

tures were more abundant in eat-2(ad1116) than in daf-2 and isp-1 worms (Figure 4A–L). Like in daf-

2 worms, the number of vesicular lysosomes increased, and the mean volume decreased in eat-2

and isp-1 mutants; tubular lysosomes at days 5 and 9 were shorter in length and did not form tubular

networks (Figure 4M–O). The velocity of lysosomes was significantly higher in eat-2 worms than in

wild type at different ages, while isp-1 lysosomes had a higher motility than wild type at day 1 and

day 9 (Figure 4—figure supplement 1A). By examining the fluorescence intensity ratio of LSG/LTR,

we found that lysosome acidity was significantly higher in eat-2(ad1116) worms than in wild type at

all adult ages tested, while increased lysosome acidity was seen in isp-1(qm150) mutants at days 3

and 5 but not day 9 (Figure 4—figure supplement 1B–J). In agreement with this, the average inten-

sity of NUC-1::pHTomato was significantly lower in eat-2 and isp-1 than in wild type, which suggests

that lysosome acidity was increased (Figure 4P–S). We found that more mature CPL-1 was produced

in eat-2(ad1116) and isp-1(qm150) mutants than in wild type at different ages except for isp-1 at day

9, where the percentage of mature CPL-1 was similar to wild type (Figure 4T–W). Collectively, these

data suggest that like the IIS mutant daf-2, lysosome morphology, motility, acidity and degradation

activity are well maintained with age in eat-2 mutants, whereas the appearance of age-related lyso-

somal changes is delayed in isp-1(qm150) worms.

Expression of lysosome-related genes increases in long-lived worms in
a DAF-16- and SKN-1-dependent manner
To investigate how lysosome activity is maintained in long-lived worms, we examined the expression

of 85 lysosome-related genes by quantitative PCR (qRT-PCR). These genes encode lysosomal mem-

brane proteins, hydrolases and components of the proton pump V-ATPase (Figure 5A and

Supplementary file 1). We found that expression of 43 lysosomal genes was significantly reduced at

day 5 compared to day 1. They included 15 vha genes encoding subunits of the V-ATPase and 17

cathepsin genes encoding lysosomal proteases, which is consistent with reduced lysosomal acidity

and degradation activity with age (Figure 5A–C and Supplementary file 1, 2). In addition, 13

Figure 2 continued

promoter. The average intensity of pHTomato per lysosome is shown in (M). At least 20 animals were scored in each strain. (N) Western blot analysis of

CPL-1 processing in wild type (WT) and daf-2(e1370) at different adult ages. The percentage of mature CPL-1 was quantified (O). Three independent

experiments were performed. In (I, M, O), data are shown as mean ± SD. One-way ANOVA with Tukey’s multiple comparisons test (I, M) or two-way

ANOVA with Fisher’s LSD test (O) was performed to compare all other datasets with wild type (M) or wild type at day 1 (I, O), or to compare datasets

that are linked by lines. *p<0.05; **p<0.001. All other points had p>0.05. N.S., no significance. Scale bars: 5 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Numerical data that are represented as a bar graph in Figure 2I,M and O.

Figure supplement 1. pHTomato can be used to probe lysosomal acidity in C. elegans.

Figure supplement 1—source data 1. Numerical data that are represented as a bar graph in Figure 2—figure supplement 1C,D and K.
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lysosomal genes exhibited increased expression with age and the expression of 29 lysosomal genes

was unaltered at day 5 compared to day 1 (Figure 5A and Supplementary file 3, 4).

Among the 43 lysosome genes whose expression declined with age, 20 exhibited significantly

increased expression in daf-2 mutants compared to wild type at adult day 1 (Figure 5D and

Supplementary file 5). These 20 genes mainly encode lysosomal hydrolases, including eight cathep-

sin proteases and six hydrolases that digest carbohydrates and lipids (Figure 5D and

Supplementary file 5). In isp-1(qm150) mutants, 10 out of the 43 lysosomal genes were upregulated

(Figure 5E and Supplementary file 5). Nine of the upregulated genes encode hydrolases and

expression of all of them, except for cpr-8, is increased in daf-2 mutants (Figure 5D,E, Figure 6—

figure supplement 1A and Supplementary file 5). In eat-2(ad1116) mutants, 14 out of the 43 lyso-

some genes were upregulated and 8 of them encode V-ATPase subunits (Figure 5F and

Figure 3. The ultrastructure of lysosomes changes dramatically in wild type with age but is maintained well in daf-2. (A–J) Representative HVEM images

of lysosomes in the hypodermis in wild type (WT; A–G) and daf-2 (e1370) (H–J). Yellow arrowheads indicate vesicular lysosomes or short lysosomal

tubules. White arrows indicate the lysosomal tubular network formed in wild type at day 5. Scale bars: 500 nm. (K, L) The percentage of lysosomes

within a certain morphology group revealed by HVEM was quantified in wild type (WT; K) and daf-2(e1370) (L) at different ages (day 1 and day 5). At

least 70 lysosomes were quantified in each strain at each age. (M) The diameter of vesicular lysosomes in wild type (WT) and daf-2(e1370) at different

ages was quantified. At least 50 vesicular lysosomes were counted in each strain at each age. One-way ANOVA with Tukey’s multiple comparisons test

was performed to compare all other datasets with wild type at day 1, or datasets that are linked by lines. *p<0.05; **p<0.001.

The online version of this article includes the following source data for figure 3:

Source data 1. Numerical data that are represented as a bar graph in Figure 3K–M.
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Figure 4. eat-2(ad1116) and isp-1(qm150) mutants exhibit increased lysosome activity. (A–L) Confocal fluorescence images of the hypodermis in wild

type (WT; A–D), eat-2(ad1116) (E–H) and isp-1(qm150) (I–L) expressing NUC-1::CHERRY at different adult ages. White arrowheads indicate vesicular

lysosomes; white and yellow arrows designate short and long lysosomal tubules, respectively. (M–O) The length of tubular lysosomes (M), and the

number (N) and mean volume (O) of vesicular lysosomes were quantified in wild type (WT), eat-2(ad1116) and isp-1 (qm150) at different ages. At least

Figure 4 continued on next page
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Supplementary file 5). By contrast, the expression of very few vha genes was increased in daf-2 and

isp-1 mutants (Figure 5D,E and Figure 6—figure supplement 1A).

We next examined transcription factors that act downstream of the three longevity pathways.

The transcription factors DAF-16/FOXO, SKN-1/NRF2 and HSF-1 all respond to reduced IIS. We

found that loss of daf-16 and skn-1 led to reduced expression of 13 and 8 lysosomal genes, respec-

tively, in daf-2 worms (Figure 6A,B). We examined the six lysosomal genes whose expression was

reduced by both daf-16 and skn-1 mutations (Figure 6—figure supplement 1B). Expression of these

lysosomal genes did not further reduce in daf-16;daf-2;skn-1 triple mutants, which suggests that

DAF-16 and SKN-1 act in the same genetic pathway to regulate their expression (Figure 6—figure

supplement 1B). Consistent with this, loss of daf-16 or skn-1 led to increased pHTomato intensity,

reduced fluorescence intensity ratio of LSG/LTR and reduced CHERRY cleavage in daf-2 mutants,

which indicates that DAF-16 and SKN-1 function is important for elevation of lysosome acidity and

degradation activity in daf-2 mutants (Figures 6C–G,I,K–N and Figure 6—figure supplement 1C–

H’’). The pHTomato intensity, LSG/LTR fluorescence intensity ratio and CHERRY cleavage were not

further altered in daf-16;daf-2;skn-1 triple mutants, consistent with co-regulation of lysosomal gene

expression by DAF-16 and SKN-1 when IIS is impaired (Figure 6H–N and Figure 6—figure supple-

ment 1I–J’’). HLH-30 is the putative C. elegans homolog of human TFEB, a master transcription fac-

tor for autophagy and lysosome biogenesis (O’Rourke and Ruvkun, 2013, Settembre et al., 2011).

It was reported recently that both HLH-30 and DAF-16 are required for the longevity of daf-2

mutants and they act as combinatorial transcription factors to fulfill this function (Lin et al., 2018).

We found that loss of hlh-30 caused reduced expression of 6 hydrolase genes in daf-2 mutants, and

5 of them were also targeted by DAF-16 (Figure 6—figure supplement 1K,L). However, unlike daf-

16(lf), loss of hlh-30 did not affect NUC-1::CHERRY cleavage in daf-2 worms, which suggests that

lysosome degradation activity may be unaltered (Figure 6—figure supplement 1M). The CHERRY

cleavage in daf-16;daf-2;hlh-30 was higher than in daf-16;daf-2, suggesting that loss of hlh-30 may

have a beneficial effect on lysosomal degradation in daf-16;daf-2 (Figure 6—figure supplement

1M). Loss of hsf-1 had no effect on lysosomal gene expression or NUC-1::CHERRY cleavage in daf-2

worms, which suggests that HSF-1 is dispensable for lysosome regulation in daf-2 mutants (Fig-

ure 6—figure supplement 1N,O).

In addition to responding to insulin signaling, DAF-16 also acts downstream of the mitochondrial

pathway, while skn-1 RNAi reduces the lifespan of eat-2 (Senchuk et al., 2018; Park et al., 2010).

We found that loss of daf-16 and skn-1 also affected lysosome gene expression in eat-2 and isp-1

mutants (Figures 7A,B and 8A,B). Loss of either daf-16 or skn-1 caused reduced expression of vha-

12 and vha-15 in eat-2 mutants, which was further decreased in daf-16;eat-2;skn-1 triple mutants

(Figure 7—figure supplement 1A). These results indicate that DAF-16 and SKN-1 have additive

effects on the expression of vha-12 and vha-15. Consistent with this, the NUC-1::pHTomato intensity

in lysosomes was higher and the LSG/LTR fluorescence intensity ratio was lower in daf-16;eat-2 and

eat-2;skn-1 than in eat-2, and these parameters were further altered in daf-16;eat-2;skn-1

(Figure 7C–L). In addition, cleavage of CHERRY from NUC-1::CHERRY was reduced in daf-16;eat-2

and eat-2;skn-1 compared to eat-2 single mutants, which suggests that lysosomal degradation activ-

ity is also affected (Figure 7—figure supplement 1C,D). However, CHERRY cleavage was not further

decreased in daf-16;eat-2;skn-1 (Figure 7—figure supplement 1C,D). In isp-1 mutants, expression

Figure 4 continued

10 animals were scored in each strain at each age. (P–R) Confocal fluorescence images of the hypodermis in wild type (WT; P), eat-2(ad1116) (Q) and

isp-1(qm150) (R) expressing NUC-1::pHTomato controlled by the heat-shock (hs) promoter. The average intensity of pHTomato per lysosome was

quantified (S). At least 20 animals were scored in each strain. (T, V) Western blot analysis of CPL-1 processing in eat-2(ad1116) (T) and isp-1(qm150) (V)

at different ages. The percentage of mature CPL-1 was quantified (U, W). Three independent experiments were performed. In (M, N, O, S, U, W), data

are shown as mean ± SD. One-way ANOVA with Tukey’s multiple comparisons test (M, S) or two-way ANOVA with Fisher’s LSD test (N, O, U, W) was

performed to compare all other datasets with wild type (S) or wild type at day 1 (M, N, O, U, W) or datasets that are linked by lines. *p<0.05;

**p<0.001. All other points had p>0.05. N.S., no significance. Scale bars: 5 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Numerical data that are represented as a graph in Figure 4M,N,O,S,U and W.

Figure supplement 1. Lysosome acidity and motility increase in eat-2(ad1116) and isp-1(qm150) mutants.

Figure supplement 1—source data 1. Numerical data that are represented as a graph in Figure 4—figure supplement 1A and J.
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Figure 5. Lysosomal gene expression is upregulated in the long-lived mutants daf-2, eat-2 and isp-1. (A) Expression of 85 lysosome-related genes in

wild type at day 1 and day 5 was analyzed. 43 and 13 lysosomal genes were down- and up-regulated with age, respectively. Expression of 29 lysosomal

genes was unaltered at day 5 compared with day 1. (B, C) Quantitative RT-PCR (qRT-PCR) analyses of the 43 downregulated lysosomal genes in wild

type at day 1 and day 5. (D–F) Expression of the 43 downregulated lysosomal genes was analyzed by qRT-PCR at day 1 in daf-2 (D), isp-1 (E) and eat-2

Figure 5 continued on next page
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of 4 hydrolase genes (asp-4, asp-8, asm-1 and Y105E8B.9) was affected by both daf-16 mutation and

skn-1 RNAi, and their expression in triple mutants (daf-16;isp-1skn-1 RNAi) was similar to the double

mutant (Figure 7—figure supplement 1B). These results suggest that DAF-16 and SKN-1 act

together to regulate lysosomal gene expression in isp-1. In agreement with this, loss of skn-1 or daf-

16 led to increased pHTomato intensity and reduced LSG/LTR fluorescence intensity ratio in isp-1

lysosomes, while these parameters remained unchanged in daf-16;isp-1skn-1 RNAi worms

(Figure 8C–L). The daf-16 mutation caused reduced NUC-1::CHERRY cleavage in isp-1, while skn-1

RNAi did not obviously affect CHERRY cleavage in isp-1 or daf-16;isp-1 (Figure 7—figure supple-

ment 1E,F). We found that loss of PHA-4/FOXA, the key downstream effector of the dietary restric-

tion pathway, had no effect on lysosomal gene expression in eat-2 mutants, while loss of HIF-1, the

transcription factor acting downstream of the mitochondrial pathway, did not reduce expression of

lysosomal genes in isp-1 mutants, except for asp-8 (Figures 7M and 8M). Loss of pha-4 and hif-1

had no effect on the acidity and degradation activity of lysosomes in eat-2 and isp-1 mutants,

respectively (Figures 7N–R and 8N–R and Figure 7—figure supplement 1G–J). Altogether, these

data suggest that PHA-4 and HIF-1 are dispensable for lysosome regulation in eat-2 and isp-1

mutants.

Lysosome function is important for clearance of aggregate-prone
proteins and for lifespan extension induced by multiple mechanisms
Protein insolubility or aggregation is an inherent part of normal aging due to reduced proteostasis

with age. We tested whether the decline in lysosome function contributes to the accumulation of

protein aggregates. NMY-2 was previously identified as an aggregation-prone protein which

becomes more insoluble with age (David et al., 2010; Bohnert and Kenyon, 2017). Consistent with

this, NMY-2::GFP fluorescence was almost invisible in wild-type oocytes at day 1 of adulthood, but

was visible as GFP puncta at day 5 (Figure 9A,B and Figure 9—figure supplement 1A,B). Loss of

CUP-5, the lysosomal Ca2+ channel homologous to human TRPML, caused increased pHTomato

intensity in lysosomes and reduced fluorescence intensity ratio of LSG/LTR, which indicates that lyso-

somal acidity is affected (Figure 2L,M and Figure 9—figure supplement 1P–X). Moreover, CPL-1

processing was reduced significantly in cup-5 mutants at all adult ages tested, which is suggestive of

defects in lysosomal degradation activity (Figure 9—figure supplement 1Y,Z). In cup-5, NMY-2::

GFP fluorescence increased significantly in oocytes at days 1 and 5, but the number of NMY-2::GFP

puncta was not obviously increased (Figure 9C,D,I–K and Figure 9—figure supplement 1C,D,M–

O). The number of NMY-2::GFP puncta was reduced significantly in oocytes of daf-2, eat-2 and isp-1

mutants at day 5, consistent with decreased formation and/or accumulation of protein aggregates

(Figure 9F,K and Figure 9—figure supplement 1F,J,O). We found that loss of cup-5 caused signifi-

cantly increased NMY-2::GFP fluorescence in daf-2, eat-2 and isp-1 oocytes at both day 1 and day 5,

and the number of NMY-2::GFP puncta also increased at day 5 (Figure 9G–K and Figure 9—figure

supplement 1G–O). This suggests that lysosome function is important for clearance of aggregation-

prone proteins and protein aggregates in long-lived worms. We observed that the cup-5 mutation

was more potent at increasing the NMY-2::GFP fluorescence than the number of visible NMY-2::GFP

aggregates (Figure 9A–K and Figure 9—figure supplement 1A–O). This suggests that more solu-

ble or lower-molecular-weight forms of aggregate-prone proteins may be removed more efficiently

by lysosomes.

Finally, we examined whether lysosome function contributes to lifespan extension. The lysosome-

defective mutants cup-5(bp510) and cpl-1(qx304) were slightly short-lived compared with wild type,

and both of these mutations significantly reduced the lifespan in daf-2, eat-2 and isp-1 worms

(Figure 9L–Q). These data indicate that lysosome function is important for lifespan extension

Figure 5 continued

(F) worms. In (B–F), three independent experiments were performed. The transcription level of lysosomal genes in wild type (WT) at day 1 was

normalized to ‘1’ for comparison. Data are shown as mean ± SD. Multiple t testing was performed to compare mutant datasets with wild type. *p<0.05;

**p<0.001.

The online version of this article includes the following source data for figure 5:

Source data 1. Numerical data that are represented as a bar graph in Figure 5B–F.
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Figure 6. DAF-16 and SKN-1 are required for the upregulation of lysosomal genes and maintenance of lysosomal acidity and activity in daf-2 mutants.

(A, B) Expression of the 20 upregulated lysosomal genes in daf-2 mutants was analyzed by qRT-PCR in daf-16;daf-2 (A) and daf-2;skn-1 (B) worms at day

1. Three independent experiments were performed. The transcription level of lysosomal genes in daf-2(e1370) at day 1 was normalized to ‘1’ for

comparison. (C–J) Confocal fluorescence images of the hypodermis in the indicated strains expressing NUC-1::pHTomato controlled by the heat-shock

Figure 6 continued on next page
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induced by multiple mechanisms including reduced IIS, caloric restriction and impaired mitochondrial

respiration.

Discussion
In this study, we investigated how lysosomes change with age and contribute to lifespan regulation.

Our data indicate that lysosomes undergo a series of age-associated alterations in C. elegans includ-

ing shape, size, motility, acidity and degradation activity, which suggest a decline in lysosomal func-

tion with age. We found that lysosomes are modulated by multiple longevity regulatory pathways,

and lysosome function is essential for lifespan extension.

Various lysosomal properties are altered with age
Age-related increases in the number and size of lysosomes have been observed previously in several

species such as Paramecium, nematodes and human cell lines (Sundararaman and Cummings,

1976; Epstein, 1972; Lipetz and Cristofalo, 1972; Brandes et al., 1972). By employing cell biology

assays, we found that lysosomes undergo a series of age-related changes including increased mean

and total volume, and decreased motility, acidity and degradation activity. This indicates that the

overall function of lysosomes declines with age, which explains in part the age-dependent decline in

protein degradation described in various systems (Cuervo and Dice, 1998). We observed that lyso-

somal morphology changes dramatically with age, manifested as greatly increased tubular morphol-

ogy and a concomitant decrease in vesicular lysosomes. Tubular structures have been observed in

the lysosome reformation process when lysosomal contents are retrieved from phagolysosomes or

autolysosomes (Yu et al., 2010; Gan et al., 2019). Moreover, stimulation of macrophages and den-

dritic cells (DCs) with agonists including LPS leads to reorganization of lysosomes into a tubular net-

work (Hipolito et al., 2018). These lysosomal tubules may be induced to fulfil a variety of functions,

such as expanding lysosomal volume, promoting phagosome maturation, cargo sorting and

exchange, and helping delivery of peptide-loaded MHC-II molecules to the cell surface

(Hipolito et al., 2018; Hipolito et al., 2019; Mantegazza et al., 2014; Boes et al., 2002;

Boes et al., 2003; Chow et al., 2002; Vyas et al., 2007). In C. elegans, we found previously that

catalytically active lysosomal tubules are formed during molting to promote cuticle replacement

(Miao et al., 2020). In aged adults, however, lysosomal tubules are static and are not readily stained

by LysoSensor Green (Figure 1N,O and Figure 2—figure supplement 1B–D). Lysosome degrada-

tion activity, indicated by CPL-1 processing, is obviously reduced in aged adults. Thus, the lysosomal

tubules enriched in aged adults are probably catalytically inactive. The HVEM analyses revealed that

young adult worms contain electron-lucent tubules emanating from electron-dense granules, consis-

tent with retrieval and/or recycling of lysosomal contents through tubules. In aged worms, the vast

majority of lysosomes are seen as electron-lucent tubules that form a tubular network, whereas very

few dense vesicular lysosomes are present (Figure 3G,K). It is possible that the lysosomal retrieval,

cargo sorting and/or catabolite recycling processes occur inefficiently in aged adults, which leads to

accumulation of catalytically inactive tubular lysosomal structures. Future studies are needed to

understand how lysosomal tubules are formed in aging adults and whether and how they alter deg-

radation, retrieval or recycling of lysosomal contents.

Figure 6 continued

(hs) promoter. Scale bars: 5 mm. The average intensity of pHTomato per lysosome was quantified (K). At least 20 animals were scored in each strain. (L)

The relative intensity of LSG/LTR in the intestine was quantified in the indicated strains at day 2. At least 10 animals were scored in each strain. (M)

Western blot analysis of CHERRY cleavage from NUC-1::CHERRY in the indicated strains at day 1. Quantification is shown in (N). Three independent

experiments were performed. In (A, B, K, L, N), data are shown as mean ± SD. Multiple t testing (A, B), or one-way ANOVA with Tukey’s multiple

comparisons test (K, L, N) was performed to compare datasets of double mutants with daf-2 (A, B) or to compare all other datasets with wild type (L, N)

or with wild type treated with control RNAi (K), or datasets that are linked by lines (K, L, N). *p<0.05; **p<0.001. All other points had p>0.05. N.S., no

significance.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Numerical data that are represented as a bar graph in Figure 6A,B,K,L,N.

Figure supplement 1. DAF-16 and SKN-1 play an overlapping role in regulating lysosomal gene expression in daf-2 mutants.

Figure supplement 1—source data 1. Numerical data that are represented as a bar graph in Figure 6—figure supplement 1B,L–O.

Sun et al. eLife 2020;9:e55745. DOI: https://doi.org/10.7554/eLife.55745 14 of 28

Research article Cell Biology

https://doi.org/10.7554/eLife.55745


Figure 7. DAF-16 and SKN-1, but not PHA-4, regulate lysosomal acidity and gene expression in eat-2 mutants. (A, B, M) Expression of the 14

upregulated lysosomal genes in eat-2(ad1116) was analyzed by qRT-PCR in daf-16;eat-2 (A), eat-2;skn-1 (B) and eat-2;pha-4 RNAi (M) worms at day 1.

Figure 7 continued on next page
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Consistent with changes in multiple lysosomal properties, we observed an age-related decline in

the expression of 43 lysosome-related genes (Figure 5A–C and Supplementary file 2). This affects

two main classes of lysosomal proteins, the cathepsin proteases (17 genes) and subunits of the pro-

ton pump V-ATPase (15 genes), which may account for the age-associated decline in lysosomal acid-

ity and degradation. We observed that cpl-1 gene expression declines, but the total CPL-1 protein

level appears to increase with age in wild type. The increase in the total CPL-1 protein level is proba-

bly caused by reduced CPL-1 processing (Figures 2N and 4T–W) and a decline in CPL-1 protein

turnover, consistent with the decline in lysosome activity in aging worms. In addition to decreased

expression of 43 lysosome genes, 13 lysosome genes exhibit increased expression with age

(Figure 5A and Supplementary file 3). This may reflect a feed-back response caused by reduced

lysosomal degradation with age as proposed previously in mammals (de Magalhães et al., 2009).

Moreover, expression of 29 lysosome-related genes is unaltered in aging adults (Figure 5A and

Supplementary file 4). Thus, the overall profile of lysosomal transcripts is obviously remodeled, but

not all lysosomal gene expression patterns are altered during aging.

Lysosomes are modulated by multiple longevity pathways
We found that long-lived mutants representing three different longevity pathways all exhibited

increased activity and better maintenance of lysosomes with age. Reducing IIS by the daf-2 mutation

suppresses age-associated lysosomal changes. daf-2 lysosomes maintain their vesicular morphology,

ultrastructure, high motility, acidity and degradation activity with age. The maintenance of lysosome

activity with age is achieved at least in part through transcriptional regulation of lysosome genes.

Loss of daf-16 and skn-1 reduces lysosome gene expression in daf-2 and causes decreased lysosomal

acidity and degradation activity. In addition to modulating lysosome gene expression, reducing IIS

increases stress resistance and reduces cellular damage (Shore and Ruvkun, 2013). This may reduce

substrate loading into lysosomes and thus help to maintain lysosome activity with age. Consistent

with this, we found previously that loss of daf-2 increases stress resistance in the lysosome-defective

mutant scav-3 and suppresses the membrane integrity defects in scav-3 (Li et al., 2016). In addition

to the IIS pathway, lysosomes are also modulated by caloric restriction and mitochondrial pathways.

In the feeding-defective mutant eat-2 and the mitochondrial mutant isp-1, appearance of age-

related lysosomal changes is suppressed or delayed, and lysosome gene expression is increased.

Thus, lysosomes may serve as a common target of multiple longevity pathways. Notably, only 2 out

of the 43 lysosomal genes that are downregulated with age are targeted by all three pathways (Fig-

ure 6—figure supplement 1A). The IIS and caloric restriction pathways seem to target different sets

of lysosome genes, whereas genes upregulated in isp-1 mutants are mostly shared with the IIS path-

way (Figure 6—figure supplement 1A). Future studies are needed to understand why and how lyso-

somal genes are selectively regulated by different pathways.

We identified DAF-16 and SKN-1 as key factors involved in modulating lysosome gene expression

by multiple longevity pathways. By contrast, PHA-4 and HIF-1, the key downstream effectors of the

caloric restriction and mitochondrial pathways, respectively, are dispensable for lysosome regulation.

DAF-16 is reported to regulate lysosomal pH in the intestine in response to the reproductive cycle

(Baxi et al., 2017). In this process, DAF-16 is activated by the DAF-9/Cytochrome P450 and DAF-

Figure 7 continued

Three independent experiments were performed. The transcription level of lysosomal genes in eat-2(ad1116) (A, B) or eat-2(ad1116) control RNAi (M) at

day 1 was normalized to ‘1’ for comparison. (C–J, N–Q) Confocal fluorescence images of the hypodermis in the indicated strains expressing NUC-1::

pHTomato controlled by the heat-shock (hs) promoter. Scale bars: 5 mm. The average intensity of pHTomato per lysosome was quantified (K, R). At

least 20 animals were scored in each strain. (L) The relative intensity of LSG/LTR in the intestine was quantified in the indicated strains at day 2. At least

10 animals were scored in each strain. In (A, B, K, L, M, R), data are shown as mean ± SD. Multiple t testing (A, B, M) or one-way ANOVA with Tukey’s

multiple comparisons test (K, L, R) was performed to compare datasets of double mutants with eat-2 (A, B), or eat-2 control RNAi (M), or to compare all

other datasets with wild type treated with control RNAi (K, L, R), or datasets that are linked by lines (K, L, R). *p<0.05; **p<0.001. All other points had

p>0.05. N.S., no significance.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Numerical data that are represented as a bar graph in Figure 7A,B,K–M,R.

Figure supplement 1. DAF-16 and SKN-1 regulate lysosomal gene expression in eat-2 and isp-1 mutants in different manners.

Figure supplement 1—source data 1. Numerical data that are represented as a bar graph in Figure 7—figure supplement 1A,B,D,F,H,J.
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Figure 8. DAF-16 and SKN-1, but not HIF-1, regulate lysosomal acidity and gene expression in isp-1 mutants. (A, B, M) Expression of the 10

upregulated lysosomal genes in isp-1(qm150) was analyzed by qRT-PCR in daf-16;isp-1 (A), isp-1 skn-1 RNAi (B) and isp-1;hif-1 (M) worms at day 1.

Three independent experiments were performed. The transcription level of lysosomal genes in isp-1(qm150) or isp-1(qm150) control RNAi at day 1 was

normalized to ‘1’ for comparison. (C–J, N–Q) Confocal fluorescence images of the hypodermis in the indicated strains expressing NUC-1::pHTomato

Figure 8 continued on next page
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12/Vitamin D receptor steroid signaling pathway in the gonad, which leads to increased expression

of V-ATPase genes (Baxi et al., 2017). In addition, microarray analyses identified several vha genes

that are upregulated by SKN-1 under non-stress conditions (Oliveira et al., 2009). Here we found

that loss of daf-16 and skn-1 reduces expression of lysosome genes that encode membrane proteins,

hydrolases and V-ATPase subunits in daf-2 and isp-1, and these two mutations affect lysosomal acid-

ity and/or degradation activity in a non-additive manner. This suggests that DAF-16 and SKN-1 act

in concert to modulate lysosome activity in response to reduced IIS and impaired mitochondrial func-

tion. On the other hand, DAF-16 and SKN-1 appear to act in parallel to maintain expression of vha-

12 and vha-5 in eat-2 mutants, and loss of their function affects the acidity of eat-2 lysosomes in an

additive manner. Further studies are needed to understand how DAF-16 and SKN-1 cooperate to

modulate lysosome gene expression in different conditions.

The TFEB ortholog HLH-30 influences lifespan extension by multiple pathways via its role in

autophagy and lipophagy, but its functions are highly context-dependent (O’Rourke and Ruvkun,

2013, Lapierre et al., 2013; Dall and Færgeman, 2019). It was reported recently that DAF-16 and

HLH-30 act as a complex to co-regulate longevity-promoting genes in IIS mutants (Lin et al., 2018).

Consistent with this, we found that expression of 6 lysosomal hydrolase genes in daf-2 is reduced by

loss of hlh-30 and 5 of them are also targeted by DAF-16. The other 8 DAF-16-regulated lysosome

genes are not affected by hlh-30 mutation. The lysosome degradation activity in daf-2 worms, how-

ever, seems to be unaffected by hlh-30 mutation, and is higher in daf-16;daf-2;hlh-30 than in daf-16;

daf-2. We suspect that loss of hlh-30 causes a decrease in the autophagy level, which may have a

beneficial effect on lysosomal activity due to reduced cargo loading into lysosomes.

Lysosome function is essential for lifespan extension
Our data indicate that lysosome function is essential for lifespan extension induced by multiple

mechanisms. Maintenance of lysosome activity and dynamics may promote degradation of lipids,

misfolded proteins and damaged organelles, which all accumulate with age. Notably, autophagy

capacity declines with age in several species, which may be attributed to impaired activation and

progression of autophagy and/or a decline in degradation of autophagic cargo in lysosomes

(Hansen et al., 2018). On the other hand, autophagy activity increases in multiple long-lived mutants

and is important for lifespan extension (Meléndez et al., 2003; Hansen et al., 2008; Lapierre et al.,

2013; Tóth et al., 2008). It is conceivable that longevity pathways upregulate the functionality of

both autophagy and lysosomes to achieve efficient cellular clearance for lifespan extension. How-

ever, autophagy and lysosomes may be differentially regulated by longevity pathways. For example,

DAF-16 is not required for the increased level of autophagy in daf-2 (Hansen et al., 2008), but is

important for lysosome regulation. Moreover, PHA-4 is required for the elevated autophagy in eat-2

mutants (Hansen et al., 2008), but is dispensable for the upregulation of lysosomal activity.

mTORC1 inhibits autophagy activity but is important for lysosomal tubulation in the reformation pro-

cess and for LPS-induced tubulation of lysosomes in macrophages and DCs (Yu et al., 2010;

Saric et al., 2016; Hipolito et al., 2019). Inhibition of TORC1 has no effect on either appearance or

enrichment of tubular lysosomes in aged C. elegans (our unpublished results). Thus, TORC1 activity

may not be required for age-associated lysosomal tubule formation in worms. Future investigations

are needed to understand how lysosomes are reshaped during aging and how the regulation of lyso-

somes and autophagy is coordinated in different longevity-promoting pathways. It is worth noting

that in our study, the age-associated alterations in lysosomal morphology, motility and acidity were

mainly examined in hypodermal and intestinal cells, which are big and amenable to cell biology

Figure 8 continued

controlled by the heat-shock (hs) promoter. Scale bars: 5 mm. The average intensity of pHTomato per lysosome was quantified (K, R). At least 20

animals were scored in each strain. (L) The relative intensity of LSG/LTR in the intestine was quantified in the indicated strains at day 2. At least 10

animals were scored in each strain. In (A, B, K, L, M, R), data are shown as mean ± SD. Multiple t testing (A, B, M) or one-way ANOVA with Tukey’s

multiple comparisons test (K, L, R) was performed to compare datasets of double mutants with isp-1 (A, M), or isp-1 control RNAi (B), or to compare all

other datasets with wild type (R) or with wild type treated with control RNAi (K, L), or to compare datasets that are linked by lines (K, L, R). *p<0.05;

**p<0.001. All other points had p>0.05. N.S., no significance.

The online version of this article includes the following source data for figure 8:

Source data 1. Numerical data that are represented as a bar graph in Figure 8A,B,K–M,R.
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Figure 9. Lysosome activity is important for clearance of aggregate-prone proteins and lifespan extension. (A–H) Confocal fluorescence images of the

oocytes in wild type (WT; A, B), cup-5(bp510) (C, D), daf-2(e1370) (E, F) and daf-2 cup-5 (G, H) expressing NMY-2::GFP at different ages. White arrows

indicate NMY-2::GFP puncta. Scale bars: 10 mm. (I–K) The average intensity of NMY-2::GFP (I, J) and the number of NMY-2::GFP puncta (K) were

quantified. 50 animals were scored in each strain. (L–Q) Lifespan analyses were performed in the indicated strains. More than 100 worms were

Figure 9 continued on next page
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analysis. We have not been able to examine the age-related changes in lysosomal properties in

small-sized cells such as neurons. Further studies are required to understand whether lysosomes

make tissue-specific contributions to aging and lifespan extension.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Strain
(C. elegans)

N2 CGC RRID:WB-STRAIN:N2_(ancestral) wild type (Bristol)

Strain
(C. elegans)

CF1038 DOI: 10.1126/science.1083701 RRID:WB-STRAIN:
WBStrain00004840

daf-16(mu86)

Strain
(C. elegans)

PS3553 DOI: 10.1126/science.1083701 RRID:WB-STRAIN:
WBStrain00030901

hsf-1(sy441)

Strain
(C. elegans)

DA1116 DOI: 10.1073/pnas.95.22.13091 RRID:WB-STRAIN:
WBStrain00005548

eat-2(ad1116)

Strain
(C. elegans)

CF1041 DOI: 10.1126/science.1139952 RRID:WB-STRAIN:
WBStrain00006375

daf-2(e1370ts)

Strain
(C. elegans)

HZ108 DOI: 10.4161/auto.7.11.17759 cup-5(bp510)

Strain
(C. elegans)

QV225 DOI: 10.1534/g3.115.023010 RRID:WB-STRAIN:
WBStrain00031273

skn-1(zj15)

Strain
(C. elegans)

MQD887 DOI: 10.1016/s1534-
5807 (01)00071–5

RRID:WB-STRAIN:
WBStrain00026670

isp-1(qm150)

Strain
(C. elegans)

FX01978 Shohei Mitani RRID:WB-STRAIN:
WBStrain00022468

hlh-30(tm1978)

Strain
(C. elegans)

XW10101 DOI: 10.1091/mbc.E14-01-0015 cpl-1(qx304)

Strain
(C. elegans)

ZG31 DOI: 10.1016/j.cub.2010.10.057 RRID:WB-STRAIN:
WBStrain00040824

hif-1(ia4)

Strain
(C. elegans)

XW5399 DOI: 10.1126/science.1220281 qxIs257
(Pced-1NUC-1::CHERRY)

Strain
(C. elegans)

XW8056 DOI: 10.1083/jcb.201602090 qxIs430
(Pscav-3SCAV-3::GFP)

Strain
(C. elegans)

XW10197 DOI: 10.1016/j.devcel.2019.10.020 qxIs468
(Pmyo-3LAAT-1::GFP)

Strain
(C. elegans)

XW11282 DOI: 10.1016/j.devcel.2019.10.020 qxIs520
(Pvha-6LAAT-1::GFP)

Strain
(C. elegans)

XW13734 DOI: 10.1016/j.devcel.2019.10.020 qxIs612
(PhsNUC-1::sfGFP
::CHERRY)

Strain
(C. elegans)

XW19180 this paper qxIs750
(PhsNUC-1::pHTomato)

Continued on next page

Figure 9 continued

examined in each strain and three independent experiments were performed. The mean lifespan in the indicated strains was quantified and is shown in

(M, O, Q). In (I, J, M, O, Q), data are shown as mean ± SD. One-way ANOVA with Tukey’s multiple comparisons test (I, J) or multiple t testing (M, O, Q)

was performed to compare all other datasets with wild type, or datasets that are linked by lines. *p<0.05; **p<0.001. All other points had p>0.05.

The online version of this article includes the following source data and figure supplement(s) for figure 9:

Source data 1. Numerical data that are represented as a bar graph in Figure 9I–Q.

Figure supplement 1. Lysosome activity is important for clearance of aggregate-prone proteins in eat-2 and isp-1 mutants.

Figure supplement 1—source data 1. Numerical data that are represented as a bar graph in Figure 9—figure supplement 1M–O,X and Z.

Sun et al. eLife 2020;9:e55745. DOI: https://doi.org/10.7554/eLife.55745 20 of 28

Research article Cell Biology

https://scicrunch.org/resolver/WB-STRAIN:N2_
https://doi.org/10.1126/science.1083701
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00004840
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00004840
https://doi.org/10.1126/science.1083701
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00030901
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00030901
https://doi.org/10.1073/pnas.95.22.13091
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00005548
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00005548
https://doi.org/10.1126/science.1139952
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00006375
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00006375
https://doi.org/10.4161/auto.7.11.17759
https://doi.org/10.1534/g3.115.023010
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00031273
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00031273
https://doi.org/10.1016/s1534-5807%20(01)00071%E2%80%935
https://doi.org/10.1016/s1534-5807%20(01)00071%E2%80%935
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00026670
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00026670
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00022468
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00022468
https://doi.org/10.1091/mbc.E14-01-0015
https://doi.org/10.1016/j.cub.2010.10.057
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00040824
https://scicrunch.org/resolver/WB-STRAIN:WBStrain00040824
https://doi.org/10.1126/science.1220281
https://doi.org/10.1083/jcb.201602090
https://doi.org/10.1016/j.devcel.2019.10.020
https://doi.org/10.1016/j.devcel.2019.10.020
https://doi.org/10.1016/j.devcel.2019.10.020
https://doi.org/10.7554/eLife.55745


Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Strain
(C. elegans)

JJ1473 DOI: 10.1242/dev.00735 RRID:WB-STRAIN:
WBStrain00022491

zuIs45
(Pnmy-2NMY-2::GFP)

Bacterial
and virus strains

Vidal RNAi library Open Biosystems ORF RNAi
collection V2

pha-4 and skn-1

Antibody anti-CPL-1
(rat polyclonal)

DOI: 10.1126/science.1220281 WB(1:1000)

Antibody anti-alpha-Tubulin
(mouse monoclonal)

Sigma-Aldrich
(Missouri, USA)

Cat #T5168;
RRID:AB_477579

WB(1:10000)

Antibody anti-CHERRY
(mouse monoclonal)

SUNGENE BIOTECH
(Tianjin,China)

Cat#KM8017 WB(1:1000)

Recombinant
DNA reagent

pPD49.26-Phs
NUC-1::pHTomato

this paper Cloning described in
’Plasmid construction’

Sequence-based
reagent

pHTomato S
KpnI_MluI

This paper PDFZ1322 cgcgGGTACCg
gaACGCGTATG
ATCAAGGAGT
TCATGCGCTTC

Sequence-based
reagent

pHTomato
CAS SacI_NotI

This paper PDFZ1323 cgcgGAGCTC
GCGGCCGC
TTACTGTGCC
TCCGCTGGCGC

Sequence-based
reagent

Other primers used
in this paper, see
Supplementary file 6

This paper

Chemical
compound, drug

LysoTracker
Red DND-99

Invitrogen
(Oregon, USA)

Cat #L7528

Chemical
compound, drug

LysoSensor
Green DND-189

Invitrogen
(Oregon, USA)

Cat #L7535

Chemical
compound, drug

Trizol Invitrogen
(Oregon, USA)

15596–018

Commercial
assay or kit

PrimeScript RT
Reagent Kit

TaKaRa RR037A

Commercial
assay or kit

FS Universal
SYBR Green Master

Roche 4913850001

Commercial
assay or kit

SuperSignal West
Pico PLUS.
Chemiluminescent
Substrate

ThermoFisher 34577

Software, algorithm Volocity PerkinElmer
(Massachusetts, USA)

RRID:SCR_002668

Software, algorithm Zen Carl Zeiss
(Oberkochen,
Germany)

RRID:SCR_01367

Software, algorithm Image J N/A V1.42q,
RRID:SCR_003070

C. elegans strains
Strains of C. elegans were cultured and maintained using standard protocols (Brenner, 1974) unless

indicated otherwise. The N2 Bristol strain was used as the wild type (WT) strain Genome-integrated

arrays (qxIs) were acquired by g-irradiation to achieve stable expression from arrays with low copy

numbers. The following strains were used in this work: linkage group (LG) I, daf-16(mu86), hsf-1

(sy441); LG II, eat-2(ad1116); LG III, daf-2(e1370ts), cup-5(bp510); LG IV, skn-1(zj15), isp-1(qm150),

hlh-30(tm1978); LG V, cpl-1(qx304), hif-1(ia4). The reporter strains used in this study include qxIs257

(Pced-1NUC-1::CHERRY), qxIs468 (Pmyo-3LAAT-1::GFP), qxIs520 (Pvha-6LAAT-1::GFP), qxIs750

(PhsNUC-1::pHTomato), qxIs612 (PhsNUC-1::sfGFP::CHERRY), zuIs45 (Pnmy-2NMY-2::GFP).
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Microscopy and imaging analysis
Differential interference contrast (DIC) and fluorescence images were captured with an Axioimager

A1 (Carl Zeiss) equipped with epi-fluorescence [Filter Set 13 for GFP (excitation BP 470/20, beam

splitter FT 495, emission BP 503–530) and Filter Set 20 for Cherry (excitation BP 546/12, beam split-

ter FT 560, emission BP 575–640)] and an AxioCam monochrome digital camera (Carl Zeiss). Images

were processed and viewed using Axio-vision Rel. 4.7 software (Carl Zeiss). A 63 � objective (Plan-

Neofluar NA1.30) was used with Immersol 518F oil (Carl Zeiss). Confocal images were captured by a

Zeiss 880 inverted laser scanning confocal microscope with 488 nm (emission filter BP 503–530) and

543 nm (emission filter BP 560–615) lasers, and images were processed and viewed using Zen soft-

ware (Carl Zeiss). All images were taken at 20˚C.

Time-lapse recording using spinning-disk microscopy
C.C. elegans adults at different ages (days 1, 3, 5, 9) were mounted on agar pads in M9 buffer with

5 mM levamisole to prevent movement of the animals. Fluorescence images were captured using a

60 � objective (CFI Plan Apochromat Lambda; NA 1.45; Nikon) with immersion oil (type NF) on an

inverted fluorescence microscope (Eclipse Ti-E; Nikon) with a spinning disk confocal scanner unit

(UltraView; PerkinElmer) with 488 nm [emission filter 525 (W50)] and 561 nm [dual-band emission fil-

ter 445 (W60) and 615 (W70)] lasers. To follow lysosomal dynamics in worms expressing NUC-1::

CHERRY, images were captured every 1 s for 1–2 min. The collected images were viewed and ana-

lyzed using Volocity software (PerkinElmer).

RNAi treatment
RNAi was performed by using the standard feeding method and Vidal RNAi library (Open biosystem)

(Rual et al., 2004). For most experiments, 3–5 L4 larvae (P0) were cultured on the RNAi plate and

F1 progeny at late larval and young adult stages were examined. The pha-4 and skn-1 RNAi led to

death of the F1 progeny. In this case, ~50 bleached L1 larvae were transferred to plates seeded with

bacteria expressing either control double stranded RNA (dsRNA; L4440 empty vector; Control

RNAi) or dsRNA corresponding to pha-4 and skn-1. The phenotype was examined at adult stages in

the same generation.

Quantification of lysosomal tubule length
Fluorescence images of C. elegans adults at different ages (days 1, 3, 5, 9) expressing NUC-1::

CHERRY were captured by laser scanning confocal microscopy (Carl Zeiss). The length of NUC-1::

CHERRY-positive tubules in each worm was quantified by Image J software. Tubular lysosomes that

crossed one another were counted as two individual tubules. 10 lysosomal tubules were measured in

each animal and at least 20 animals were scored in each strain at each day.

Quantification of lysosome number and volume
Fluorescence images of C. elegans adults at different ages (days 1, 3, 5, 9) expressing NUC-1::

CHERRY in 10–15 z-series (0.5 mm/section) were captured by spinning-disk microscopy. Serial optical

sections were analyzed, and the volume and number of NUC-1::CHERRY-positive vesicular lyso-

somes per unit area (31 � 43 mm2) was quantified by Volocity software (PerkinElmer). At least eight

animals were quantified in each strain at each stage. The total volume of vesicular and tubular lyso-

somes was quantified by Volocity. At least 10 worms were quantified in each strain at each day.

Quantification of lysosome dynamics
Time-lapse images of C. elegans L4-stage larvae and adults at different ages (days 1, 3, 5, 9)

expressing NUC-1::CHERRY were captured by spinning-disk microscopy. To quantify Pearson’s cor-

relation coefficient, the colocalization of two frames taken 60 s apart was analyzed by Volocity soft-

ware (PerkinElmer). The average velocity (displacement rate) of tubular and vesicular lysosomes

within 60 s was measured by Volocity software (PerkinElmer). At least 10 independent videos were

recorded and quantified in each strain at each day.
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LysoSensor green and LysoTracker staining
C.C. elegans adults at different age (~40 at each age) were soaked in 80 ml M9 buffer containing

LysoSensor Green DND 189 and LysoTracker Red DND 99 at 10 mM for staining in the intestine and

60 mM for staining in the hypodermis (Invitrogen, Oregon, USA). Staining was carried out for 1 hr at

20˚C in the dark. Worms were then transferred to NGM plates with fresh OP50 and allowed to

recover at 20˚C for 1 hr in the dark before examination. The relative intensity of LSG/LTR was quanti-

fied by Volocity (PerkinElmer).

Quantification of NUC-1::pHTomato intensity
C. elegans adults (1 day post L4/adult molt) expressing PhsNUC-1::pHTomato were incubated at 33˚

C for 30 min and recovered at 20 ˚C for 24 hr before examination. The average intensity of pHTo-

mato per lysosome in the hypodermis was measured by Volocity (PerkinElmer). At least 20 worms

were quantified in each strain.

Lysosome degradation activity assay
Examination and quantification of CPL-1 processing
About 50 C. elegans adults at different ages (days 1, 5, 9) were picked and washed three times with

M9. The worms were lysed by boiling followed by several rounds of freezing and thawing. The result-

ing worm lysate was resolved by SDS-PAGE and the CPL-1 processing was detected by anti-CPL

antibodies (Antibody core, NIBS, 1:1000). a-tubulin antibody (Sigma) was used at 1:5000 as an inter-

nal control. The band intensities of the mature and pro- forms of CPL-1 were quantified by Image J

software, then CPL-1 processing was quantified by dividing the mature CPL-1 by the total CPL-1

(both pro- and mature forms). three independent experiments were performed and quantified in

each strain at each stage.

Quantification of NUC-1::CHERRY cleavage
Adult worms (~50, 1 day post L4/adult molt) expressing NUC-1::CHERRY were washed three times

in M9. The worms were lysed by boiling followed by several rounds of freezing and thawing. The

resulting worm lysate was analyzed by Western blot using anti-CHERRY antibodies (SUNGENE BIO-

TECH, China, 1:1000) and anti-tubulin antibodies (Sigma, 1:5000). The intensities of NUC-1::CHERRY

and CHERRY bands were quantified by Image J software and the extent of cleavage was calculated

by dividing the amount of CHERRY by the total amount of NUC-1::CHERRY and CHERRY. three

independent experiments were performed and quantified in each strain.

HVEM analysis
C. elegans adults at different ages (days 1, 5) were rapidly frozen using a high-pressure freezer (EM

PACT2; Leica Biosystems). Freeze substitution was performed in anhydrous acetone containing 1%

osmium tetroxide. The samples were kept sequentially at �90˚C for 72 hr, �60˚C for 8 hr, and �30˚C

for 8 hr and were finally brought to 20˚C for 10 hr in a freeze-substitution unit (EM AFS2; Leica Bio-

systems). The samples were washed three times (1 hr each time) in fresh anhydrous acetone and

were gradually infiltrated with Embed-812 resin in the following steps: resin/acetone 1:3 for 3 hr, 1:1

for 5 hr, 3:1 overnight, and 100% resin for 4 hr. Samples were then kept overnight and embedded at

60˚C for 48 hr. The fixed samples were cut into 70 nm sections with a microtome EM UC7 (Leica Bio-

systems) and electron-stained with uranyl acetate and lead citrate. Sections were observed with a

JEM-1400 (JEOL) operating at 80 kV. For quantitative analysis of lysosomes, three to five animals

were analyzed in each strain at each stage, using eight 70 nm sections (non-consecutive sections,

spaced at 5000 nm) in each animal. Images of each lysosome were taken at high magnification

(60,000 � or 30,000�) and the numbers were counted manually. Lysosome diameter was measured

by Image J software.

Quantitative real-time PCR (qRT-PCR)
Worms were synchronized and cultured at 20˚C to different ages (adult day 1 and day 5). Total RNA

was extracted from 20 ml worm pallets at each stage using Trizol (Invitrogen/Life Technologies, Carls-

bad, CA) and reverse transcribed by a PrimeScript RT Reagent Kit (TaKaRa). The reverse transcrip-

tion products (cDNA) were diluted to 10 ng/ml and used as the template for quantitative PCR. For
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quantitative RT-PCR, custom-designed primers were mixed with SYBR Green Mix (Roche) and sam-

ples were analyzed using a PCR biosystems QuantStudio 7 Flex (Applied Biosystems). The gene cdc-

42 was used as the internal reference. At least three independent experiments were performed with

three replications each time.

Quantification of NMY-2::GFP intensity and number of puncta
Fluorescence images of C. elegans adults expressing NMY-2::GFP at different ages (days 1 and 5)

were captured by laser scanning confocal microscopy (LSM 880, Carl Zeiss). Fluorescence intensity in

oocytes (the second, third and fourth oocytes counted from the spermatheca) were measured by

Volocity software. The number of NMY-2::GFP puncta in oocytes was counted manually. 50 animals

were quantified in each strain at each day.

Lifespan assay
Worms were synchronized and cultured at 20˚C until they reached the L4 stage. About 150 L4-stage

worms (day 0) were picked to NGM plates with fresh OP50, 15 worms per plate. Worms were con-

sidered dead when they failed to respond to gentle touches on the head and tail with a worm

picker. The surviving worms were counted every 2 days and were transferred to new plates to avoid

interference from the progeny. Animals that crawled off the plate, exploded, bagged, or became

contaminated were discarded. At least 100 worms were quantified in each strain. At least three inde-

pendent experiments were performed for each strain. Representative survival curves are shown in

Figure 9L,N,P and the mean lifespan from three experiments is shown in Figure 9M,O,Q.

Plasmid construction
To generate PhsNUC-1::pHTomato, pHTomato was amplified from plasmid PmitopHTomato (Chen

Chang Lab, Institute of Biophysics, Chinese Academy of Science, China) using primers PDFZ1322/

PDFZ1323 and was ligated to pPD49.26-Phyp-7NUC-1 through the Kpn I-Mlu I/Sac I sites, followed

by replacement of the hyp-7 promoter with the heat-shock promoter (hs) through the BamH I site.

Statistical analysis
The standard deviation (SD) was used as y-axis error bars for bar charts plotted from the mean value

of the data. Data derived from different genetic backgrounds and/or different stages were com-

pared by Multiple t testing, paired t testing, one-way ANOVA with Tukey’s multiple comparisons

test or two-way ANOVA with Fisher’s LSD test. Data were considered statistically different when

p<0.05. p<0.05 is indicated with single asterisks, p<0.001 with double asterisks.
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