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Abstract

Researchers have extensively studied the social mechanisms that drive the formation of

networks observed among preschool children. However, less attention has been given to

global network structures in terms of blockmodels. A blockmodel is a network where the

nodes are groups of equivalent units (according to links to others) from a studied network. It

is already shown that mutuality, popularity, assortativity, and different types of transitivity

mechanisms can lead the global network structure to the proposed asymmetric core-cohe-

sive blockmodel. Yet, they did not provide any evidence that such a global network structure

actually appears in any empirical data. In this paper, the symmetric version of the core-cohe-

sive blockmodel type is proposed. This blockmodel type consists of three or more groups of

units. The units from each group are internally well linked to each other while those from dif-

ferent groups are not linked to each other. This is true for all groups, except one in which the

units have mutual links to all other units in the network. In this study, it is shown that the pro-

posed blockmodel type appears in empirical interactional networks collected among pre-

school children. Monte Carlo simulations confirm that the most often studied social network

mechanisms can lead the global network structure to the proposed symmetric blockmodel

type. The units’ attributes are not considered in this study.

Introduction

One of the key attempts in sociology, and also in psychology, is to reveal the (social) mecha-

nisms that are responsible for a given (social) output. When the relationships among individu-

als are studied, the social output is a social network. In social network analysis, there are

different approaches to study the underlying social mechanisms of a given network. The main

focus of earlier studies was on social mechanisms in the context of empirical networks while

less attention was paid to the social mechanisms in the context of specific global network struc-

tures. Therefore, the general objective of the current study is to identify fundamental social

mechanisms that guide the formation of a global network structure.
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In this study, the global network structure is narrowed to a structure with three or more

groups. The units from the first group (called the core group) have symmetric links estab-

lished with all units in the network, while the units from the other groups (called cohesive

groups) are internally well linked. The units from different cohesive groups are not linked to

each other. This global network structure (called symmetric core-cohesive blockmodel,

described in more detail in subsection Global network structure) is proposed since it is a

combination of cohesive and symmetric core-periphery global network structures and

because these global network structures can arise from the well-known transitivity [1, 2] and

popularity [2] mechanisms. These two mechanisms were found to be present in the forma-

tion of many liking and friendship networks collected among preschoolers (see subsection

Local mechanisms).

The assumption made in this study is that the proposed global network structure appears

among preschool children. Entrance to preschool brings a set of peers together who were pre-

viously unknown to one another. This is rare in the natural world and, thus, the shift into pre-

school peer groups offers a unique opportunity to assess and understand the mechanisms

behind peer group formation. Preschool entry is also distinct from other social network set-

tings in that it offers a closed network space in which peers interact. Preschool also provides a

unique developmental context in which children are motivated, perhaps for the first time, to

form new and enduring social relationships with similar-age peers [3, 4].

This assumption (of the emergence of the proposed global network structure) is tested by

using the blockmodeling approach [5] on the symmetrized networks previously analyzed by

Schaefer et al. [6]. Their study’s main focus was the network dynamics rather than the global

network structure. They showed that the selected local network mechanisms are important in

such networks and that the importance of different local network mechanisms change

throughout the school year.

Building on the assumption (tested in this paper) that the proposed global network struc-

ture emerges in interactional preschool networks, the following research question is posed:

can the proposed global network structure appear due to the selected local network mech-

anisms without considering the nodes’ attributes? Here, the same local network mecha-

nisms are assumed as in the study of Schaefer et al. [6] and other previous studies on

preschool network dynamics. The research question is addressed using Monte Carlo simula-

tions, specifically, by applying the proposed model from the family of network evolution

models.

The study is relevant since understanding of the local network mechanisms at play, in the

context of global network structures, is important while studying real (empirically observed)

networks. Namely, the proposed global network structure’s emergence at preschools raises

very important developmental questions, e.g., how children in the core group differ from chil-

dren in cohesive groups and what are the implications (if any) for their further individual

development? Should such a global network structure be encouraged or discouraged? Is this a

period where scholars may be able to document the emergence of social cliques and associated

social norms? Will some children be integrated into cohesive groups, while others are left with

minimal peer affiliations in the global network [7]?

The paper is organized as follows: a new global network structure is formally defined and

the local network mechanisms are proposed and described (section Global network structure).

Next, the global network structures of the empirical interactional preschool networks are ana-

lyzed (section The empirical case). The main research question concerned with the proposed

global network structure’s emergence is addressed in section Simulation approach and some

conclusions are outlined.
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Global network structure and local network mechanisms through

structural processes

In the following section, the proposed global network structure is defined in the blockmodel

context. Different local network mechanisms that may drive the global network structure of

preschool children’s interactional networks towards the proposed one are discussed.

Global network structure

A blockmodel is a network in which the units are groups of equivalent units from a studied

network [5]. The term reflects the fact that if a network is represented by a matrix, which is

then split according to a partition (groups), blocks (submatrices) are formed in the matrix.

The term “block” refers to a submatrix showing the links among units from the same or differ-

ent group(s). Two selected units are structurally equivalent if they have the same pattern of

links to the other units [8, 9]. The possible block types are identified through a selected defini-

tion of equivalence which is based on links among the units. Structural equivalence [8] and its

generalization, regular equivalence [10], are the most common. When structural equivalence

is used, only null and complete blocks are possible. In ideal complete blocks, all possible links

are present while no link exists in ideal null blocks.

A demonstration of blockmodeling according to structural equivalence is given in Fig 1.

The original network is visualized in matrix form in Fig 1A. Here, each row and column repre-

sents a unit. Gray colored cells in a matrix represent a link from the i-th unit (row) to the j-th

unit (column). Cells on the diagonal represent loops (a given unit is linked to itself). The units

are permuted (see Fig 1B) in such a way that those with the same pattern of links are placed

together and form a cluster (group). Two groups are shown in Fig 1B.

In the blockmodeling context, the clusters of units are shrinked into nodes. The blockmodel

that is obtained is visualized in Fig 1C. The obtained blockmodel has two nodes (shrinked

groups). Here, two types of blocks appear (complete and null). Complete blocks are on the

diagonal of the matrix because the units from both groups are internally linked to each other.

Off-diagonal blocks refer to the relationships between different groups. Since the units from

different groups are not linked to each other, the off-diagonal blocks are null blocks.

The example represents an ideal case, meaning that there are all possible links in complete

blocks and there is no link in the null blocks. However, this is unrealistic for empirical net-

works. In such networks, there are usually some non-links in complete blocks and some links

in null blocks (see Fig 1D). Such links are called errors or inconsistencies.

Fig 1. Example of an empirical network and its blockmodeling solution. (A) empirical network, (B) empirical network drawn in line with the

blockmodeling solution, (C) blockmodel, (D) blockmodeling solution with two inconsistencies.

https://doi.org/10.1371/journal.pone.0226801.g001
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There are several well-known blockmodel types, with two being the cohesive and (symmet-

ric or asymmetric) core-periphery blockmodel types. The cohesive blockmodel type (Fig 2A)

contains at least two groups of units where units from different groups are not linked to each

other, while all units inside each cohesive group are linked to each other. On the other hand,

the symmetric core-periphery blockmodel (Fig 2B) is defined by two groups of units. The

units from the core group are internally well linked to each other and units from the periphery

are not linked to each other. The units from the core are also linked to the units from the

periphery and vice versa (in the asymmetric case, the units from the periphery are linked to

the core ones or vice versa).

The newly proposed symmetric core-cohesive blockmodel type (Fig 2C) is seen as a combi-

nation of a cohesive blockmodel and a symmetric core-periphery blockmodel. A symmetric

core-cohesive blockmodel consists of one core group of units to which all units in the network

are linked, and where units from the core group are linked to all other units in the network.

The other units are classified into cohesive groups. Units from each cohesive group are inter-

nally linked to each other, while units from different cohesive groups are not linked to each

other. The model can be extended in such a way that a group of units which are not linked to

each other would also exist.

Fig 2. Different representations of networks with a cohesive blockmodel, symmetric core-periphery blockmodel, and symmetric core-cohesive

blockmodel. (A) cohesive blockmodel, (B) symmetric core-periphery blockmodel, (C) symmetric core-cohesive blockmodel.

https://doi.org/10.1371/journal.pone.0226801.g002
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Local mechanisms

It has been hypothesized that the asymmetric core-cohesive blockmodel type might appear in

networks observed among preschool children where the links are defined by “friend nomina-

tions” or “liking” [2]. Although research is lacking on the global network structure’s evolution

in the blockmodel context, many studies address the mechanisms that affect the creation and

dissolution of ties. The social mechanisms of attraction most often discussed are mutuality

(also known as reciprocity), popularity (also known as the Matthew effect or preferential

attachment), transitivity, and assortativity (also known as assortative mixing or homophily)

[11]. The last one may be considered through the assortativity of in-degree or other units’ attri-

butes, such as gender [12, 13]. Simulations confirm that an asymmetric core-cohesive block-

model can appear as a result of the listed mechanisms.

Since conducting longitudinal sociometric interviews with a high level of reliability and

validity among preschool children might be too demanding for both the children and the

researcher, the data analyzed in such settings are often observational. In such studies, a link is

often operationalized as an interaction and therefore the observed links are undirected. If such

interactions are considered as an indicator of friendship, popularity or liking, the same mecha-

nisms must be considered when testing for the emergence of the symmetric core-cohesive

blockmodel type. The following mechanisms are often discussed in the literature:

• Mutuality or reciprocity is defined through the reciprocation of ties and is one of the most

fundamental social network mechanisms (besides creating links) and a basic feature of social

life [14]. Analyzing 49- to 62-month-old preschool children, Snyder et al. [15] not only

found that children spend much time with selected friends and less with others, but also

strong evidence of mutuality. Observed mutual links in the empirical global network struc-

tures can also emerge since children prefer to interact with peers who are similar to them-

selves. This tendency often fosters the emergence of mutual peer relationships during

childhood [6, 16–18].

The researcher cannot indirectly study this mutuality when analyzing non-directed interac-

tional empirical networks. However, the mechanism can play a role in the process of creat-

ing the initiative for interactions (also see subsection The algorithm for generating

networks).

• Popularity is defined through an in-degree in social network analysis and is usually an oper-

ationalization of likeability or social status [14]. As a social network mechanism, popularity

expresses the tendency to create links to others with a relatively high (in)degree. This is espe-

cially the case for less popular ones who wish to increase their own popularity by creating

links with those who are most popular [19]. The fact that some units become more popular

than others can relate to their personal attributes (e.g., wealth, being good at something, etc.)

or positive or negative behavior [20].

• Transitivity measures the tendency for triadic closure in networks—“the friends of my

friends are also my friends”. Transitivity in peer groups may arise from the increased propin-

quity of individuals who share mutual friends, or from a psychological need for balance—a

convergence of third parties’ evaluations [6].

Many empirical studies highlight the importance of these mechanisms. For example, Sny-

der et al. [15] noticed that children spend considerable time with selected friends and less with

others. They also observed a strong mutual affiliation of friendships, which is subjected to the

level of positive social consequences available from peers in the classroom.

Symmetric core-cohesive blockmodel in preschool children’s interaction networks
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Daniel et al. [14] used ERGM [21] to study the mutuality, reciprocity, popularity, and tran-

sitivity mechanisms on the forming of affiliative ties in 19 Portuguese preschool peer groups.

They found that all of these mechanisms are important for forming affiliative ties.

Schaefer et al. [6] studied the three most common network-formation mechanisms (reci-

procity, popularity, and triadic closure) among preschool children throughout a school year in

four waves using SIENA [22–24]. They found the reciprocity effect is constant over time while

the popularity effect is most important midway through the school year. The importance of

the triadic closure effect increases over time, which is expected since very early on friendships

are typically play-oriented dyads that primarily socialize children into group life [25]. When

children gain more social contacts and greater confidence, they move into larger groups [26].

The empirical case

The hypothesis about the symmetric core-cohesive blockmodel being present in empirical

interactional networks is tested in the subsections below. To this end, the empirical data col-

lected among preschool children are analyzed using generalized blockmodeling. The research

was approved by a University Internal Review Board at Arizona State University.

Data

The data were collected as part of a bigger longitudinal study of young children’s preparedness

for school between 2004 and 2006 in Head Start preschools (the active consent to participate

in the study was obtained from parents or guardians of children included in the study). The

data were also analyzed in the study by Schaefer et al. [6]. The data are observational in nature,

meaning that trained observers present in school classes recorded interactions among the chil-

dren. Specifically, observers were present for several hours in a classroom two to three days

per week. To ensure the greatest validity and reliability, two observers monitored the same

children at the same time for 10 seconds. The order in which the observers watched over the

children was random. When all children had been observed, the observers waited 5 minutes

before repeating their observations (with a randomly reordered list of children). Children were

observed in different activities, e.g. free play, talking, aggressive behavior, and others. The

observers coded the type of activity in which a given child was involved and up to five other

children with whom the selected child was interacting. Only the free-play data (data collected

when children were able to play freely) are analyzed in this study. Children had to be observed

at least 13 times during the whole school year to be included in the analysis. Based on the

observational data, four complete networks are generated for each class. Each network’s con-

struction is based on a two-month period, as presented in Table 1. The networks are in matrix

form in which each row and each column represents a child. The number of a given child’s

(ego, in a given row) observed interactions with other children (alter, in a given column) is

shown in the corresponding cells of the matrix. The obtained networks were transformed

from directed to undirected (data in S1 Dataset) and binarized (data in S2 Dataset): there is a

link between two children if the number of observed interactions is higher than the median (of

the number of interactions between all possible pairs in the network) divided by two.

The number of children varies between 14 and 21 across all networks. In the last period, the

children were aged between 37 and 60 months and the share of males varied between 43% and

69%.

Methodology

Binarized networks are blockmodeled to evaluate the global network structure. Blockmodeling

is a way of reducing a large, potentially incoherent network to a smaller, comprehensible, and
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interpretable structure [5]. In a blockmodeling procedure, a list of allowed and forbidden

block types is given. Since structural equivalence is used, these block types are null and com-

plete. In order to not constrain the blockmodeling procedure, the relationships between

groups (image matrix) is not pre-specified.

The blockmodeling was done using the “blockmodeling” package [27] for the R program-

ming language. The number of iterations in the blockmodeling was 500 and 3 clusters were set

for all networks.

Results: Empirical blockmodels

Fig 3 gives the matrix representation of the analyzed networks. Each matrix corresponds to

one network at a given time point. Black dots denote links. Children are ordered by rows and

by columns in line with the solution from the blockmodeling. It can be seen that the networks

are very dense, which is expected since interactional networks were observed in a closed envi-

ronment (classroom). Some are almost complete.

A symmetric core-periphery blockmodel structure (see the framed matrices) appears in

almost all classes in at least one time period. It does not appear in just two classes (ID2 and

ID5) out of 11 classes. In the other classes, the symmetric core-cohesive blockmodel appears in

the 2nd time period (in 7 classes out of 11) or in the 3rd and 4th time periods (in 5 classes out

of 11). The group sizes vary—in some cases, the core group consists of only 2 children (ID3 in

Feb-Mar 2005) while in some other cases the core group consists of almost half the children

(e.g., ID4 in Nov-Dec 2004 and ID43 in Nov-Dec 2005).

Some of the blockmodels obtained are similar to the symmetric core-cohesive blockmodel

type but are without links within the core (e.g., ID8 and ID11 in Sep-Oct 2005) or without one

cohesive group (ID3 in Apr-May 2005).

It has been shown that the proposed symmetric core-cohesive blockmodel type appears in

empirical networks—specifically, in interactional networks collected among preschool chil-

dren. The question of whether the most commonly studied local network mechanisms can

lead the global network structure towards the symmetric core-cohesive is addressed in the

next section. Attributes of the units are not considered in this study.

Table 1. Some basic descriptive statistics for the undirected networks.

CLASS

ID

No. of units No. of observations Age span in the last period

(in months)

% of males in the

last periodTP 1 TP 2 TP 3 TP 4 TP 1 TP 2 TP 3 TP 4

Sep-Oct

2004

Nov-Dec

2004

Feb-Mar

2005

Apr-May

2005

Sep-Oct

2004

Nov-Dec

2004

Feb-Mar

2005

Apr-May

2005

1 21 20 20 19 814 510 484 321 42-58 63

2 17 17 15 14 57 95 236 374 48-59 50

3 16 17 14 14 75 200 190 184 50-58 50

4 17 18 18 16 104 410 525 548 49-55 69

5 17 17 14 14 280 406 862 413 37-57 50

6 15 15 14 14 202 343 1005 510 46-59 43

Sep-Oct

2005

Nov-Dec

2005

Feb-Mar

2006

Apr-May

2006

Sep-Oct

2005

Nov-Dec

2005

Feb-Mar

2006

Apr-May

2006

7 21 19 17 16 594 564 196 589 46-60 44

8 18 18 16 16 396 432 273 855 43-58 69

9 18 18 16 15 663 406 368 1237 37-59 40

10 16 15 15 14 931 496 309 1609 39-60 64

11 15 16 15 15 172 241 395 574 48-60 47

https://doi.org/10.1371/journal.pone.0226801.t001
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It should be noted that simulations can never prove that certain mechanisms cause global

structure in empirical networks, only that they could cause it.

Simulation approach

Cugmas et al. [2] have already shown that the mutuality, popularity, assortativity, and outgo-

ing-two-path mechanisms can lead towards the asymmetric core-cohesive blockmodel type

and that different combinations of the local network mechanisms lead to this global network

structure. The results were different when only one of the mechanisms was considered. For

example, when only the popularity mechanism was considered, the resulting blockmodel was

an asymmetric core-periphery blockmodel, while, on the other hand, the transitivity mecha-

nism plays a role while forming the cohesive groups. Since the mechanisms are not indepen-

dent, the role of the assortativity and mutuality mechanisms when considered together with

popularity and transitivity in a blockmodel context is unclear and depends on the strengths of

the other mechanisms.

In this paper, the symmetric interactional networks of preschool children are studied.

Therefore, the simulation approach proposed by Cugmas et al. [2] for asymmetric networks is

adapted to the symmetric case.

To evaluate whether the selected local network mechanisms can lead the global network

structure towards the symmetric core-cohesive blockmodel, the adapted algorithm for generat-

ing networks is presented in the next subsection, and followed by definitions of the selected

local network mechanisms. Many networks are generated using the proposed algorithm. In

Fig 3. Obtained blockmodel structures for each class (ID1 to ID11) and each time period. Undirected and binarized empirical networks are

considered. The obtained symmetric core-cohesive blockmodels are presented in the frame matrices.

https://doi.org/10.1371/journal.pone.0226801.g003
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this generating process, different strengths of the mechanisms are considered. The global net-

work structures of the generated networks are then evaluated in the Results subsection by

applying the concepts of inconsistent blocks and relative fit value, which are also described in

subsection Simulation design.

The algorithm for generating networks

A symmetric core-cohesive blockmodel may be generated in several ways by considering dif-

ferent local mechanisms. Three approaches are identified with regard to whether symmetric or

asymmetric links are generated and considered in the symmetrization procedure.

• Immediate any-link symmetrization approach: here symmetric links are formed or dis-

solved. A link between the ego and the alter is formed or dissolved based only on the ego’s

preferences. An alter can change this link at subsequent iterations (when he is in a position

to form or dissolve a link, i.e. the alter is the ego). This means a symmetric link exists if at

least one of the actors chooses that link, and does not exist if at least one actor does not want

it. The reciprocity mechanism is not considered in this approach.

• Asymmetric links are generated in the case of the second and third approaches. Here, only

asymmetric links are formed at one time. The generated networks are symmetrized before

being analyzed since it is assumed that an observer does not know who initialized an interac-

tion (interaction is seen as symmetric by an observer). In this approach to generating net-

works, it is also considered that the social process of interactions is an asymmetric process.

To achieve symmetric networks, one of the following approaches can be used:

• reciprocal-link symmetrization approach: the generated networks are symmetrized in

such a way that a symmetric link exists only if both actors choose the link. This approach

implies that an interaction exists only if both actors perceive each other as a desirable inter-

action partner. This is inconsistent with the assumption that an interaction can be estab-

lished without the alter’s consent.

• any-link symmetrization approach: the generated networks are symmetrized in such a

way that a symmetric link exists if at least one actor chooses the link, and does not exist if

neither actor wants it. Considering asymmetric and symmetric links implies the assump-

tion that an interaction is independent of the alter.

The approach where the links or non-links are reciprocated or dissolved independently of

the alter (the immediate any-link symmetrization approach) is, to the best of the author’s

knowledge, rarely used in practice. However, it can be used when both the observer (e.g.,

researcher) and other members of the network (other units, except the ego and the alter) do

not know who initiated an observed interaction. On the opposite, the logic behind the

approach where a (symmetric) link exists between the ego and the alter if both choose it and it

does not otherwise exist (reciprocal-link symmetrization approach) is used more often in

applied studies; for example, to study different types of collaborations between organizations

[28, 29]. Similar and also some other possible approaches to generating networks also exist

within Stochastic Actor Oriented Models [30].

In this study, the observed interactional networks are symmetric by the definition of “inter-

action”, although the process which initiates interactions is asymmetric. In such a process, an

ego has to initiate an interaction, while an alter can either: (i) accept (and reciprocate), (ii) tol-

erate, or (iii) reject (i.e., actively avoid) interaction. Even where an interaction is actively

rejected by the alter, it can still be observed, although it is more likely to be recorded if it is

either accepted or tolerated. Therefore, the approach where asymmetric ties are formed (by

Symmetric core-cohesive blockmodel in preschool children’s interaction networks
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considering the mutuality mechanism) and the network is symmetrized in such a way that all

links are symmetrizied, before being further analyzed, is the closest representation of the emer-

gence of empirical networks.

Networks are represented in the form of an adjacency matrix X of size n � n where n is the

number of units. The possible values are 1s and 0s where 1s represent links, while 0s represent

non-links. Because loops are not present, the diagonal values are 0. The proposed algorithm

(see Algorithm 1) comes from the family of network evolution models (NEM) [31] and can

take initial networks with different blockmodels.

Algorithm 1 The algorithm for generating networks used in this study
Require: initial network X
Require: vector of strengths of the mechanisms θ
Require: probability of establishing a link q
Require: number of iterations k
1: for l in 1: k do
2: randomly select unit i
3: calculate network statistics according to the selected mechanisms
for unit i and all other units and save it in S
4: calculate � = SθT

5: if � � Q3(�), classify unit j into set C, where Q3 is 3rd quartile
6: if � � Q1(�), classify unit j into set F, where Q1 is 1st quartile
7: with probability q set i ! j where j is randomly selected from
set C
8: with probability 1 − q set i ↛ j where j is randomly selected from
set F
9: end for
10: return generated network X

The algorithm is iterational where the number of iterations k can be determined based on

the desired number of changes in the global network structure. Further, parameter qmust be

set. It reflects the tendency towards the creation of a link and can be estimated based on the

density of the network with the expected blockmodel. Yet, there is no guarantee the generated

networks’ density will equal q since it depends on several factors, including the selected local

mechanisms.

In the iterational process, a unit i is randomly selected with probability 1

n. Then, the network

statistics S are calculated based on the operationalized selected mechanisms (see the next sub-

section). These network statistics are weighted by the vector of strengths of local mechanisms

θ producing vector ϕ = SθT. These units, for which it holds that their corresponding weighted

network statistic is higher than or equal to the third quartile of all weighted network statistics,

are classified in the set C and are the candidates to accept the incoming tie from unit i. The

other units, for which it holds that their corresponding weighted network statistic is lower

than or equal to the first quartile of all weighted network statistics, are classified in the set F
and are candidates for being dissolved of an incoming tie by unit i. With probability q, the link

from i to randomly selected j from set C is set and with probability 1 − q a non-link from i to

randomly selected j from set F is set. Since the unit can establish a link that already exists or

dissolve a link that does not exist, there could be no visible change of a link upon a given

iteration.

Formal definitions of the mechanisms

The mechanisms are operationalized by different network statistics defined on a binary net-

work, and normalized so that the minimum corresponding values are 0 and the maximum val-

ues are 1.
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These network statistics (S) are weighted (by considering θ) and summed to produce vector

ϕ as described in the previous subsection. The local network mechanisms of which the net-

work statistics are weighted with higher weights (in an absolute value) are more important in

the network’s evolution. The interpretation of a given mechanism depends on the sign of a

corresponding weight. For example, positively weighted popularity statistics refers to the ten-

dency to create a link to those with a relatively high in-degree. On the contrary, a negative sign

reflects the tendency to avoid establishing links to those with a relatively high in-degree.

The mechanisms are defined in the same way as in a study of the asymmetric core-cohesive

blockmodel type [2]. Therefore, only a brief description of the proposed mechanisms is given

here (the mechanisms are schematically shown in Fig 4, where dashed lines illustrate the links

under evaluation appear, are confirmed, or disappear):

0. Parameter q (Fig 4A) reflects the tendency to have a link. Since this is not a focal mecha-

nism, it is implemented in the NEM algorithm as parameter q and is therefore technically

not considered as a mechanism in this study.

1. The mutuality mechanism (M) (Fig 4B) reflects the tendency to reciprocate links.

2. The alter popularity mechanism (P) (Fig 4C) reflects the tendency to create links to the

most popular ones.

3. The assortativity mechanism (A) (Fig 4D) reflects the tendency to create links to those

units with the same level of popularity (in-degree).

Fig 4. Illustrations of different mechanisms considered. (A) parameter q, (B) mutuality mechanism, (C) popularity mechanism, (D) assortativity

mechanism, (E) transitivity mechanism, (F) outgoing-shared-partners mechanism.

https://doi.org/10.1371/journal.pone.0226801.g004
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4. The transitivity mechanism (T) (Fig 4E) is a tendency for a unit to directly connect to

units, to which it is indirectly connected with (one or more) paths of length two (with more

paths increasing the tendency).

5. The outgoing-shared-partner mechanism (OSP) (Fig 4F) represents a “structural homo-

phily” effect which is traditionally based on similarity according to the units’ attributes. In

the case of the OSP, it is defined by similar choices of partners [32].

Simulation design

The described NEM algorithm is used to generate the networks by considering the selected

social mechanisms. Since different mechanism strengths are to be considered, 300 randomly

selected θ are generated. The random values are generated by first sampling five values from

the standard normal distribution F and then multiplying them by a scalar [33, 34] (after such

normalization, the sum of the squared elements of θ equals 1).

y ¼
F
ffiffiffiffiffiffiffiffiffiffiffiP
F2

i

q
ð1Þ

Within the NEM algorithm, parameter q is set to 5/9 and a total of 116,490 iterations are

applied. Parameter q, which indicates the tendency to create a link, is set arbitrarily but with

reference to generating asymmetric core-cohesive blockmodels. Initial networks are empty

with 24 units.

The 30 networks are generated for each θ. Generalized blockmodeling for binary networks

(on symmetrized generated networks, structural equivalence is used) is done after the selected

number of iterations of the algorithm. More precisely, the intermediate number of iterations

m, at which the global network structure is analyzed, is determined asmi =mi−1
� 1.9, where

m1 = 100 [2]. This approach is used since most changes in the structure of the links happen at

a lower number of iterations.

Based on the generalized blockmodeling solution, the number of inconsistent blocks is cal-

culated on the network generated on the 32,969th iteration and used as the fit function. It is

defined as the number of different blocks between the symmetric core-cohesive blockmodel

with three groups and the empirically obtained blockmodel with three groups.

Some θs that generate networks with the lowest number of inconsistent blocks are selected.

Based on the selected θs, the networks are again generated but with a higher number of itera-

tions (116,490 iterations). For each network generated by the selected θs, the relative fit (RF)

[2] is calculated (for networks with a different number of iterations up to 116,490) as

RF ¼ 1 �
Pm

1

k

Pk
i¼1
Pri

ð2Þ

where Pm is the value of the criterion function [35, 36] obtained on the empirical network and

Pri is the value of the criterion function obtained on the i-th randomized network. There are k
randomized networks. The mean value of the criterion function in the case of random net-

works is estimated by simulations. RF is a more detailed measure of the fit of a given blockmo-

del to the empirical data and its use is most valid when the presence of a given blockmodel

type is confirmed by non-specified blockmodeling. Higher values indicate a better fit (the

value of 1 indicates a perfect fit) and the expected value of the RF measure in the case of a ran-

dom network is zero.
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Results: Generated networks

There are six different θs generating networks without any inconsistent block at the end of the

iterations. Further, 76 different θs generate networks with the mean number of inconsistent

blocks less than or equal to 0.5, and 109 different θs generate networks with the mean number

of inconsistent blocks less than or equal to 1.

The θs that generate each network with a symmetric core-cohesive blockmodel are shown

in Table 2 along with the number of inconsistent blocks at a different number of iterations and

the mean RF value of the generated networks. Although all the generated networks have the

same blockmodel, they differ largely in the level of errors, expressed by RF.

A more detailed insight into RF for a selected θ is given in Fig 5. The mean RF values are

calculated for the symmetric core-cohesive blockmodel type, cohesive blockmodel type, and

symmetric core-periphery blockmodel type. All RF values are close to zero at the first 190 itera-

tions. At such a low number of iterations, there are insufficient links to enable any of the con-

sidered blockmodel types to emerge. However, at 361 iterations, a global network structure,

close to cohesive, can be visually recognized on the generated networks Fig 6. Since there is a

relatively high level of errors in null and complete blocks, the corresponding mean RF is very

low. With a higher number of iterations (until 1,303 iterations), the mean RF, corresponding

to all considered blockmodel types, is decreasing. At this step, the links among different groups

are established yet, in some cases, links within the core units are not present. Moreover, there

is a high level of errors in the null and complete blocks. After 1,303 iterations, the mean RF

value for the core-cohesive and cohesive blockmodel is only increasing until 61,311 iterations.

The mean RF, corresponding to the symmetric core-cohesive blockmodel type, is close to 1

at the end of the iterations, indicating the global network structure is the desirable one with

almost no error in null and complete blocks (as confirmed in Fig 6). The mean RF for the

cohesive blockmodel is lower while the mean RF for the symmetric core-periphery blockmodel

Table 2. Mean number of inconsistent blocks and mean RF values with the corresponding parameter values. For those θs which generated networks with the mean

number of inconsistent blocks at 32,969 iterations equal to zero. Initial is an empty network.

θ ID θ MRF

M P A T OSP

136 -.18 .74 .37 -.35 .42 0.96

25 -.43 .27 .66 .25 -.50 0.80

279 .17 -.11 .43 .60 .65 0.50

248 .11 -.58 .49 .78 -.38 0.48

72 -.57 .68 .04 -.46 .10 0.35

22 -.24 -.51 .21 -.21 -.78 0.26

θ ID NO. OF ITERATIONS

100 190 361 686 1,303 2,478 4,705 8,939 16,948 32,969 61,311 116,490

136 4.93 4.97 4.40 3.30 0.33 0.03 0.03 0.07 0.03 0.00 0.00 0.00

25 4.90 4.77 3.57 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

279 4.73 4.93 3.43 0.20 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00

248 4.73 4.97 4.00 1.37 0.33 0.00 0.00 0.03 0.00 0.00 0.00 0.00

72 4.90 4.97 4.13 3.77 0.70 0.20 0.03 0.00 0.10 0.00 0.00 0.00

22 5.00 5.10 4.45 2.03 0.17 0.03 0.00 0.00 0.00 0.00 0.00 0.00

M = mutuality mechanism, P = popularity mechanism, A = assortativity mechanism, T = transitivity mechanism, OSP = outgoing-shared-partners mechanism,

MRF = the mean RF value

https://doi.org/10.1371/journal.pone.0226801.t002
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Fig 5. Mean RF for each blockmodel type visualized by lines and the distribution of the density visualized by boxplots. The networks are generated

by considering θ = {M = −0.18, P = 0.74, A = 0.37, T = −0.35,OSP = 0.42}, q = 5/9, d0 = 0.

https://doi.org/10.1371/journal.pone.0226801.g005

Fig 6. Some networks generated. The networks are generated by considering θ = {M = −0.18, P = 0.74, A = 0.37, T = −0.35, OSP = 0.42}, q = 5/9, d0 = 0.

The networks are drawn in line with the blockmodels obtained by generalized blockmodeling (non-specified model). Networks for different repetitions

of the algorithm for generating networks are drawn in lines for different numbers of iterations.

https://doi.org/10.1371/journal.pone.0226801.g006
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type is highly negative, indicating that the randomized networks fit this blockmodel type

much more than the networks generated by using the proposed algorithm.

Generating networks with other approaches

Because different approaches to generating networks rely on different assumptions (not only

on the underlying social process under study, but also on the data collecting technique), they

must be carefully chosen with respect to these assumptions to draw valid conclusions. As

stated above, the chosen approach (any-link symmetrization approach) to generate and

symmetrize links is seen as the most appropriate for simulating the social process of interac-

tions and corresponding data collecting technique. While the other approaches listed are

regarded as less appropriate, they are not a priori discarded. Therefore, the following results

aim to evaluate the extent to which different approaches affect the ability to generate the

symmetric core-cohesive global network structure. The results are obtained using the same

methodology as in the previous sections, but with different approaches to generating

networks.

The set of 300 θs is the same in the case of the reciprocal-link symmetrization approach and

any-link symmetrization approach, and similar for the immediate any-link symmetrization

approach (values corresponding to the mutuality mechanism are removed from the set of θs

while values corresponding to other local network mechanisms are normalized such that the

sums of squared elements of θs equal to 1). The parameter q is set to q = 7/5 in the case of the

immediate any-link symmetrization approach and in the case of the reciprocal-link symmetri-

zation approach.

The number of inconsistent blocks is evaluated on the 32,969 iteration. It can be seen in

Table 3 that there are 6 θs that generated all 30 networks without any inconsistent block in the

case of the any-link symmetrization approach. On the contrary, there is no such θ when using

the other approaches. However, there are several θs that generated networks with less than or

equal to 0.5 mean inconsistent blocks in the case of all three approaches to generating net-

works. The highest number of such θs is in the case of the any-link symmetrization approach,

followed by the reciprocal-link symmetrization approach and any-link symmetrization

approach. There are 18 commonly chosen θs (out of 30 randomly generated θs) when using

the immediate any-link symmetrization approach and the any-link symmetrization approach

and 3 θs when using the reciprocal-link symmetrization approach and the any-link symmetri-

zation approach.

Table 3. The number of selected θs (out of 300 randomly generated θs) according to different selection criteria, the minimum mean IB and the maximum RF for dif-

ferent approaches to generating networks.

immediate any-link symmetrization

approach

reciprocal-link symmetrization

approach

any-link symmetrization

approach

number of θs that generated all networks without any

inconsistent block at 32,969 iteration

0 0 6

number of θs that generated networks with�0.5 mean

number of inconsistent blocks at 32,969 iteration

30 7 76

overall minimum mean number of

inconsistent blocks

at 32,969

iteration

0.03 0.17 0.00

at 116,490

iteration

0.13 0.10 0.00

the overall maximum RF value at 32,969

iteration

0.90 0.39 0.86

at 116,490

iteration

0.96 0.37 0.96

https://doi.org/10.1371/journal.pone.0226801.t003
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The networks were generated again by considering the θs that generated networks with

equal to or less than 0.5 inconsistent blocks, but where the number of iterations is increased to

116,490. The lowest overall mean number of inconsistent blocks can be observed with the any-

link symmetrization approach, which is expected since some θs generated all networks without

any inconsistent block.

The overall maximum mean RF value is highest in the case of the immediate any-link sym-

metrization approach (0.90 at 32,969 iterations and 0.96 at 116,490 iterations), followed by the

any-link symmetrization approach with similar overall maximum RF values. The global net-

work structures are much more stable in the case of the reciprocal-link symmetrization

approach, despite the high mean RF values. Besides the fact that fewer generated networks

with the asymmetric core-cohesive blockmodel emerge in the case of the immediate any-link

symmetrization approach, it is also very common for the asymmetric core-cohesive blockmo-

del to appear at lower iterations but, later, the share of nodes in cohesive groups increases and

the global network structure becomes closer to cohesive with two clusters. When the true

blockmodel type is cohesive, instead of symmetric core-cohesive, the RF values can be overesti-

mated when calculated on the assumption that the true blockmodel is symmetric core-

cohesive.

The mean RF values for the networks generated using the reciprocal-link symmetrization

approach are very low, indicating that the symmetric core-cohesive blockmodel cannot be gen-

erated with this approach. The density of the networks generated with the selected θs is

extremely high.

Comparing the results of the different approaches to generating networks revealed that use

of the any-link symmetrization approach generates networks with a very small number of

inconsistent blocks, very high mean RF values, and very stable global network structures.

According to the analysis, which is based on 300 randomly generated θs, this cannot be

claimed for the other approaches to generating networks.

Conclusion

Interactional networks collected in preschool classrooms are studied in this paper. In such an

environment, children start to form groups. Children within individual groups spend more

time with each other than they do with children from other groups. At the same time, a group

of children is formed which spends a considerable amount of time with all the others from any

group. This leads to the newly proposed blockmodel type, i.e. symmetric core-cohesive. It con-

sists of one group of units which are called core units and two or several other groups of units

called cohesive groups. The units from all groups are internally linked to each other. The units

from all cohesive groups are linked to the units from the core group and vice versa. The units

from different cohesive groups are not linked to each other.

The existence of this blockmodel type is evaluated on empirical data. The data were col-

lected within a larger longitudinal study among preschool children in the United States

between 2004 and 2006. The interactions among the children in classrooms were recorded and

complete networks were formed. The symmetric core-cohesive blockmodel was found to be

present in almost all analyzed classes in at least one time period. This proves that the proposed

global structure (blockmodel type) is relevant for such data.

The most common local network mechanisms (popularity, assortativity, transitivity, and

outgoing-shared-partners) are considered. The attributes of the units are not taken into account

and the initial networks are empty. Based on an adapted version of the algorithm proposed by

Cugmas et al. [2], three approaches to simulating the emergence of symmetric interactional net-

works are proposed. The any-link symmetrization approach is seen as the most appropriate for
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studying the emergence of the symmetric core-cohesive blockmodel. Using this approach,

asymmetric links are formed throughout the simulation process, but the generated asymmetric

links are symmetrized prior to the analysis. The results of the Monte Carlo simulations con-

firmed that the selected mechanisms can generate networks with a symmetric core-cohesive

blockmodel. The results do not imply that the global network structures of the empirical pre-

school networks collected in the 11 classes in the USA emerged due to the studied local network

mechanisms. To address this question, a different methodology should be applied.

The study is important in several ways given that understanding the emergence of a peer

network structure holds important implications for directing adaptive (prosocial) and redi-

recting maladaptive (bullying) peer network dynamics via intervention and prevention

strategies.

First, blockmodeling is shown to be an efficient way for describing and analyzing empirical

interactional network global structures. The fact that this global network structure can emerge

in empirical interactional networks may form the basis for future research on the developmen-

tal questions related to this global network structure that were raised in the introduction

section.

Second, understanding the link between the global network structure and the local network

mechanisms in a given context is necessary for studying (e.g., modelling) empirically obtained

networks. It has been shown that the selected local network mechanisms are important in the

formation of a symmetric core-cohesive blockmodel even without considering any other attri-

butes of the units.
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S1 Dataset. Non-binarized symmetrizied networks for the considered school classes and
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