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Abstract

Unraveling the genetic background of economic traits is a major goal in modern animal genetics and breeding. Both
candidate gene analysis and QTL mapping have previously been used for identifying genes and chromosome regions
related to studied traits. However, most of these studies may be limited in their ability to fully consider how multiple genetic
factors may influence a particular phenotype of interest. If possible, taking advantage of the combined effect of multiple
genetic factors is expected to be more powerful than analyzing single sites, as the joint action of multiple loci within a gene
or across multiple genes acting in the same gene set will likely have a greater influence on phenotypic variation. Thus, we
proposed a pipeline of gene set analysis that utilized information from multiple loci to improve statistical power. We
assessed the performance of this approach by both simulated and a real IGF1-FoxO pathway data set. The results showed
that our new method can identify the association between genetic variation and phenotypic variation with higher statistical
power and unravel the mechanisms of complex traits in a point of gene set. Additionally, the proposed pipeline is flexible to
be extended to model complex genetic structures that include the interactions between different gene sets and between
gene sets and environments.
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Introduction

The function of any biological process is determined by both its

composition and its structure. The genetic architecture that links

quantitative traits operates under the same conditions, wherein

both gene identities as well as relationships amongst genes

determine the phenotype. Over the past two decades, the

candidate gene approach and linkage disequilibrium analysis have

been used to discover QTGs (Quantitative trait genes) and QTNs

(Quantitative Trait Nucleotide). The candidate gene approach is

based on a prior knowledge including the physiological mecha-

nisms described in other studies [1], for example, the estrogen

receptor (ESR) gene [2]. Linkage disequilibrium analysis based on

well-characterized populations has driven QTL (quantitative trait

locus, a fragment of DNA covering one or several genes) mapping

nearly to completion for almost all major livestock species. This

approach exploits crosses of reference strains or individuals related

through a known pedigree. Up to now, a huge amount of

information has been accumulated and deposited in Animal

QTLdb(http://www.animalgenome.org/QTLdb/[3]), a valuable

resource which is freely available for further mining.

In order to make use of the previous QTL mapping results, we

proposed a complementary, alternative approach, named candi-

date gene set approach (CGSA), to identify QTG and QTN in a

specific set of related genes such as regulatory networks, pathways,

etc. The CGSA was designed to decrease false discoveries by

considering a functional set and thus improve statistical power.

The performance of the proposed approach was assessed by

simulation based on 820 hydrid pigs and demonstrated by a real

example of growth traits of 111 hydrid pigs.

Materials and Methods

1 Candidate Gene Set Approach
1.1 Defining candidate gene set. Gene set, as the name

suggests, is a group of genes, which are functionally or structurally

related to each other. There are many possible sources used for

defining gene set, including gene ontology annotations [4], KEGG

pathways [5], Molecular Signatures Database (MSigDB) [6], co-

expression genes from microarray analysis, etc. They may even be

chromosome regions covered by related QTL. The sources above

are not an exhaustive list, but give a good idea on the types of

analyses that can be done using the methods we described in this

study. Parts of the gene sets can be selected as candidate gene sets

based on some prior information for further analyses.

For animals (livestock) with a poor annotation of genes, we can

define candidate gene set by comparative genomics, namely

identifying orthologous genes in livestock by Blast searching,

because researches on model animals have produced a huge

amount of information. When such search indicates a livestock

gene with unknown mapping data, the genes adjacent to the target

gene in the query, can be similarly searched in the livestock
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genome in order to infer the location of livestock gene based on

synteny. Recently, our group have developed a functional

annotation platform called SNPpath for animals (livestock) SNP

[7], and it can provide functional annotations of livestock SNP

markers from several commercial platforms and dbSNP database.

The web server may be particularly beneficial for the analysis of

combining SNP association analysis with the CGSA.

1.2 Mapping genes to QTL. As mentioned above, by fine

design of experiments, QTL mapping has obtained a huge amount

of information, including QTL location (chromosome, location,

and location span), flanking markers, peak markers, test statistics,

QTL effects and traits. For example, up to June of 2012, there

were 6,818 QTLs that represent 585 different traits for pig [3]. If a

gene within the candidate gene set can be mapped to the

confidence interval of QTL that have some physiological

relevance to the trait, it will be reasonably considered as primary

candidate QTGs [8], especially, overlapping with multiple QTL of

interest. Some QTL in the pig QTLdb have very large confidence

interval, so we suggest that research should set a limitation of

confidence interval by considering overlapping with multiple QTL

of interest. We have successfully written a Perl script to relatively

locate genes within the interval of the QTL.

1.3 Predicting potential SNPs. Though a few thousand of

SNPs in animal are currently available, which comes from

commercial array or annotation database like dbSNP, the SNP

density in animal is much lower than that in human. The low SNP

density might limit the power of identifying genes involved in the

traits of interest. The ongoing genome sequencing project and the

releasing of the genome draft assembly of animal have provided

the opportunity to compare and detect SNP candidates using

alignment algorithms [9]. Kerstens (2009) successfully used this

strategy to mine novel SNPs of pig using whole genome shotgun

dataset generated by the Danish-Chinese Pig Genome Sequencing

Initiative [10]. Therefore, we could perform similar pipeline to

identify candidate SNPs.

1.4 SNP genotyping. The predicted candidate SNPs as well

as SNPs from commercial array and annotation database need to

be genotyped in a panel of target population for association

studies. Owing to advances in the area of molecular genetics and

improvements in genotyping technology, a large number of SNP

genotyping techniques were used to type allele-specific products

for SNPs of interest followed by genotype determination. In

addition to high cost in genotyping and stringent requirements for

accuracy, the throughput has been a critical factor in many farm

animals studying with large sample populations. Therefore, in

most cases, we need to make a reasonable compromise between

throughput and cost. For instance, typing SNP candidates

overlapped with QTLs or that in all members of gene set is

determined by cost to some extent.

1.5 Association test. The CGSA method makes an attempt

to answer the following questions: First, whether is there the

association between genetic variation and phenotypic variation in

the gene set level? Second, if the gene set is significantly associated

with some traits, which SNPs or combinations play a key role?

To answer the two questions, we first used the following Mixed

Liner Model (MLM) to perform our CGSA on each measured

trait.

The matrix format of this model is that:

y~XbzZ1azZ2dzZ3hAAzZ4hADzZ5hDDze,

where b is a vector of fixed effects, a is vector of random additive

genetic effects of candidate gene set, d is vector of random

dominance effect of candidate gene set, and hAA, hAD and hDD

represent the interaction effects of additive-by-additive (AA),

additive-by-dominance (AD) and dominance-by-dominance (DD)

respectively. X, Z1, Z2, Z3, Z4 and Z5 are the corresponding

design matrix.

It is assumed that.

a*MVN(0,As2
a)

d*MVN(0,Ds2
d )

hAA*MVN(0,HAAs2
AA)

hAD*MVN(0,HADs2
AD)

hDD*MVN(0,HDDs2
DD)

e*MVN(0,Is2
e)

MVN represents multivariate normal distribution, A and D
represent the corresponding additive (dominance) effect relation-

ship matrix in candidate gene set level, respectively. The matrices

can be estimated by the SNPs in select candidate gene set using the

software of PLINK [11]. The PLINK estimates the probability of

sharing 0, 1, or 2 alleles IBD (Identiy by Descent) for two subjects.

The elements of A matrix can be expressed as

P(IBD~2)z0:5 � P(IBD~1) and the elements of D matrix

can be calculated as P(IBD~2) [11]. The corresponding epistatic

variation effect relationship matrix could obtain by the Hadamard

products of the A and D matrices [12]. The likelihood ratio test

could be used to test the significance of the additive effects,

dominance effect and epistatic effect for the candidate gene set.

Second, if the candidate gene set is significantly associated with

some traits, the single SNP general linear model or multiple higher

order interaction models such as MB-MDR method can be further

used to study the genetic mechanism. MB-MDR method proposed

by Calle et al. [13] not only assesses joint significance of multiple

higher order interaction models at once, but also facilitates

distinguishing between epistatic effects and contributing main

effects to the multilocus signal via the ‘MB’ part in MB-MDR [14].

2 Simulations
2.1 Simulation data. We compared the statistical power

between our CGSA and the traditional candidate gene approach

across a variety of heritabilities in a real experimental genotype

data and simulated phenotype data produced by R program. The

pig dataset was collected from 820 commercial female pigs. There

were 51,385 SNPs scored on these individuals [15]. SNP markers

were aligned to the corresponding Ensemble gene IDs (the Sus

scrofa Build 9.2 downloaded from UCSC genome browser). The

genes including 50 kb flanking regions (upstream and downstream

of gene), were used for the assignment of SNPs to genes. The 57

SNPs mapped to 17 genes in the insulin and insulin growth factor-

1/FoxO (IGF1-FoxO) signal pathway were used in the simulation

procedure. All the makers with their positions are shown in Table

S1.

Candidate Gene Set Approach to Identify QTN
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2.2 Simulation procedure. Two simulation experiments

were conducted to assess the performance of our method. In the

first simulation experiment, only additive genetic effects were

simulated. Fifteen SNPs was randomly sampled from the IGF1/

FoxO signal pathway as causal QTNs for the simulated traits. The

distribution of these QTN effects was assumed as a normal

distribution with mean of 0 and variance of 1. Phenotypes were

calculated as the sum of additive effect and the random residual

effect. The total additive effect was the sum of additive effects

across all QTNs and the residual variance was computed as

Ve~Va(1-h2)=h2, where Va is the empirical additive genetic

variance and h2 is the heritability. A residual error was assumed as

a normal distribution with mean of 0 and variance of Ve. Five

levels of heritability were analyzed (h2 = 0, 0.05, 0.1, 0.25 and 0.5)

in this simulation experiment.

In the second simulation experiment, additive effects, domi-

nance effects and epistatic effects were simulated simultaneous.

Thirteen SNPs from the IGF1/FoxO signal transduction pathway

were assumed as causal QTNs for the simulated traits. All the

main effects and the effects of interaction (epistatic effects) of the makers

with their positions are shown in Table S2. Three paired SNPs

were simulated as interacting QTN effect. It is assumed that the

effects of paired SNPs were seen only if an individual is

heterozygous at both QTNs. The simulated additive genetic

variance and total genetic variance for the true 820 commercial

female pigs were 6.05 and 9.01 respectively. The residual variance

was set as 10. The power was calculated as the proportion of

QTNs detected or the significant pathway with Type I error rate

0.01. A total of 1000 replications were conducted for each method.

The R program written by the authors based on GAPIT software

was used to perform analysis for the two simulation experiments

[16].

3 Analysis of Real Data
Ethics statements. Prior approval by the Institutional

Animal Care and Use Committee of Shanghai Jiao Tong

University (Contract 2009-0068) was given for all experimental

procedures involving animals in the present study.

Experimental design and procedure. The 111 Duroc

6Landrace 6Yorkshire (DLY) hybrid pigs were phenotyped on

daily feed intake and body weight. All pigs were fed the same corn-

soybeanmill based ration during the feeding period. Pigs were

automatically weighed on their way to feeding using OSBORNE

FIRE system. Feed intake and body weight (BW) were measured

several times a day, which were then arithmetically averaged to

one value for further analysis. If some measurements were missing,

the remaining measurements were used and treated as a daily

measurement. For generating variables representing BW changes

from born to 100 kg and further analysis of the BW data,

individual measurements were first smoothed using S-shaped

logistic curves. In this study, we mainly focus on the corresponding

timing intervals from birth to 30 kg (BW 30), from 30 to 60 kg

(BW 60), from 60 to 100 kg (BW 100), average daily gain (ADG)

and total feed intake (DFI). The heritability of BW 30, BW 60, BW

100, ADG and DFI are 0.39, 0.35, 0.34, 0.37 and 0.15 separately

in present population.

Defining candidate gene set. To make use of the results

from the related experiments of model organisms, we defined the

gene sets based on our previous work, which presents the

transcriptomic profile during skeletal muscle regeneration using

time-course expression data and motif scanning information [17].

Our study recovered some signaling pathways involved in the

regulation of muscle differentiation, and the IGF1/FoxO signal

transduction pathway was selected to define a gene set for the

current study.

Predicting potential SNP positions and SNP

genotyping. Two data sources were used to predict SNP

positions, one from the commercial array annotations (Illumina

PorcineSNP60 BeadChip), and the other from the NCBI Trace

repository. The identification of novel SNPs was performed by a 2-

step process for the NCBI Trace repository. First, the shotgun

sequences were assigned to a reference sequence (member form

gene set) by clustering based on their sequence similarity.

Secondly, the sequences within cluster were aligned to search for

potential SNPs. A total of 111 genomic DNA samples from DLY

hybrid pigs comprising 58 females and 53 castrates, were

genotyped by SNaPshot method. The primer sequences for

analysis of 23 identified SNPs are listed in Table S3.

Association test. The mixed linear model is as following,

yijk~mzsizpjzakzdkzeijk, where yijk is the phenotypic value

of each trait, mis the overall mean for each trait, si is the fixed

gender effect (i = 1,2), pj is fixed sire effect (j = 1,2,3), ak and dk are

the pathway additive effect and dominance effect of the kth

individual,eijkis the random residual effect. The additive and

dominance genetic relationship matrix was estimated based on the

TagSNPs in select candidate signaling pathway using the software

of PLINK [11]. Then ASReml was used to estimate the pathway

effects and test the significance level by the likelihood ratio test

[18]. In this case study, we can take full advantage of the

opportunities provided by MB-MDR model to study simulta-

neously the association of a group of genetic variants in predefined

gene set, which can help us to holistically unravel the complex

genetic structure of the studied trait and to gain insight into the

biological processes and mechanisms.

Results

Simulation Results
For the first simulation experiment, generally, along all the

levels of heritability investigated, as heritability increases, the

statistical power of both methods increased as expected (Figure 1).

Our CGSA performed higher statistical power over the traditional

candidate gene approach across all kinds of heritabilities. The

differences among these methods varied along the level of

heritabilities. Figure 1 showed that the differences among the

methods with mid-level and low-level of heritability were greater

than the one with high heritability. For the second experiment, the

statistical power of our CGSA and candidate gene approach was

shown in Table S4. Compared to the traditional candidate gene

approach, the CGSA performed the significantly higher statistical

power for both additive effect and dominance effects and similar

statistical power for epistatic effect in the present simulation

scenario.

Real Data Results
There were 28 murine genes in the IGF1/FoxO signal

transduction pathway, and a simple scheme of IGF1/FoxO

pathway components is shown in Figure 2 (modified from [19]).

These 28 genes have been aligned to the pig chromosomes to

identify orthologous genes using BLASTn program [20] from the

blastall tool [21] with default parameters. We identify many pig

orthologs of the murine genes and the compared results are shown

in Table 1. However, the chromosomal locations for 4 genes

(INS2, IRS2, PIK3CA and PIK3CB) are still unknown.

Each of the genes that were mapped on the pig genome has

been co-localized with published QTL from pigQTLdb. The

genes identified as being co-localized with a QTL are presented in

Candidate Gene Set Approach to Identify QTN
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Table S5. FOXO1 gene has been co-localized with 22 QTL,

FOXO3 gene with 48 QTL, FOXO6 gene with 32 QTL, IGFBP6

gene with 27 QTL, and PDK3 gene with 4 QTL. Only the results

for the FOXO3 gene are detailed here (Table 2). We found that

many traits were closely associated with growth and development

traits, for example, average daily gain (QTL_id 5680, 329 and

5928) and feed intake (QTL_id 871). Each locus (QTL_id)

corresponded to one publication.

At last, 23 single nucleotide polymorphisms (SNPs) in 9 genes

(IGF1, IGFBP1, INSR, IRS1, PIK3R3, PDK3, PDK4, AKT3 and

FOXO3) were identified in the IGF1/FoxO pathway, and 11 of

which were predicted novel SNPs. Using this approach, 13 SNPs

were determined to be polymorphic in our panel, three of which

were novel SNPs (S14, S18 and S28 in Table S3). The allelic and

genotypic frequencies, as well as the concrete distribution in this

population were determined by SNaPshot method. Analysis of the

same site using PCR-RFLP generated similar results to those of the

SnaPshot analysis (data not shown). Our study showed that the

SNaPshot method can reliably replace sequencing and RFLP

testing, particularly in cases in which no restriction endonuclease

recognizes the polymorphic site being analyzed. Moreover, the

same results can be achieved in a shorter time by SNaPshot

analysis for small or medium output.

Using both our MLM model and the likelihood ratio test, we

tested the significance of the additive effect and dominance in

IGF1-FoxO pathway level on each of the 5 measured traits. Our

results showed that the IGF1-FoxO pathway significantly associ-

ated with BW100 (0.007) and ADG (0.010). No significant

dominance effect was found in the present study.

For further identifing which SNP (or combinations of SNPs)

plays a key role(s) in the IGF1-FoxO pathway, we performed

single-SNP association analysis and interaction models analysis.

The single SNP association analysis was initiated using linear

regression with adjustment for gender and pedigree. Of the 13

SNPs analyzed, 4 SNPs (AS3, AS6, AS9 and AS10) were showing

the strong association with BW100 and ADG. Overall, most of

SNP associations were moderate in single SNP analysis, suggesting

that there appeared to be multiple weak associations in the studied

pathway. These SNPs may therefore interact with each other to

exert their effect.

In order to complement pathway-based analysis and provide

additional insights into the genetic architecture of studied traits, a

generalized multifactor dimensionality reduction method was used

to determine the relationship between interacted SNPs (combined

effect) and studied traits. Several interactions were shown to be

significant: a two-SNP interaction model (AS3 and S14) and a

three-SNP interaction (AS6, AS9 and S18) were related BW100 as

well as a two-SNP interaction (AS10 and S28) and a three-SNP

interaction (AS6, AS9 and S18) involved to ADG was found. Our

study indicates that the susceptibility SNPs identified by single

SNP analysis might independently and/or in a combined manner

influence studied trait. Overall, we can identify many SNPs of

moderate effect that influence studied traits though interaction,

and most of the SNPs found have been reported in the literature as

Figure 1. Statistical powers between CGSA and candidate gene approach under different heritability levels. The power was examined
on a trait simulated from 15 causative mutations (QTNs). A total of 1000 replications were conducted for each method. The heritability of the trait
varied from 0 to 0.5. The differences between our CGSA and candidate gene set approach with mid-level and low-level of heritability were greater
than the one with high heritability.
doi:10.1371/journal.pone.0053452.g001
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functional elements correlated with the model animals’ growth

[22,23,24].

Discussion

Over the past decade, researchers have made great progresses in

identifying economical relevance factors (genes, QTLs and SNPs)

contributing to trait variation. SNPs have been the markers of

choice in recent years, due to their high stability, density and the

highly automated way in which SNPs are detected. Various

statistical models and techniques have been developed and applied

in order to make inferences about the general population using

studied samples as well as relate the genotype information to

observable/measurable phenotypes [25]. Our approach is differ-

ent from traditional candidate gene strategies, which identify sets

of SNPs/variants showing allele frequency and genotypic concor-

dance among subjects. Parts of the traditional strategies based on

the linkage disequilibrium between markers mainly consider

haplotypes [26,27], but is restricted to areas of high LD (haplotype

blocks). In addition, clustering and principal components were also

used to group markers based on LD [28,29]. Unlike these, our

CGSA approach can be considered as an improvement of

traditional candidate gene approach. We group markers based

on functional considerations, which we believe is in better

concordance with the goal of identifying variation that is

associated with phenotype.

In order to improved statistical power, several similar candidate

pathway approaches [30,31] were published to deal with some of

the same issues as our study. However, our study was conducted

differently in a variety of ways. First, our method can make full use

of the large scale study results performed on model animals (human,

mouse) which have provided the potential to define candidate gene

sets to identify the complex processes involved in the phenotype.

Second, our approach takes full advantage of previously reported

QTL, candidate gene sets that lie within the region of the QTL, and

that have physiological relevance to the trait (considered as primary

candidates for the QTL), particularly within multiple overlapping

Table 1. The comparison of orthologs members between pig and murine IGF1/FoxO pathway.

Ensemble No (mouse)

Mouse
gene
name

Mouse
chr.

Mouse genome
position Ensemble No (pig)

Pig
gene
name

Pig chr
by blast

Pig genome
Position

ENSMUSG00000020053 Igf1 10 87321010–87399792 ENSSSCG00000000857 IGF1 5 77082628–77154428

ENSMUSG00000020429 Igfbp1 11 7097785–7102549 ENSSSCG00000016728 IGFBP1 18 48650114–48654870

ENSMUSG00000039323 Igfbp2 1 72871077–72899048 * IGFBP2 15 112022157–
112022652

ENSMUSG00000020427 Igfbp3 11 7106089–7113926 ENSSSCG00000016729 IGFBP3 18 48778107–48782267

ENSMUSG00000017493 Igfbp4 11 98902558–98913969 ENSSSCG00000017472 IGFBP4 12 19797073–19811336

ENSMUSG00000026185 Igfbp5 1 72904506–72921458 ENSSSCG00000016178 IGFBP5 15 112017411–
112019845

ENSMUSG00000023046 Igfbp6 15 101974793–101979942 ENSSSCG00000000255 IGFBP6 5 16854964–16855290

ENSMUSG00000000215 Ins2 7 149864561–149885415 / / / /

ENSMUSG00000005534 Insr 8 3150922–3279617 * INSR 2 50637472–50720384

ENSMUSG00000055980 Irs1 1 82229676–82287991 ENSSSCG00000016242 IRS1 15 120872701–
120981690

ENSMUSG00000038894 Irs2 8 10986980–11008458 / / / /

ENSMUSG00000054667 Irs4 X 138145541–138159806 ENSSSCG00000012577 IRS4 X 88228629–88230746

ENSMUSG00000041417 Pik3r1 13 102450716–102538172 ENSSSCG00000016958 PIK3R1 16 44114529–44120792

ENSMUSG00000031834 Pik3r2 8 73292075–73300612 ENSSSCG00000013900 PIK3R2 2 62387523–62399642

ENSMUSG00000028698 Pik3r3 4 115894223–115975661 ENSSSCG00000003909 PIK3R3 6 118327752–
118488382

ENSMUSG00000027665 Pik3ca 3 32296593–32367408 / / / /

ENSMUSG00000032462 Pik3cb 9 98938821–99041040 / / / /

ENSMUSG00000006494 Pdk1 2 71711281–71741915 ENSSSCG00000015958 PDK1 15 73606993–73615575

ENSMUSG00000038967 Pdk2 11 94887572–94902668 * PDK2 12 24797209–24801353

ENSMUSG00000035232 Pdk3 X 91009946–91077540 ENSSSCG00000012181 PDK3 X 19401655–19471675

ENSMUSG00000019577 Pdk4 6 5433351–5446309 ENSSSCG00000015334 PDK4 9 70465829–70477355

ENSMUSG00000001729 Akt1 12 113892032–113913095 ENSSSCG00000003194 AKT1 6 38477164–38484612

ENSMUSG00000004056 Akt2 7 28376571–28425845 ENSSSCG00000002989 AKT2 6 33533100–33560034

ENSMUSG00000019699 Akt3 1 178950204–179188334 ENSSSCG00000010872 AKT3 10 16162075–16280499

ENSMUSG00000044167 Foxo1 3 52072259–52154031 ENSSSCG00000009370 FOXO1 11 15075341–15085340

ENSMUSG00000048756 Foxo3 10 41901647–41996561 ENSSSCG00000004387 FOXO3 1 78223324–78349962

ENSMUSG00000042903 Foxo4 X 98449867–98456212 ENSSSCG00000012399 FOXO4 X 56862227–56867783

ENSMUSG00000052135 Foxo6 4 119939684–119959954 ENSSSCG00000009371 FOXO6 11 15207819–15208487

doi:10.1371/journal.pone.0053452.t001
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QTL of interest. Third, most of existing candidate pathway

approaches [30] use multiple regression models to test the

significance, but our method allows us to test whether a set of

genes are associated with a trait of interest based on MLM

framework which could eliminate false positives effectively both in

candidate gene association study and GWAS [32,33].

Using our approach, we succeed in identifying combined effect

members in our predefined set, which is associated with several

economical traits in pigs. The increase in power when compared

to single-marker approaches based on the joint reduction of false

positives and false negatives. Reducing false negatives comes from

the fact that moderately strong signals can be combined into a

stronger signal, whereas, these members might be ignored by

strong global significance in single SNP analysis. Reducing false

positives is because of our method based on MLM framework

which could eliminate false positives effectively [32,33]. In the

present case study, 2 SNPs associated with the BW 30, 1 SNP with

BW 60 in single-marker approach were excluded in case of false

positives because our gene set approach didn’t indicate the

significant association in the pathway level. In the present case

study, no significant dominance effect was found because sample

size is relatively too small. So, the real results cannot demonstrate

the advantage of the new approach. Our group is trying to apply

our approach to other dataset with large sample size to verify the

relevant conclusions furtherly.

Finally, the results from this approach offer a clearer picture on

the functional relevance of the discoveries. The significant SNPs

found using this approach warrant further experimental explora-

tion. Especially, SNPs from FoxO3, which were not only

significant in single SNP analysis, but also in combined effect

analysis. This FoxO3 gene was overlapped with multiple QTLs

(48 QTLs) of pigs’ growth and development traits, and was

reported to be related to muscle growth abundantly [34,35,36].

The validation experiments would be more or less complex

depending on the nature of the trait (mono- or polygenic). As

biotechnology and genetic transformation techniques advance, we

will be able to demonstrate experimentally whether specific SNPs

truly determine variation in a particular trait.

It has become clear that gene sets rather than individual gene

are essential in understanding carcinoma [37,38]. One drawback

of this approach, however, is the reliance of prior assumptions

that genes identified in the QTL regions are well annotated, the

explicitly recording from KEGG and so on. If not, we may

overlook or miss some genes or SNPs involved in the phenotype

for incompleteness of annotation and complex biological

process.

Conclusions
We have proposed a novel approach for determining specific

genes and their SNPs that are associated with studied traits in the

gene set level. The simulation results demonstrated that our CGSA

performed higher statistical power over the traditional candidate

gene approach. We also used this approach to study the

relationship between IGF1-FoxO pathway and growth and

development traits of pig. The results suggested that genetic

variations in the IGF1-FoxO pathway modulate the growth and

development in pigs. The CGSA is flexible to be extended to

model complex genetic structures and can be applied by other

gene sets. Computer programs (R and perl source code) are

available at http://klab.sjtu.edu.cn/CGSA.

Figure 2. An illustration of the IGF1/FoxO pathway genes. Arrows indicate the direction of signal transduction. The numbers on the left side
represent the position of the IGF1/FoxO pathway genes.
doi:10.1371/journal.pone.0053452.g002
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Table 2. Co-localization of QTL map from Pig QTLdb and candidate gene (FOXO3) from IGF1/FoxO pathway.

QTL_ID QTL_symbol Trait_name QTL_start QTL_end

3793 BFT Average backfat thickness 52423837 166525431

5670 BFT Average backfat thickness 3320998 144078329

5680 ADG Average daily gain (10 weeks-slaughter) 3320998 193909568

329 ADG Average daily gain (25–90 kg) 32980500 109360545

5928 ADG Average daily gain (on weaning) 52423837 86769928

45 LUMBF Backfat at last lumbar 73990528 154961837

3794 LRIBF backfat at last rib 52423837 166525431

5674 LRIBF backfat at last rib 7302766 163511869

651 BFTR Backfat at rump 43291013 144078329

3795 10RIBBFT Backfat at tenth rib7 52423837 158592899

5672 10RIBBFT Backfat at tenth rib 26500027 86769928

5679 BYLEAN Belly meat content 7302766 163511869

2845 BELLYWT Belly weight 51386391 139615854

5931 WWT Body weight (weaning) 52423837 86769928

4260 CD2L CD2-positive leukocyte number 24598042 144803085

4261 CD4L CD4-positive leukocyte number 24598042 144803085

5669 cond Conductivity 24 hours postmortem (ham) 52423837 166525431

5668 cond Conductivity 24 hours postmortem (loin) 52423837 118433791

6366 CREAT Creatinine level 33269805 126505160

8885 EAREA Ear area 43291013 109360545

8886 EAREA Ear area 43291013 109360545

8853 EARWT Ear weight 43291013 109360545

8854 EARWT Ear weight 43291013 109360545

5678 ECLC Estimated carcass lean content 7302766 163511869

5676 FATAREA Fat area 11402561 144078329

5677 FP Fat ratio (percentage) 7302766 163511869

871 FEEDIN Feed Intake 26957266 91781628

8908 FSCOREF feet score (front) 32980500 108464751

860 HEADWT Head weight 26957266 91781628

5420 HCT hematocrit 33269805 126505160

8910 LSCOREH leg score (hind) 32980500 108464751

872 LIVWT Liver weight 26957266 91781628

3796 LMA Loin muscle area 52423837 158592899

5468 LYMPH Lymphocyte number 33269805 126505160

2930 MARB Marbling 52423837 91781628

4019 MARB Marbling 27710381 179573387

78 MARB Marbling 73990528 86769928

5667 COLORO Meat color OPTO QTL 52423837 163511869

5664 pH pH for Longissmus Dorsi 52423837 118433791

5666 pH pH for Longissmus Dorsi 52423837 118433791

5665 pH pH for Semimembranosus 52423837 118433791

6380 BPOTASS Potassium level 33269805 126505160

9658 PRRSVAB PRRSV antibody titer 26500027 144251236

5675 SIDEF Side fat 26500027 86769928

5671 SHOUFATD Subcutaneous fat depth at shoulder 3320998 163511869

6481 TNUM Teat number 43291013 109360545

79 TOTLIP Total lipid 24598042 129115585

611 WBC White blood cell counts 32980500 108464751

doi:10.1371/journal.pone.0053452.t002
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