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Abstract

Multiple tumors in patients are frequently diagnosed, either synchronous or metachronous.

The distinction between a second primary and a metastasis is important for treatment.

Chromosomal DNA copy number aberrations (CNA) patterns are highly unique to specific

tumors. The aim of this study was to assess genome-wide CNA-patterns as method to iden-

tify clonally related tumors in a prospective cohort of patients with synchronous or metachro-

nous tumors, with at least one intrapulmonary tumor. In total, 139 tumor pairs from 90

patients were examined: 35 synchronous and 104 metachronous pairs. Results of CNA

were compared to histological type, clinicopathological methods (Martini-Melamed-

classification (MM) and ACCP-2013-criteria), and, if available, EGFR- and KRAS-mutation

analysis. CNA-results were clonal in 74 pairs (53%), non-clonal in 33 pairs (24%), and incon-

clusive in 32 pairs (23%). Histological similarity was found in 130 pairs (94%). Concordance

between histology and conclusive CNA-results was 69% (74 of 107 pairs: 72 clonal and two

non-clonal). In 31 of 103 pairs with similar histology, genetics revealed non-clonality. In two

out of four pairs with non-matching histology, genetics revealed clonality. The subgroups of

synchronous and metachronous pairs showed similar outcome for the comparison of histo-

logical versus CNA-results. MM-classification and ACCP-2013-criteria, applicable on 34

pairs, and CNA-results were concordant in 50% and 62% respectively. Concordance

between mutation matching and conclusive CNA-results was 89% (8 of 9 pairs: six clonal

and two non-clonal). Interestingly, in one patient both tumors had the same KRAS mutation,

but the CNA result was non-clonal. In conclusion, although some concordance between

histological comparison and CNA profiling is present, arguments exist to prefer extensive

molecular testing to determine whether a second tumor is a metastasis or a second primary.
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Introduction

Multiple primary lung cancer (MPLC) may occur synchronous or metachronous. Synchro-

nous primary lung cancer has been reported in a CT screening study in 25% of patients [1],

while the incidence of second-primary lung cancer is 2% per year [2,3]. In addition, patients

with primary cancer in other sites, in particular head and neck squamous cell cancer, have a

high risk of developing second-primary lung cancer [4,5]. In clinical practice it can be chal-

lenging to determine, whether multiple tumors in one patient represent metastatic disease or

multiple primaries. If the clinical interpretation in patients presenting with multiple pulmo-

nary tumors is ‘metastatic disease’, the treatment will usually be systemic therapy without cura-

tive intent [6].

Histological comparison of resection or biopsy specimens combined with clinical features

has been proposed to discriminate between multiple primaries from metastases [7,8]. How-

ever, this approach has been criticized, as several reports show discordance between clinico-

pathological criteria and molecular approaches [9–15]. The odds that lesions represent

metastatic lesions would increase considerably if clonality could be demonstrated, which is

defined as the relation of cells arising from the mitotic division of a single somatic cell [16].

Conversely, non-clonality would argue for multiple primary tumors.

Multiple somatic molecular aberrations have been investigated to determine clonality in

daily diagnostic routine: loss-of-heterozygosity (LOH) [17,18], X-chromosome inactivation

[19,20], p53-, EGFR-, KRAS-mutations [11–13,21–23] and genome-wide copy number profil-

ing [24–26] or combinations [10,14,15,27,28]. Genome-wide copy number aberration (CNA)

analysis by array comparative genomic hybridization (aCGH) has been successfully applied in

case reports and small studies for clonality analysis [29–34]. Although the optimal procedure

to investigate clonality is not established yet, the latter approach has the advantage of the

highest number of data points for clonality analysis. The use of CNA as a more detailed com-

parison of tumor pairs, is supported by the report by Qiu and colleagues [35], which shows

CNA differences, not only between lung adenocarcinoma versus lung squamous cell carci-

noma (SqCC), but also between non-small cell lung carcinoma (NSCLC) versus histologically

identical tumors from various origins.

To distinguish primary lung cancers from metastatic foci in patients with two lung tumors,

the 8th edition of the TNM classification for lung cancer proposes a collective judgment of

a multidisciplinary tumor board after taking into account all of the available information,

including histologic type, breakpoints in aCGH, radiographic appearance or metabolic uptake,

pattern of biomarkers (driver gene mutations), comparison of the rates of growth, presence of

nodal or systemic metastases and in cases of resections the appearances in comprehensive his-

tologic assessment [36]. These criteria are divided into clinical (pre-resection) and pathological

(post-resection) criteria.

In the 8th TNM classification of lung cancer two approaches are considered sufficiently reli-

able by themselves to define clonality between two lung tumors: 1) different patterns in histo-

logical judgement represent non-clonality, and 2) matching chromosomal breakpoints by

DNA sequencing represent clonality.

The purpose of this prospective study is the comparison of genome-wide CNA-profiling to

histological and clinicopathological routine procedures for clonality analysis in a cohort of all

our patients with synchronous or metachronous tumors of which at least one was located in

the lung, and report our results from everyday practice.
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Materials and methods

Patients and clinical data

All 201 tumors were included from 90 patients who were consecutively diagnosed between

2007 and 2015 with multiple tumors and had at least one tumor located in the lung, resulting

in 139 tumor pairs (Table 1), of which 25% was synchronous. The median age of patients was

60 (range 25–82). The metachronous pairs had a median interval of 30 months between diag-

nosis (range 1–252 months). Formalin fixed, paraffin embedded (FFPE) resection specimens,

as well as small samples (biopsies or fine-needle aspirations) were used. The request to perform

clonality analysis was made by the treating pulmonologists or pathologist.

Histopathological analysis was performed by central review (ET). The histological out-

comes were categorized according to the WHO classification(s) into major histological types,

which are recognized across different organ systems: adenocarcinoma, SqCC, adenosquamous

carcinoma, undifferentiated non-small cell carcinoma, small cell carcinoma, carcinoid, large

cell neuroendocrine carcinoma and ‘other’. Within a category we aimed for agreement in pat-

terns. Immunohistochemistry (IHC) was applied if necessary, especially in case of biopsies and

cytological samples. TTF-1, mucin and p63 were used for biopsies and cytology samples with

undifferentiated non-small cell carcinoma to discriminate between NSCLC favoring adenocar-

cinoma (TTF-1 or mucin positive, p63 negative), favoring SqCC (TTF-1 and mucin negative,

p63 positive), NSCLC not otherwise specified (NOS) (TTF-1, mucin and p63 negative) and

NSCLC NOS, possible adenosquamous carcinoma (TTF-1/mucin and p63 positive) [37–39].

The samples with NSCLC favoring SqCC (n = 6) and NSCLC favoring adenocarcinoma

(n = 1) were assigned to the groups of SqCC and adenocarcinoma respectively. The

NSCLC-NOS samples (n- = 5) and samples with missing IHC data (n = 2) were added to the

group of undifferentiated non-small cell carcinomas [40]. The use of other markers could be

applied in specific cases if a primary other organ was considered, but was not a requirement

for inclusion in the study. Subtyping of adenocarcinomas was not performed [41]. Pairs with

similar histology were categorized as ‘histological matching’. In a minority of the pairs EGFR-

and KRAS-mutation analysis was performed on both tumors and available for comparison.

Clinical data were retrospectively collected for an additional research question about the

correlation between clonality analysis and the occurrence of (extra) metastases after CNA. Fol-

low-up data were analyzed for signs of metastatic cancer without knowledge of the results of

clonality analysis. Metastatic disease was defined radiologically as a pattern of spread of tumors

in multiple organs, associated with metastases (lungs, liver, brain, bones and adrenal glands)

[42].

Martini–Melamed (MM-) criteria

For pairs with both tumors located in the lungs, categorization was performed by MM-criteria

to differentiate MPLC from intrapulmonary metastases [7].

ACCP-2013 criteria

The latest guideline from the American College of Chest Physicians (ACCP) regarding multi-

ple lung tumors defines multiple primary lung cancer in three ways: 1) tumors with the same

histology, located in a different lobe and no N2 or N3 lymph node involvement and no sys-

temic metastases, 2) tumors with a different histology, molecular genetic characteristics or aris-

ing from separate foci of carcinoma in situ, 3) tumors with the same histology with at least a

4-year interval and no systemic metastases [8]. Other tumor pairs are considered to be related,

which are categorized as T3, T4 or pulmonary metastases. T3 means tumors in the same lobe

Clonality analysis of pulmonary tumors by genome-wide copy number profiling
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Table 1. Clinicopathological information categorized for patients, tumor samples and pairs.

Patients

n = 90

Gender Male 50 (56%)

Female 40 (44%)

Number of tumors per patient 2 73

3 15

4 1

6 1

Samples

n = 201

Location of the tumor Intrathoracic Intrapulmonary 113 (56%)

Mediastinum Tumors 3

Lymph nodes 5

Pleura / Diaphragm 3

Extrathoracic H&N� (17%) Tumors 30

Lymph nodes 5

Other (21%) Axillary lymph nodes 1

Digestive system 15

Breast 6

Urinary system and male genital organs 8

Female reproductive organs 3

Central nervous system 2

Soft tissue or bone 6

Skin 1

Sample type Resection 108 (54%)

Small samples Biopsy 88 (44%)

Cytology 5 (2%)

Histology Adenocarcinoma 70 (35%)

Squamous cell carcinoma 90 (45%)

Adenosquamous 2 (1%)

Undifferentiated non-small cell carcinoma 12 (6%)

Small cell carcinoma 5 (2%)

Pulmonary carcinoid tumor 9 (4%)

Other 13 (6%)

Pairs

n = 139

Sample types per pair Resection vs resection 58 (42%)

Resection vs small sample 55 (40%)

Small sample vs small sample 26 (19%)

Interval Synchronous 35 (25%)

Metachronous�� <2 years 50 (36%)

2–4 years 32 (23%)

�4 years 22 (16%)

Histology Match 130 (94%)

No match 9 (6%)

Martini-Melamed Intrapulmonary metastatic 17

Multiple primary lung cancer 24

Not applicable# 98

ACCP-2013 Intrapulmonary metastatic 11

T3 10

T4 8

Multiple primary lung cancer 12

Not applicable# 98

(Continued)
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with the same histology. T4 means histologically similar tumors, which are anatomically sepa-

rated and located in different ipsilateral lobes. Pulmonary metastases are defined in three

ways: 1) tumors with similar histology and multiple systemic metastases, 2) tumors with simi-

lar histology, located in different lobes and signs of N2 or N3 involvement, 3) tumors with an

interval of less than two years.

Genome-wide CNA analysis by aCGH

CNA profiling to assess clonality was performed on DNA isolated from formalin fixed and

paraffin embedded (FFPE) samples at the Department of Pathology of the Amsterdam UMC,

location VUmc, which is ISO 15189 accredited (previously CCKL https://www.cckl.nl/).

Two or more synchronous or metachronous FFPE tumor samples from a single patient

were offered for a clonality test upon clinical request. In metachronous cases FFPE blocks of

the first tumor were retrieved from the archives of the pathology department. Non-malignant

tissue was used as reference source for DNA CNA analysis. From each FFPE block an initial

5μm section was cut for Haematoxylin and Eosin (H&E) staining. Sequentially, 10 sections of

a thickness of 10μm were cut, tumor material was macroscopically selected and genomic DNA

was isolated as previously described [43]. After DNA isolation, samples were labelled accord-

ing to the manufacturer’s instructions (Enzo Life Sciences, New York, USA), before hybridiza-

tion to aCGH slides (Agilent Technologies, Amstelveen, NL) [44]. Since the start of the study

the number of probes per array on the CGH slides increased from a 105K to a 180K, as shown

in Table 2. The laboratory protocols are made publicly available at protocols.io (dx.doi.org/10.

17504/protocols.io.zj7f4rn; dx.doi.org/10.17504/protocols.io.zj3f4qn; dx.doi.org/10.17504/

protocols.io.zjuf4nw; dx.doi.org/10.17504/protocols.io.zjwf4pe). All array designs and aCGH

data, including the unsuccessful experiments, are made publicly available in GEO under acces-

sion number GSE87058.

In addition, all CNA profiles are added in pairs, as supplementary figures (S1 Figures).

Data analysis. Pre-processing of the CNA data was executed as previously described by

van de Wiel et al. [45], which applies several R-packages version R-2.10.1. Segmentation was

performed using Bioconductor R-package DNA copy version 1.20.0, which data were used

to determine clonality based on two independent algorithms. First, the Bioconductor R-pack-

age “Clonality” version 1.0.0 was implemented with defaults settings and cut-off values as

described in Ostrovnaya et al. [46], which calculates a likelihood ratio (LR) based on the con-

cordance of the segment values of the CNAs in the tumor. For the LR the non-clonal result is a

negative number and a clonal result is a positive number.

Table 1. (Continued)

Mutation analysis Match 8

No match 3

Not performed on both samples 128

CNA Clonal 74 (53%)

Non-clonal 33 (24%)

Inconclusive 32 (23%)

�H&N = head and neck

��Metachronous: median time of interval: 30 months (range 1–252)
# Martini-Melamed and ACCP-2013 are used for comparison of intrapulmonary tumors. Not applicable implies at least one of the tumors is not inside the lungs.

https://doi.org/10.1371/journal.pone.0223827.t001
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Secondly, we developed a correlation-based method to calculate clonality. This ‘Pearson

correlation’ was also calculated based on the log2ratio values of the CNA segment values.

To determine a cut-off for classification of tumor profiles as clonal or non-clonal, 626 ran-

dom pairs were generated from a pool of publicly available CNA profiles, GEO accession num-

ber GSE38479, each from a separate patient [47]. This set of non-clonal tumor pairs was used in

a cross validation to calculate a cut-off value by which 95% of (non-clonal) pairs was classified

as non-clonal. The cross validation was performed using randomly selected sets of 2/3 of the

sample pairs, the cut-off was set where 95% of samples were classified as non-clonal. This pro-

cess was iterated 10,000 times. As expected, the 10,000 cut-off values from the cross validation

followed a normal distribution after which the final cut-off was set at the mode of this normal

distribution. In practice, if the Pearson correlation, based on segmented log2ratios, is below

<0.54, it is considered non-clonal, whereas it is considered clonal when the result is>0.54.

A visual analysis was independently performed by two experts (B.Y. & E.T.). A moving

average was performed, if necessary for visualization purposes [48]. CNA profile pairs were cat-

egorized as clonal or non-clonal. Alternatively, some clonality comparisons were visually deter-

mined as inconclusive if a low deflection from the normal was observed in one or both profiles.

Note that, although tumor cell percentage was estimated prior to DNA isolation from the H&E

sections by the Pathologist (ET), this was not included in the clonality calculations. Visually

incongruent tumor pairs and inconclusive pairs were discussed, and consensus was obtained.

Inconclusive results were invariably due to insufficient quality of the CNA profiles [43], which

we suspect is due to degraded DNA isolated from these clinical tumor specimens or a low frac-

tion of neoplastic cells, since repetition of these experiments did not improve results.

The mathematical and visual evaluation were combined for the final CNA result.

All protocols to obtain and study human archived tissues and patients’ data were approved

by the Medical Ethics Review Committee (METc) at the VU University Medical Center and in

compliance with the Code for Proper Secondary Use of Human Tissue in The Netherlands.

The Medical Research Human Subjects Act (WMO in Dutch) does not apply as affirmed

2019.455. The data from the patient records for the retrospective part of our study, were

retrieved by one researcher and anonymized before any other involved researcher could access

them.

EGFR- and KRAS-mutation analyses were performed as described before [49].

The relations between histology matching, Martini-Melamed criteria, ACCP-2013-criteria,

CNA-results and mutation analysis matching were separately assessed with the McNemar test,

SPSS version 22 (BW). A p-value <0.05 was considered significant.

Table 2. The number of submitted tumor pairs categorized per year and used aCGH platform. Note the increase of the number of CGH probes over time.

Year 4x44k 2x105k 4x180k No aCGH� Total

2007 6 6

2008 2 2

2009 11 10 21

2010 1 17 4 22

2011 1 32 33

2012 12 12

2013 26 26

2014 16 1 17

Total 6 15 113 5 139

� No aCGH performed due to insufficient DNA-quality or lack of remaining tumor tissue.

https://doi.org/10.1371/journal.pone.0223827.t002
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Results

The predominant histological types were SqCC (45%, 90/201 tumors) and adenocarcinoma

(35%, 70/201 tumors). The histological diagnoses matched in 94% of the tumor pairs (130/

139 pairs). CNA results showed clonality in 53% (74/139 pairs) and a non-clonal relation in

24% (33/139 pairs). Inconclusive outcomes for CNA profiles accounted for 23% (32/139

pairs) and were most frequently a result of insufficient DNA and subsequent CNA quality

(91%). The highest percentage of inconclusive CNA-results was in the group of ‘resection

versus small sample’ pairs: 35% (19/55 pairs), compared to 19% (11/58 pairs) of the ‘resection

versus resection’ pairs and 8% (2/26 pairs) of the ‘small sample versus small sample’ pair

(p = 0.017).

The clinical indication for clonality analysis was the assessment of intrapulmonary tumors

(29%, 41/139 pairs), a lung tumor versus a head & neck tumor (23%, 32/139 pairs), and a lung

tumor versus tumors from other locations (47%, 66/139 pairs; Table 3).

A special carcinoid subgroup comprised nine tumors from four patients. Patient 1 had a

lung carcinoid and a thoracic wall carcinoid with an interval of eleven years, and a third carci-

noid on the forehead another three years later. Patient 2 had a lung carcinoid and a pleural

carcinoid with an interval of twenty years. Patient 3 had a lung carcinoid and an ipsilateral car-

cinoid in the other lobe with an interval of eight years. Patient 4 had a stomach carcinoid and a

lung carcinoid one year later. The CNA-results for all carcinoid pairs were clonal, except for

the stomach-lung tumor pair, which was inconclusive.

Histology versus CNA profiling

Comparison of histological matching with conclusive CNA analysis (77% of total; 53% clonal,

24% non-clonal) revealed concordance in 69% (74/107 pairs: 72 clonal and two non-clonal)

(p< 0.001; Table 3). CNA showed a non-clonal pattern in 30% of the pairs with matching his-

tology (31/103 pairs; example in Fig 1), while a clonal pattern was present in 50% of the pairs

with different histology (2/4 pairs; example in Fig 2). The cases with a clonal CNA result and

different histology were 1) a biopsy with NSCLC-favor SqCC (immunohistochemistry positive

Table 3. CNA compared to other methods for clonality analysis. Highlighted in grey are discordant results. P-values from McNemar test.

CNA

Clonal (n = 74) Non-clonal (n = 33) Inconclusive (n = 32) Total (n = 139) p-value

Histology Match 72 31 27 130 <0.001

No match 2 2 5 9

Martini-Melamed Metastasized 10 3 4 17 0.015

MPLC 14 7 3 24

Not applicable# 50 23 25 98

ACCP-2013 Related� 17 6 6 28 1.00

MPLC 7 4 1 13

Not applicable# 50 23 25 98

Mutation analysis Match 6 1 1 8 1.00

No match 0 2 1 3

Missing 68 30 30 128

MPLC = multiple primary lung cancer

� Related: metastatic, T3 or T4
# Martini-Melamed and ACCP-2013 are used for comparison of intrapulmonary tumors. ‘Not applicable’ implies at least one of the tumors is not inside the lungs.

https://doi.org/10.1371/journal.pone.0223827.t003
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for p63 and negative for TTF-1) versus a resection specimen with adenocarcinoma and 2)

biopsies of two lung tumors in the same lobe, showing a NSCLC-NOS (TTF-1 and p63 nega-

tive) and NSCLC-favor SqCC (TTF-1 negative, p63 positive).

Synchronous and metachronous tumor pairs present two different clinical entities. Results

were categorized for these subgroups (Table 4).

For the group of metachronous tumor pairs (n = 104) comparison of the results of histolog-

ical matching with conclusive CNA-results (76% of total; 53% clonal, 23% non-clonal) revealed

concordance in 70% (55/79 pairs: 54 clonal and one non-clonal) (p<0.001; Table 4). CNA

showed a non-clonal pattern in 30% of the pairs with matching histology (23/77 pairs), while a

clonal pattern was present in one of the two pairs with different histology.

Clinicopathological classifications for intrapulmonary tumor pairs versus

CNA profiling

Results of the MM-classification compared to conclusive CNA-results were concordant in

50% (17/34 pairs: ten clonal/intrapulmonary metastasized and seven non-clonal/MPLC)

(p = 0.015; Table 3).

Fig 1. Example of a matching histologic pair with a non-clonal CNA-result. A1 & A2: squamous cell carcinomas from a laryngeal

tumor biopsy and a resected tumor in the left lower lobe, respectively (20x objective). B1 & B2: the corresponding CNA profiles. On

the y axis is the log2 tumor to normal ratio and on the x axis the chromosomal position. MAD = median absolute deviation.

https://doi.org/10.1371/journal.pone.0223827.g001
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Fig 2. Example of a non-matching histologic pair with a clonal CNA-result. A1: adenocarcinoma from a breast resection. A2: non-small cell

carcinoma, favoring squamous cell carcinoma (IHC: p63 positive; TTF-1/PAS-D/Alcian blue negative) from a lung biopsy (20x objective). B1 & B2: the

corresponding CNA profiles. On the y axis is the log2 tumor to normal ratio and on the x axis the chromosomal position. Gain and loss are positive and

negative log2 ratio, respectively. MAD = median absolute deviation. All array data are available in the Gene Expression Omnibus database, under

accession number GSE87058. Mutation analysis: not performed on both samples. Martini-Melamed and ACCP-2013: not applicable. Follow-up: no

sign of metastasis after 79 months.

https://doi.org/10.1371/journal.pone.0223827.g002

Table 4. Histology versus CNA-results for the subgroups of synchronous and metachronous tumor pairs.

CNA Total p-value

Clonal Non-clonal Inconclusive

Synchronous (n = 35) Histology Match 18 (56%) 8 (25%) 6 (19%) 32 0.046

Non-match 1 (33%) 1 (33%) 1 (33%) 3

Metachronous (n = 104) Histology Match 54 (55%) 23 (23%) 21 (22%) 98 <0.001

Non-match 1 (17%) 1 (17%) 4 (67%) 6

Comparison of the results of histological matching from synchronous tumor pairs (n = 35) with conclusive CNA-results (80% of total; 54% clonal, 26% non-clonal)

revealed concordance in 71% (19/28 pairs: 18 clonal and one non-clonal) (p = 0.046; Table 4). CNA showed a non-clonal pattern in 31% of the pairs with matching

histology (8/26 pairs), while a clonal pattern was present in one of the two pairs with different histology.

https://doi.org/10.1371/journal.pone.0223827.t004
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Results of the ACCP-2013 classification compared to conclusive CNA profiling-results

were concordant in 62% (21/34 pairs: 17 clonal/related (five intrapulmonary metastasized,

eight T3, four T4) and four non-clonal/MPLC) (p = 1.00; Table 3).

Mutation analysis matching versus CNA profiling

As EGFR- and KRAS-mutation analyses were not standard procedures in this study, but only

performed upon clinical request for treatment decisions, results of mutation analyses on both

tumors of a pair were available for only eleven pairs (Table 5). A pair with an inconclusive

CNA-result was found in the group with matching mutations, as well as in the group with

non-matching mutations. In the remaining pairs with conclusive CNA-results mutation

matching was concordant in 89% (8/9 pairs): six clonal and two non-clonal (p = 1.0) (Table 3).

Even though one pair showed a matching mutation, suggesting a clonal relationship, clear dis-

cordance in the CNA-profiling result was present.

Table 5. Details of pairs (n = 11) with mutation analysis performed upon both tumor samples.

Pair Mutation analysis� Sample

types��
Locations$ Interval

(months)

CNA Histology‡ Martini-

Melamed†
ACCP-

2013†
Follow-up

Patient

1, pair 1

No match (WT vs KRAS c.35G>T; p.

G12V)

R-R RLL vs

RML

0 Non-clonal Match

(ADC)

MPLC MPLC Metastases

Patient

1, pair 2

No match (KRAS c.34G>T; p.G12C vs

WT)

S-R Gluteus vs

RLL

2 Non-clonal Match

(ADC)

NA NA Metastases

Patient

1, pair 3

No match (KRAS c.34G>T; p.G12C vs

c.35G>T; p.G12V)

S-R Gluteus vs

RML

2 Inconclusive Match

(ADC)

NA NA Metastases

Patient 2 Match (KRAS c.35G>A; p.G12D) R-R LUL vs LUL 0 Clonal Match

(ADC)

Metastatic T3 No metastases

(FU 7 months)

Patient 3 Match (KRAS c.34G>T; p.G12C) R-R RUL vs

RUL

0 Clonal Match

(ADC)

Metastatic T3 No metastases

(FU 40

months)

Patient

4, pair 1

Match (EGFR exon 21, (c.2573 T>G; p.

L858R) vs EGFR exon 21 (c.2573 T>G; p.

L858R), plus EGFR exon 20 (c.2369 C>T;

p.T790M)

R-R RUL vs

LUL

75 Clonal Match

(ADC)

MPLC MPLC Metastases

Patient

4, pair 2

Match (EGFR exon 21 (c.2573 T>G; p.

L858R), plus EGFR exon 20 (c.2369 C>T;

p.T790M)

R-R LUL vs LUL 0 Clonal Match

(ADC)

Metastatic T3 Metastases

Patient

4, pair 3

Match (EGFR exon 21, (c.2573 T>G; p.

L858R) vs EGFR exon 21 (c.2573 T>G; p.

L858R), plus EGFR exon 20 (c.2369 C>T;

p.T790M)

R-R RUL vs

LUL

75 Clonal Match

(ADC)

MPLC MPLC Metastases

Patient 5 Match (KRAS c.35G>T; p.G12V) R-S RUL vs

Stomach

19 Clonal Match

(ADC)

NA NA Metastases

Patient 6 Match (KRAS c.34G>T; p.G12C) S-S LLL vs RLL 0 Non-clonal Match

(ADC)

Metastatic Metastatic Metastases

Patient 7 Match (EGFR exon 19 deletion (c.2235-

2249del15, p.DelE746-A750) plus exon

20 (c.2369 C>T; p.T790M)

R-R RUL vs RLL 0 Inconclusive Match

(ADC)

MPLC T4 Metastases

� WT: wild type

�� Samples: R = resection, S = small sample
$ Locations: RLL = right lower lobe, RML = right middle lobe, LUL = left upper lobe, RUL = right upper lobe, LLL = left lower lobe, RLL = right lower lobe
‡ Histology: ADC = adenocarcinoma, LCC = large cell carcinoma
† NA = not applicable. Martini-Melamed and ACCP-2013 are used for comparison of intrapulmonary tumors. “Not applicable’ implies that at least one of the tumors is

not inside the lungs.

https://doi.org/10.1371/journal.pone.0223827.t005
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Follow-up data versus CNA and (clinico)pathological results

Follow-up data showed metastatic disease in 57% (79/139 pairs) and no metastatic disease in

26% (36/139 pairs). Six percent (9/139 pairs) was excluded from the follow-up data analysis,

because the patients had died within six weeks after the CNA-analysis. Missing follow-up data

accounted for 11% (15/139 pairs). The follow-up period for pairs without signs of metastatic

disease ranged from two to 102 months (median 26 months) and was less than five years in

81% (29/36 pairs). The follow-up period of less than five years was in 41% due to non-cancer-

related death (12/29 pairs) and for the other 59% the endpoint of our study was less than five

years after the date of CNA-profiling. The follow-up data are shown in Table 6, categorized by

method for clonality analysis. The CNA clonal group showed signs of clinical metastatic dis-

ease in 70% (43/61 pairs), which was similar to the percentage in the non-clonal group (19/27

pairs; p = 1.00). The histologically matching group showed signs of metastatic disease in 71%

(77/109 pairs), compared to 33% in the group with different histology (2/6 pairs) (p<0.001).

The MPLC-group according to MM-criteria showed metastatic disease in 67% (14/21 pairs),

compared to 71% in the group with intrapulmonary metastasized lung cancer (12/17 pairs)

(p = 0.07). The non-clonal group according to the ACCP-2013-criteria showed metastatic

disease in 67% (6/9 pairs), compared to 69% in the group with related tumors (20/29 pairs)

(p = 0.61).

Discussion

In this prospective cohort, in 77% of the tumor pairs a conclusive test result for clonality analy-

sis was obtained by genome-wide CNA profiling, of which 69% was clonal (i.e. metastases)

and 31% non-clonal (i.e. multiple primary tumors). The comparison of CNA-results with his-

tological matching showed a concordance rate of 69%. The difference in outcomes was statisti-

cally significant (p<0.001). In 24% of the tumor comparisons with similar histology a different

molecular pattern was revealed by CNA profiling. Moreover, a matching molecular CNA pat-

tern was shown in some tumors (22%) with different histology. In other tumor types similar

results are reported for comparison of tumors with different histology [33,50,51], as well as for

comparison of tumors with similar histology [34,35].

Our data show less concordance than some reports on molecular methods and histological

matching including histological subtyping [24,52–54], but are in line with another [55].

Table 6. Follow-up data categorized by method for clonality analysis.

Metastatic disease during follow-up

Yes (n = 79) No� (n = 36) p-value

Histologic types Match 77 32 <0.001

No match 2 4

EGFR/KRAS-mutations Match 6 2 1.00

No match 3 0

Martini-Melamed Metastasized 12 5 0.067

MPLC 14 7

ACCP-2013 Related# 20 9 0.61

MPLC 6 3

CNA Clonal 43 18 1.00

Non-clonal 19 8

� Range of the follow-up period: 2 to 102 months (median 26 months)
# Related: metastatic, T3 or T4

https://doi.org/10.1371/journal.pone.0223827.t006
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We performed the histological evaluation into major categories: adenocarcinoma squamous

cell carcinoma and undifferentiated to cover more than one WHO classification. For lung can-

cer cases we also applied IHC if necessary [38,39]. The use of other markers was allowed, but

was not a requirement for inclusion in the study. Moreover, the specificity of IHC is not always

useful for distinction: e.g. TTF1 CK7, CDX2 and CK20 do not have any distinctive capacity

between primary intestinal carcinoma from the lung and a metastasis from a colorectal carci-

noma, as the IHC pattern is the same: TTF1-, CK7-, CDX2+ and CK20+ [40].

In lung cancer studies with sufficiently detailed information the reported discordance rates

between histological and molecular prediction range from 9–46% [10,22,54,55]. In these stud-

ies only lung tumors were compared to each other, while in our study also tumors from other

sites are compared to intrapulmonary tumors. A recent histopathological reproducibility study

in NSCLC shows an agreement rate of 81% for determining primary tumor or metastases,

based on histology alone [56]. However, this study did not use molecular analysis for confir-

mation of these findings.

Application of the clinical ‘proposed criteria to distinguish separate primary lung cancers

from metastatic foci in patients with two lung tumors in the 8th edition of the TNM classifica-

tion of lung cancer’ was suitable for only a subset of intrapulmonary tumor pairs in our cohort

(n = 41) [36]. As stated before, only two criteria are decisive themselves: 1) different patterns

in histological judgement prove non-clonality, and 2) matching chromosomal breakpoints by

DNA sequencing demonstrate clonality. Based on the histologic types, 7% of our pairs showed

non-matching results (3/41). These cases would be classified as non-clonal. The remaining

cases would require further evaluation (93%; 38/41).

Interestingly, one of the three tumor pairs with dissimilar histologic types showed a similar

CNA pattern, which means that, according to the proposed criteria, this tumor pair could be

classified as non-clonal (based on histology), as well as clonal (based on genetics). The remain-

ing cases with dissimilar histologic types showed one non-clonal and one inconclusive CNA

results. After application of the proposed decisive criteria on our cohort, comparison of the

histologic types would not be decisive in 93% and in the remaining 7% of cases it would con-

tradict CNA results in at least one case. These findings emphasize the current need for the pro-

posed collective judgment of a multidisciplinary tumor board, but they also emphasize the

desirability of better objective, decisive methods than the proposed ones.

The subgroups of synchronous and metachronous pairs showed similar results. CNA

results were conclusive in 80% and 76% respectively. Concordance between histological simi-

larity and CNA results was 68% and 70% respectively. In respectively 33% (1/3) and 17% (1/6)

CNA revealed clonality in pairs with different histology. In respectively 25% (8/32) and 23%

(23/98) of pairs with similar histology a different molecular pattern was revealed by CNA pro-

filing in both groups.

In 1975 Martini and Melamed introduced clinicopathological criteria (MM) to define mul-

tiple primary lung tumors [7]. The guideline of the ACCP recommends adjusted clinicopatho-

logical criteria [8]. In our study, comparison of CNA-results with MM and ACCP-2013

approaches showed discordance in 50% and 38%, respectively. In other studies, comparison

of the MM-criteria with molecular approaches showed discordance ranging from 14 to 43%

[9,57]. In essence, the clinicopathological approach for the distinction between primary

tumors and metastases in patients with multiple lung tumors is not confirmed by molecular

analysis in approximately half of the comparisons. Overall, molecular analysis outperforms the

clinicopathological approach.

Until recently, the hypotheses existed that differences in driver mutations between two pul-

monary tumors provide a strong argument for two primary tumors, while the same driver

mutations point to lineage. These hypotheses were mainly based on studies which examined
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tumors by mutation analysis only [11–13,22,23,58]. Although only a limited number of cases

in our study were available for the comparison of the results of CNA-profiling and mutation

analysis, the concordance between the two methods was high. One pair with the same KRAS-

mutation in both tumors showed a discordant CNA-result, i.e. a non-clonal relationship. A

pair with corresponding KRAS-mutations and non-clonal CNA-patterns can be explained by

the fact that missense KRAS-mutations have a relatively high incidence in NSCLC. The value

of corresponding single mutations for clonality analysis depends on the frequency of these

mutations: rare mutations have a very low probability of co-occurrence in separate tumors by

incidence, implying that corresponding rare mutations are stronger arguments for clonality

than correspondence for more frequently occurring mutations.

In Western NSCLC the frequency of KRAS p.G12C mutations ranges from 8–14% [59–61].

Extrapolating this to a random NSCLC pair leads to the odds of 1% of having the same KRAS
p.G12C mutation. It is not excluded that the odds may be higher for separate tumors within

one patient, as the same carcinogenic exposure is involved and genetic variations in xenobiotic

metabolism and DNA repair enzymes are excluded.

The use of identical KRAS-mutations as argument for clonality should therefore be inter-

preted with caution. Previously, a similar finding has been described for EGFR: arguments

for clonality were based on identical EGFR-mutations, while a parallel performed alternative

method revealed arguments against clonality [24]. In two additional recent lung cancer hetero-

geneity studies, comparable information was obtained from three out of 13 cases in total

[62,63]. Overall, the hypothesis that identical driver mutations equal a clonal relationship has

been falsified in four studies. Therefore, identical driver mutations can no longer serve as

proof for lineage between tumors, particularly not if only one single gene is analysed. NGS

Multi-Gene mutation panels provide more datapoints for comparison, and lineage for these

results is likely to provide more evidence for clonality than single gene mutation analysis. In

SqCC CNA may be more suitable than comparison of mutations for clonality analysis, as less

clinically relevant driver mutations are known in SqCC than in adenocarcinoma [64].

Intratumoral heterogeneity makes the comparison of the accuracy of the various available

molecular methods challenging [65,66]. Tumors originating from a single cancer (stem) cell

can still have marked differences due to heterogeneity, which can obscure clonality assess-

ments. As methods for clonality analysis may have conflicting results, the question arises as to

which method provides the correct results. The lack of a gold standard makes it difficult to

establish the accuracy of the methods for clonality analysis. As long as no gold standard is

available, it is reasonable to prefer the method, which provides the most detailed information,

i.e. the largest number of data points. Molecular methods study tumors in more detail than

morphological or clinicopathological methods and may therefore be considered as more

accurate.

A limitation of our study is that CNA-profiling was inconclusive in 23% of the pairs, even

though this is in line with initial CNA reports, ranging from 0–25% [10,24,35], and in line

with other clinical DNA techniques, like mutation analysis [67–70]. Inconclusive results were

caused by a high background noise in the CNA-profiles, possibly due to reduced labelling effi-

ciency of low FFPE-isolated DNA [44]. Another limitation is in copy number analysis by

aCGH (or other molecular methods) a sufficient number of genetically aberrant (tumor) cells

need to be present in the tissue selected for DNA isolation. For aCGH at least 10% tumor cells

is required for CNA detection [71]. Since 2015, CNA profiling by shallow next generation

sequencing (NGS) has replaced aCGH in our clinical diagnostic setting. Shallow NGS is more

robust, i.e. with significantly less to no inconclusive cases [34,72–74]. Moreover, since April

2017 CNA profiling runs in parallel with a non-invasive prenatal test [75], leading to a reduced

current turnaround time of six working days.
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Other limitations of our study are the retrospective method of the collection of the follow-

up data and the considerable loss to follow-up (11%).

Follow-up data have limitations as a standard to assess the accuracy of molecular methods

in the clinical context of two tumors. If metastases develop in time, this may be related to one

or both initial tumors. The absence of metastatic disease during follow-up does not exclude a

clonal relationship between two radically treated tumors either, as radical treatment improves

clinical outcomes in oligometastatic disease [76,77]. Therefore, the results of follow-up are

not decisive about clonality between tumors. Differences in our follow-up results were found

between histological similar and different pairs (p<0.001), but not between the CNA-clonal

group and the CNA-non-clonal group (p = 1.00), and neither between MM-categories MPLC

and intrapulmonary metastasized disease (p = 0.067), nor between the ACCP-2013 related and

non-related groups (p = 0.61).

When tumors are clonal and the patient is therefore diagnosed with the metastatic disease,

it might be expected that the follow-up would show new metastases in nearly 100% of cases.

Our results showed new metastases in ‘only’ 70% of CNA clonal cases. This paradoxical

appearance may be due to the fact that our group of clonal cases is not an average cohort of

metastatic (frequently lung) cancer patients, as many stage IV cancer patients have signs of

widespread disease at the time of presentation. In those cases, clonality analysis was not

applied for treatment decisions. Therefore, patients with widespread metastatic disease were

not included in our study. Patients in our study had only one or a very limited number of

tumors, so the degree of metastatic spread at the time of presentation was lower than a random

cohort of metastatic lung cancer patients [77,78]. Thus, selection of cases in our study explains

the paradox.

Information about the stage of disease was not presented, because the stage is highly depen-

dent upon the outcome of the clonality analysis and is therefore biased. Non-clonal tumors are

staged independently, while clonal tumors have impact upon T- or M-status and therefore the

final stage of disease [79].

Conclusion

In summary, genome-wide CNA profiling is a suitable and reliable technique to determine

clonality in daily clinical practice. Although, some concordance between histological compari-

son and CNA profiling was found, arguments exist to use extensive molecular testing, like

CNA, to determine whether a second tumor is a metastasis or a second primary.
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