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Abstract

Background: New experimental approaches to the study of the neutrophil phagosome and bacterial killing prompted a
reassessment of the usefulness of all-trans retinoic acid (ATRA)-differentiated HL-60 cells as a neutrophil model. HL-60 cells
are special in that they possess azurophilic granules while lacking the specific granules with their associated oxidase
components. The resulting inability to mount an effective intracellular respiratory burst makes these cells more dependent
on other mechanisms when killing internalized bacteria.

Methodology/Principal Findings: In this work phagocytosis and phagosome-related responses of ATRA-differentiated HL-
60 cells were compared to those earlier described in human neutrophils. We show that intracellular survival of wild-type S.
pyogenes bacteria in HL-60 cells is accompanied by inhibition of azurophilic granule–phagosome fusion. A mutant S.
pyogenes bacterium, deficient in M-protein expression, is, on the other hand, rapidly killed in phagosomes that avidly fuse
with azurophilic granules.

Conclusions/Significance: The current data extend our previous findings by showing that a system lacking in oxidase
involvement also indicates a link between inhibition of azurophilic granule fusion and the intraphagosomal fate of S.
pyogenes bacteria. We propose that differentiated HL-60 cells can be a useful tool to study certain aspects of neutrophil
phagosome maturation, such as azurophilic granule fusion.
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Introduction

The human promyelocytic HL-60 cell line continuously

proliferates in suspension culture and can by various agents be

induced to differentiate into granulocytes, monocytes, macrophag-

es or eosinophils [1]. The original cells were isolated and described

in 1977 by Collins et al. [2] and is reported to have Fc receptors

(20, 000 per cell) with high affinity towards human IgG1 and IgG3

(5-10 nM) ([3]). The proportion of Fc receptor-positive cells also

increase (from ,20% to ,50%) during differentiation with

retinoic acid [4]. In this paper, we used all-trans retinoic acid

(ATRA) to induce a neutrophil-differentiated phenotype that

contains azurophilic granules but lacks the specific granules [5]

and other granule types that are formed late in the granulocytic

maturation process [6,7]. To study the mechanisms regulating the

fusion of azurophilic granules with phagosomes, important for the

efficient killing of bacteria by human neutrophils, we thus

reasoned that it would be advantageous to use neutrophil-

differentiated HL-60 cells. For such studies, we first needed to

show that neutrophil-differentiated HL-60 cells can efficiently

phagocytose bacteria and that the latter can be killed inside

phagosomes that fuse with azurophilic granules.

The azurophilic granules contain bactericidal substances such as

various proteases, defensins and anti-microbial peptides [8] that

can be delivered to phagosomes by fusion. Neutrophils, but not

HL-60 cells, also have additional granule types that can fuse with

phagosomes, adding further to the phagosome antibacterial

arsenal by, e.g., enabling activation of an intraphagosomal

production of oxidants [9]. The neutrophil respiratory burst

requires several components to function. One is the membrane-

bound flavocytochrome b558, which is composed of a large

glycoprotein (gp91phox) and a smaller protein (p22phox) [10]. The

catalytic core of the oxidase is the gp91phox subunit, also called

Nox2, after NADPH oxidase [11,12]. The other components

involved can be found in the cytosol and consist of p40phox,

p47phox, p67phox and the small GTPases Rac1 and Rac2 [13,14].

For a NADPH oxidase review, see Vignais [15]. Because HL-60

cells are incomplete in their granule arsenal, their use might be

informative when investigating the involvement of the plasma

membrane-localized respiratory burst [16,17] in the killing of

bacteria. In neutrophils, the flavocytochrome b558, i.e. the

membrane-bound component of the NADPH oxidase, is not only

localized to the membranes of the specific granules [18]

(approximately 85%), but also to secretory vesicles and the plasma
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membrane [19]. HL-60 cells contain neither specific granules nor

secretory vesicles. Despite the lack of granular flavocytochrome

b558, some phagosomal oxidase activity can still occur in HL-60

cells during phagosome formation or, later, by the delivery of

plasma membrane-derived oxidase components to the phagosome

by fusion processes. Therefore, the question whether or not the

respiratory burst is important for the killing of S. pyogenes was also

addressed in this study.

Streptococcus pyogenes is a Gram-positive human pathogen that

causes a wide range of diseases, from uncomplicated pharyngitis

and pyoderma to severe and life-threatening invasive diseases such

as sepsis and streptococcal toxic shock syndrome [20]. S. pyogenes

bacteria use multiple strategies to avoid being killed by host cells

[21] and have been known for many years to be able to survive

incubation in human non-immune blood. This ability has been

ascribed, at least partly, to an antiphagocytic effect of M and M-

like proteins expressed on the bacterial surface [22]. However, we

have shown that S. pyogenes bacteria are phagocytosed efficiently by

human neutrophils and that avoidance of killing is accompanied

by an inhibited fusion of azurophilic granules with the phagosome

[23,24]. In contrast, the isogenic mutant strain, BMJ71, lacking

the mga regulon which codes for the virulence factors M protein,

protein H, SIC and C5a peptidase [25], is rapidly killed and

degraded inside phagosomes that avidly fuse with azurophilic

granules.

In the following, we demonstrate that valuable information can

be obtained by using ATRA-differentiated HL-60 cells in studies

of neutrophil phagocytosis.

Results

All-trans retinoic acid enhances the phagocytic ability of
HL-60 cells

We investigated the effects of ATRA treatment on HL-60 cells

over a five-day period. Cell density was affected by ATRA

treatment, and a reduced growth rate (in accordance with

induction of differentiation) compared to control cells was

observed (Fig. 1A). Also viability and apoptosis was monitored,

showing a slightly reduced viability for ATRA-treated cells on day

4 and 5 with a concurrent increase in apoptosis and necrosis

(Fig. 1B). Having ensured that the differentiated cells were in good

health, we proceeded to investigate the phagocytic ability of these

cells. Mutant (BMJ71) S. pyogenes bacteria were presented to HL-60

cells at 37uC by a synchronized presentation protocol. In order to

study a general and defined uptake mechanism we chose to focus

on Fc-receptor mediated phagocytosis of IgG-opsonized prey,

since these are present in HL-60 cells [3]. The effect of

opsonization on the interaction of cells with bacteria is shown in

Figure 2A. Similar to neutrophils, a larger proportion of the HL-

60 cells interacted with bacteria that had been opsonized with

human IgG. This enhanced interaction was observed also using

the wild-type strain AP1 (not shown). An interaction ratio was

calculated by relating the number of cells with attached and/or

phagocytosed Oregon Green-labeled bacteria to the total number

of cells. The interaction of HL-60 cells with bacteria was slightly

less efficient than was the case for human neutrophils under

comparable assay conditions in a previous report [24].

Two parameters were studied: the interaction of cells with

bacteria and the internalization of cell-associated prey. Figure 2B

shows that the interaction is slightly increased during differenti-

ation with ATRA. In contrast, the control cells decrease their

interaction ability. Looking at internalization, there is an increase

following ATRA treatment as compared to control cells

(Figure 2C). To better assess the phagocytic ability, we combined

interaction and internalization data. This was normalized to that

of control cells, illustrating the ATRA-induced phagocytic ability

over time (Fig. 2D). Figure 2E presents the basis for calculations

used in figures 2B, 2C and 2D.

Intracellular survival of S. pyogenes bacteria and
inhibition of azurophilic granule–phagosome fusion

We have previously described that wild-type S. pyogenes (AP1

strain) can survive phagocytosis by neutrophils [24] and that this

can be correlated with an inhibition of azurophilic granule–

phagosome fusion [23]. Here, we similarly show that AP1 bacteria

survived better inside differentiated HL-60 cells than did mutant

BMJ71 bacteria, see Figure 3C. Using fluorescence microscopy to

distinguish between phagocytosed and surface-associated bacteria

Figure 1. Effects of ATRA-induced differentiation of HL-60
cells. A. Cell growth during differentiation. HL-60 cells were
treated with ATRA during five days and cell growth was measured by
using a Bürker chamber. Error bars show SEM, based on four cell counts.
B. Viability and apoptosis/necrosis during differentiation.
Viability was measured by evaluation of trypan blue exclusion using a
Bürker chamber. Error bars (smaller than symbols) show SEM, based on
four cell counts. To measure apoptosis and necrosis, samples were
stained with Alexa 488-conjugated annexin V and propidium iodide.
Data shown were obtained using flow cytometry (30,000 cells per
condition). Similar data were obtained by quantitative fluorescence
microscopy (100 cells per condition) where the criteria for being
classified as an apoptotic cell were distinct plasma membrane staining
of annexin V, and no propidium iodide staining. Cells positive for both
markers were classified as necrotic.
doi:10.1371/journal.pone.0007363.g001

The HL-60 Cell Phagosome
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Figure 2. Phagocytic ability is induced by ATRA differentiation. A. Effect of opsonization on interaction. Differentiated HL-60 cells were
allowed to interact at 37uC with Oregon Green-labeled BMJ71 bacteria, either IgG-opsonized (1 mg/ml) or not, at a bacteria/cell ratio of 10:1. After a
synchronized presentation, the samples were incubated at 37uC as indicated. Analysis was by flow cytometry. An interaction ratio was calculated by
dividing the number of cells interacting with Oregon Green-labeled bacteria with the total number of cells. Error bars show SEM, based on a total of
three experiments; * = p,0.05. B–C. Interaction and internalization during differentiation. The ability of HL-60 cells to associate with and to
internalize BMJ71 bacteria was measured. Oregon Green-labeled and IgG-opsonized bacteria were allowed to interact for 5 min with the cells at a
bacteria/cell ratio of 2:1. Analysis was by fluorescence microscopy. Error bars represent SEM of two separate experiments. D. Phagocytic ability
induced by ATRA-treatment. Fold increase of phagocytic ability arrived at by normalizing the phagocytic ability of ATRA-treated cells to the
corresponding control sample. E. Basis for calculations. The different formulas used for the analysis of data in the figures B–D are presented.
Interaction is defined as the fraction of all cells that are associated with at least one bacterium. Interacting cells were further analyzed to determine
how large a fraction of the associated bacteria was intracellular. The term phagocytic ability was constructed to take interaction as well as
internalization into account.
doi:10.1371/journal.pone.0007363.g002

The HL-60 Cell Phagosome
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we wanted to see whether this could be explained by a difference

in internalization rate. The wild-type AP1 strain was found to be

slightly more resistant to internalization at early time points

(Fig. 3B), but after one hour no difference could be seen between

the two bacterial strains. The proportion of bacteria interacting

with HL-60 cells was also compared (Fig. 3B) and no significant

difference could be noted between AP1 bacteria and BMJ71

bacteria. A more efficient interaction or internalization of BMJ71

bacteria thus cannot explain the survival benefit of AP1 bacteria in

phagosomes.

Next, the fusion of azurophilic granules with bacteria-contain-

ing phagosomes was investigated. We employed a technique based

on magnetic selection to isolate bacteria-containing phagosomes

[26]. In Figure 4A, a reduced delivery of azurophilic content to

phagosomes containing AP1 bacteria is demonstrated by Western

blot. The membrane was probed with antibodies against cathepsin

D (azurophilic granule content marker) and GM130 (Golgi

marker, used as a negative control). As shown in the figure, the

cathepsin D band of BMJ71 phagosomes is stronger than that of

AP1 phagosomes. GM130 is only visible in the cell lysate lanes.

Protein content was determined by EZQ (Invitrogen), equal

loading being verified by post-blot UV-scanning. As an additional

loading control, the membrane was probed with an antibody

recognizing S. pyogenes, revealing similar amounts of bacterial

protein in the phagosome lanes. We also employed immunoflu-

orescence microscopy, but since it is difficult to quantitate fusion to

small phagosomes in whole cells we only used this method

qualitatively. To evaluate the experiments, cells were inspected for

bacteria surrounded by fluorescent ring-like structures that

indicated fusion of azurophilic granules with phagosomes. For

the BMJ71 strain, such fusion patterns were observed in a majority

of the cells. For the AP1 strain, a smaller fraction of the cells

displayed a pattern consistent with azurophilic granule–phago-

some fusion (Fig. 4C).

Taken together, the data in Figure 4 suggests that wild-type S.

pyogenes bacteria can reduce the fusion propensity of phagosomes in

HL-60 cells.

Minor contribution of the plasma membrane respiratory
burst to killing of S. pyogenes bacteria

In neutrophils, high concentrations of superoxide and hydrogen

peroxide is generated in the phagosome [27]. Earlier, we reported

that similar amounts of oxidative metabolites were observed to be

generated during neutrophil phagocytosis of the AP1 and BMJ71

strains [23]. To investigate the role of respiratory burst metabolites

for the killing of bacteria, we performed survival assays using

differentiated HL-60 cells treated with the oxidase-inhibitor DPI

[28]. Early control experiments showed no effect on intracellular

survival of AP1 bacteria so we used instead the less virulent BMJ71

strain. Such treatment did only slightly increase the survival of the

bacteria, see Figure 5A. Looking at later time points, it would

appear that activation of the respiratory burst is not the only

mechanism responsible for the killing of BMJ71 bacteria in HL-60

cells. However, Nox2 activation at the plasma membrane might

contribute to the rapid killing of BMJ71 bacteria during

phagocytosis by differentiated HL-60 cells. Therefore, we

investigated the susceptibility of S. pyogenes bacteria to the

respiratory burst product H2O2. The bacteria were killed by

H2O2 treatment (Figure 5B). Importantly, the wild-type AP1 strain

was not more resistant than the BMJ71 strain to killing by H2O2.

Having observed only a minor effect of the DPI treatment on

the intracellular survival of S. pyogenes bacteria, we wanted to

confirm the efficient inhibition of respiratory burst activity in

differentiated HL-60 cells by DPI. We therefore investigated

stimuli-triggered formazan formation during differentiation. This

response proved to increase over the studied period, with a peak

on day 4 (Fig. 6A). Fluorescence microscopy was employed in

order to locate regions of respiratory burst activity during

Figure 3. Intracellular survival of S. pyogenes bacteria. A.
Interaction. Differentiated HL-60 cells were allowed to interact at
37uC with Oregon Green-labeled IgG-opsonized (1 mg/ml) AP1 and
BMJ71, at a bacteria/cell ratio of 10:1. After a synchronized presentation,
the samples were incubated at 37uC as indicated. Analysis was by flow
cytometry. An interaction ratio was calculated by dividing the number
of cells interacting with Oregon Green-labeled bacteria with the total
number of cells. Error bars show SEM, based on a total of three
experiments. B. Internalization. After phagocytosis as in A, the
internalization of bacteria was determined by immunofluorescence
microscopy using non-permeabilized and permeabilized conditions and
anti-S. pyogenes antibodies. For each condition, at least 100 cells were
counted. A representative experiment is shown. C. Intracellular
survival. Differentiated HL-60 cells were allowed to phagocytose AP1
and BMJ71 bacteria at 37uC, bacteria/cell ratio 10:1. After a synchro-
nized presentation, the samples were incubated at 37uC as indicated,
before killing of extracellular bacteria by PlyC. Intracellular survival of
bacteria was determined by diluting HL-60 lysates and counting the
number of colonies formed after overnight growth at 37uC. Data shown
are expressed as the CFU ability relative to the values at 1 min. Error
bars show SEM, based on a total of three experiments.
doi:10.1371/journal.pone.0007363.g003
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phagocytosis in HL-60 cells. As can be seen in figure 6B, black

formazan precipitates, indicating oxidation of NBT by superoxide

anion, could be observed associated with both extra- and

intracellular bacteria, although precipitates were more pro-

nounced on the former. Precipitates could be detected already

after one minute. At later times, most of the cells interacting with

bacteria displayed evidence of respiratory burst activity. Precip-

itate formation was prevented in samples incubated with DPI

(Fig. 6C). A triggering of a DPI-inhibitable respiratory burst in

HL-60 cells by BMJ71 bacteria was also observed using flow

cytometric analysis of cells pre-loaded with dihydrorhodamine 123

([29,30] data not shown). Taken together, despite a localized

Figure 4. Fusion of azurophilic granules with phagosomes
containing S. pyogenes bacteria. A. Western blot of isolated
phagosomes and cell lysate. Differentiated HL-60 cells were allowed
to phagocytose IgG-opsonized, heat-killed and magnetically labeled S.
pyogenes bacteria for 20 min at a bacteria/cell ratio of 5:1. Following
washes, the cells were lysed by nitrogen cavitation and phagosomes
were retrieved by magnetic selection. Equal amounts of phagosomes
were loaded and probed with antibodies against cathepsin D
(azurophilic granule content marker) and GM130 (Golgi marker) with
anti-S. pyogenes as loading control. Increasing amounts of cell lysate
(relative protein content.056, 0.56and 1.06) was used as a control. B.
Azurophilic granule–phagosome fusion. Differentiated HL-60 cells
were allowed to phagocytose opsonized Oregon Green-labeled S.
pyogenes bacteria, either the BMJ71 (i-iii) or the AP1 (iv–v) strains, at a
bacteria/cell ratio of 10:1. After a synchronized presentation, the
samples were incubated at 37uC for 5 min, fixed and incubated with
antibodies directed against CD63, subsequently detected using Alexa
594 F(ab’)2 fragments. Single deconvolved focal planes from serial z-
stacks were taken from the mid-part of the HL-60 cells. Oregon Green
staining shows the localization of bacteria (ii, v). Magenta staining
shows the localization of the azurophilic granule membrane marker
CD63 (i, iv). The images are also presented as merged (iii, vi). Size bar:
5 mm.
doi:10.1371/journal.pone.0007363.g004

Figure 5. Killing of BMJ71 bacteria does not require Nox2
activation. A. Intracellular killing with inhibited oxidase.
Differentiated HL-60 cells were allowed to phagocytose BMJ71 bacteria
at 37uC, bacteria/cell ratio 10:1, in the presence or absence of 10 mM
DPI. After a synchronized presentation, the samples were incubated at
37uC as indicated, before killing of extracellular bacteria by PlyC.
Intracellular survival of bacteria was determined by diluting HL-60
lysates and counting the number of colonies formed after overnight
growth at 37uC. Data shown are expressed as the CFU ability relative to
the control value at 1 min. Error bars show SEM, based on a total of five
experiments. A significant difference was found between control and
DPI-treated cells at the 1 min time point, p,0.05. B. H2O2 suscepti-
bility of S. pyogenes. BMJ71 and AP1 bacteria were incubated with
1.5% H2O2 at 37uC as indicated. The samples were stained using a
bacterial viability kit (Viagram) and analyzed by fluorescence micros-
copy. As a control, catalase (1,000 U/ml) was added. At least 100
bacteria per condition were analyzed. Error bars show SEM, based on a
total of three experiments.
doi:10.1371/journal.pone.0007363.g005
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phagocytosis-induced respiratory burst in HL-60 cells, this

response appears to play a minor role in the killing of S. pyogenes

bacteria.

Discussion

We have examined the interaction of S. pyogenes bacteria with

differentiated HL-60 cells. The goal was to better understand

neutrophil phagocytosis and the mechanisms by which wild-type

AP1 bacteria interfere with intracellular killing. We suspected the

involvement of azurophilic granules, with their arsenal of proteases

and other antimicrobial substances, as well as the production of

respiratory burst metabolites triggered by NADPH oxidase

activation.

Initial experiments were designed to characterize our experi-

mental system. The agents most commonly used for the

differentiation of HL-60 cells towards a neutrophil-like state are

DMSO and ATRA [31], but others have also been used [32,33].

During differentiation, various characteristics of the HL-60 cell

phenotype change, e.g. the appearance of neutrophil cell surface

antigens such as CD11b [34] and CD66 [35,36], as well as the

downregulation of CD71 [37]. We opted to use ATRA, which

tends to yield a high percentage of neutrophil-like cells [38]. Using

low-passage cells (less than two months from stock) was also a

conscious decision, since extended continuous cell culture may

affect the response to differentiation agents [38]. Usually seen as a

lack of growth arrest, this was not observed in our experiments,

thus indicating ‘‘true’’ HL-60 cells.

There are several ways to evaluate phagocytic function. The

most commonly used parameter is called the phagocytic index and

was introduced by Silverstein and co-workers [39], and is also

known as the phagocytosis product [40]. It consists of two factors;

the percentage of cells that are associated with prey (adhered or

internalized) and the average number of prey per cell. This works

well in most cases when studying professional phagocytes, but it

does not give any information about the ability to internalize per se.

In this work we are looking at the potential gain of phagocytic

ability during differentiation. In our view, this could be an increase

of association with prey (or interaction, as we call it), an increase of

internalization of prey or both. Our results show that both of these

parameters are affected, and we therefore constructed a composite

of these which we denote phagocytic ability. The conclusion that

we draw from differentiation with ATRA is that the treatment

enhanced the phagocytic ability of the cells to a high degree.

The use of a cell line for phagosome studies provides several

benefits, both practical and scientific: it reduces experimental

variation due to heterogeneity [41]; it is possible to transfect HL-

60 cells; large number of cells can easily be obtained; and it

represents a reductionist system where several of the neutrophil

granule types are absent (phagosomal oxidase assembly is defective

because of the lack of specific granules). Further, for phagosome

isolation experiments, the use of HL-60 cells offers several

additional advantages, such as reduction of total experiment time

and increased reproducibility. Important phagosome maturation

differences between the HL-60 and neutrophil models are

summarized in Figure 7.

In accordance with recently published data on the intracellular

survival of S. pyogenes bacteria in neutrophils [23], an inhibition of

the fusion of azurophilic granules with phagosomes containing

wild-type AP1 bacteria was observed in HL-60 cells. In contrast,

massive fusion occurred on phagosomes containing the mutated

strain BMJ71, lacking M and M-like proteins. Phagosome isolation

allowed a quantitative analysis of azurophilic granule–phagosome

fusion. A potential drawback is that we used heat-killed bacteria

Figure 6. ATRA-induced oxidative ability. A. Induction of Nox2
activation during differentiation. Cells were allowed to phagocy-
tose IgG-opsonized BMJ71 bacteria for 5 min (bacteria/cells, 2:1), or
were stimulated with 160 nM PMA, in the presence of 1 mg/ml NBT.
Measurement of absorbance was used to quantitate the intracellular
respiratory burst. Data are presented as the ratio between formazan
formation in ATRA-treated cells compared to control cells. B.
Localization of formazan formation. Differentiated HL-60 cells
interacting with IgG-opsonized Oregon Green-labeled BMJ71 bacteria
were incubated with 1 mg/ml NBT. A bacteria/cell ratio of 10:1 was
used. Respiratory burst activity was indicated by blue-black formazan
precipitates, visible by light microscopy (iii, vi). Oregon Green
fluorescence (i, iv) shows the total number of bacteria, and anti-
streptococcal staining (ii, v) shows the location of extracellular bacteria.
In the upper panel, precipitate formation on cell-adherent bacteria is
illustrated. The lower panel shows that NBT precipitates may also be
found on internalized bacteria. Size bar: 10 mm. C. Quantitation of
respiratory burst-positive cells. The diagram shows the proportion
of bacteria-interacting cells that display formazan precipitates and the
effect of DPI (10 mM). At least 50 cells per sample were analyzed. Error
bars show SEM, based on a total of three experiments.
doi:10.1371/journal.pone.0007363.g006
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for this. However, we have earlier reported that effects on

intracellular trafficking persist even after heat treatment of

bacteria, albeit to a lesser degree [23,42]. The reduced amount

of azurophilic granule-marker found on phagosomes containing

wild-type bacteria as compared to those containing the mutant

provided further evidence to the hypothesis that wild-type

S.pyogenes bacteria interfere with phagosome maturation.

In neutrophils, respiratory burst products such as O2
2 and

H2O2 can be formed in phagosomes [43], and this is the case with

both BMJ71- and AP1-containing phagosomes [23]. AP1-

containing phagosomes do not readily fuse with azurophilic

granules and lack of fusion leads to a lack of the azurophilic

granule component MPO, which catalyzes reactions between

H2O2 and, e.g., halides into more toxic oxidative products such as

Figure 7. ATRA-differentiated HL-60 cells as a model for neutrophil phagocytosis. Both neutrophils and differentiated HL-60 cells are able
to internalize and kill IgG-opsonized prey within minutes. However, phagosome maturation differs for the two cell types because HL-60 cells have
only azurophilic granules (depicted in red) and lack other granule types. Also, Nox2 activity (depicted in black) is lower in HL-60 cells and located at
the plasma membrane. These deficiencies of ATRA-differentiated HL-60 cell lines can be exploited for the study of the roles of azurophilic granules
and Nox2 during phagocytosis. In the figure, the different fates of two strains of S. pyogenes bacteria in both neutrophils and HL-60 cells are shown. In
both cell types, the killing of the BMJ71 strain is accompanied by the avid fusion of azurophilic granules, whereas less fusion and less killing is
observed for the AP1 strain.
doi:10.1371/journal.pone.0007363.g007
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hypochlorite [44]. The phagosomes containing BMJ71 bacteria

would therefore generate larger amounts of more potent oxidative

metabolites. This could be one factor contributing to the observed

difference in survival between the two bacterial strains.

Because specific granules are absent in HL-60 cells, the

phagosomal respiratory burst activity in these cells ought to be

lower than in neutrophils since the deposition of specific granule

NADPH oxidase components on the phagosome is not possible.

Instead, during differentiation, HL-60 cells develop an ability to

mount a plasma membrane oxidative burst in the vicinity of

forming phagosomes. After showing that the bacteria used were

sensitive to oxygen metabolites, the effect of the oxidase inhibitor

DPI on intracellular survival of bacteria was assessed. The survival

was only affected to a small extent and only at the early stage of

phagocytosis.

In conclusion, the survival of S. pyogenes bacteria in neutrophil-

differentiated HL-60 cells seems to be caused by an inhibition of

azurophilic granule fusion with phagosomes and not primarily by

inhibition of the respiratory burst. The intracellular fate of wild-

type and mutant S. pyogenes strains in neutrophils is very similar to

what is observed in HL-60 cells, and it is therefore tempting to

suggest that the relevant antibacterial mechanisms in the HL-60

cell line might be similar to those used by neutrophils. In other

words, a major role for azurophilic granules and a limited role for

plasma membrane respiratory burst activity should apply for both

cell types. Further studies are needed to clarify the role of the

neutrophil NADPH oxidase as a means of defense against S.

pyogenes intracellular persistence. Finally, we have demonstrated

that the HL-60 cell, when used in parallel with human neutrophils,

provides a useful model for phagosome maturation studies, in

which the respiratory burst (and granule types other than the

azurophilic) does not significantly contribute to bacterial killing.

Materials and Methods

Bacteria
The wild-type S. pyogenes AP1 (40/58) strain of the M1 serotype

was provided by the World Health Organization Streptococcal

Reference Laboratory in Prague, Czech Republic. The mga-

regulon deficient S. pyogenes strain BMJ71, was generated from the

wild-type serotype as previously described [25]. The bacteria were

grown as described by Staali et al [24] and opsonized with pooled

human IgG (Sigma-Aldrich, Stockholm, Sweden). For some

experiments, bacteria were stained with 5 mM Oregon Green

488-X succinimidyl ester (Invitrogen, Copenhagen, Denmark) for

30 min in the dark at room temperature. Excess fluorochrome was

then removed by washing the bacteria three times in PBS. The

stained bacteria were kept on ice until use.

HL-60 cells
HL-60 cells were acquired from the ATCC and were kept in

low passage (,2 months) and then exchanged for freshly thawed

aliquots. In accordance with the protocol of Breitman et al. [6],

seeding of HL-60 cells was performed in L-glutamine-containing

RPMI 1640 medium (PAA Labs, Gothenburg, Sweden), supple-

mented with 10% fetal bovine serum (Gibco, Copenhagen,

Denmark) and 1 mM ATRA (Sigma-Aldrich, Stockholm, Sweden).

The cell concentration was 0.3–0.4?106/ml and the viability was

over 95%. The cells were kept in 5% CO2 atmosphere at 37uC for

four days and were then harvested. No antibiotics were used. The

viability of the differentiated cells was 75–80%, as determined by

trypan blue exclusion. After harvesting (20?106/ml), the HL-60

cells were put on a rotator (8 rpm) at room temperature. All

experiments were performed in Na-medium (5.6 mM glucose,

127 mM NaCl, 10.8 mM KCl, 2.4 mM KH2PO4, 1.6 mM

MgSO4, 10 mM HEPES, 1.8 mM CaCl2; pH adjusted to 7.3

with NaOH), within 30 min of harvesting.

Phagocytosis
Phagocytosis of bacteria was performed in Na-medium which

was preheated to 37uC. Different bacteria/cell ratios were used for

different assays, varying between 2:1–10:1 (see figure legends).

These were chosen empirically to compensate for differences in

presentation techniques employed. To synchronize interaction,

bacteria and cells were pelleted in a microcentrifuge (12,000 g,

30 s), followed by an additional 30 s incubation at 37uC. The

pellet was then resuspended and the cells were further incubated at

37uC. Phagosome maturation was halted by putting the samples

on ice. To ensure equal treatment of the samples, an 8-channel

multi-pipet was used for resuspension. In some experiments

(figures 2B, 2C, 4B and 6A) the presentation step was repeated to

increase interaction efficiency.

Intracellular survival assays
To study intracellular survival of S. pyogenes, the bacterial

strains were first sonicated (XB2 sonicator bath, Grant) to reduce

bacterial aggregation. Before presentation to cells, they were IgG-

opsonized (1 mg/ml) and then gently centrifuged (200 g, 2 min,

swing-out) to remove any remaining aggregates (checked by

microscopy). After equilibration at 37uC, differentiated HL-60

cells were presented to the bacteria by centrifugation (12,000 g,

30 s, fixed angle). The phagocytic process was halted by placing

the samples on ice and extracellular bacteria were killed by

incubating the samples with PlyC, a streptococcal C1 bacterio-

phage lysin (functionally a murein hydrolase [45,46]), at 1.5 U/ml

for 15 min on ice, followed by thorough washing. The HL-60

cells were lysed by incubating the samples for 20 min with 2%

saponin. The samples were diluted in distilled water and plated

on Todd-Hewitt agar plates. Following an overnight incubation

at 37uC, the number of colony forming units (CFU) was

determined.

Phagosome isolation
The cells were allowed to interact with the bacteria at a

bacteria/cell ratio of 5:1 and after 20 min of phagocytosis the

maturation was halted by placing the samples on ice. Bacteria-

containing phagosomes were prepared using a method of magnetic

selection as described by Lönnbro et al. [26].

Western blot
SDS-PAGE was performed using a modified protocol of

Laemmli [47] made according to instructions for NuPAGE gels

(4–12% Bis-Tris, Invitrogen) and PVDF membranes (Millipore).

The membranes were probed using antibodies against cathepsin D

(Santa Cruz Technology, Santa Cruz, CA), GM130 (Affinity

Bioreagents, CO, USA) and group A streptococci (Biogenesis,

Poole, England). Western blots were developed with Super Signal

West Dura Extended (Pierce). PageRuler Plus (Fermentas) was

used as molecular weight standard.

Flow cytometry
Flow cytometric analysis was performed using a FACSCalibur

flow cytometer (Becton-Dickinson) equipped with a 15 mW argon

laser tuned at 488 nm. For each sample at least 20,000 events were

recorded and the results were analyzed using the CellQuest Pro

software (Becton Dickinson) and FlowJo 8.8.6 (Tree Star).
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Immunofluorescence microscopy
In figure 4, samples were treated and analyzed as described by

Staali et al [24]. A monoclonal antibody against CD63 (1:800,

(Santa Cruz Technology, Santa Cruz, CA)) and a polyclonal goat

antibody against S. pyogenes (1:1000, (AbD Serotec, Düsseldorf,

Germany) were used as primary antibodies. As secondary

antibodies an Alexa Fluor 594 anti-mouse antibody or an Alexa

Fluor 488 anti-goat antibody (1:600, (Invitrogen, Copenhagen,

Denmark)) were used. Acquisition of images were performed using

a fluorescence microscope (Nikon Eclipse TE300 equipped with a

Hamamatsu C4742-95 cooled CCD camera, using a Plan

Apochromat 100X objective with NA 1.4). To increase resolution,

z-series were captured and out-of-focus light was removed by

deconvolution (NIS-Elements 3, Nikon). This was performed with

a calibrated point spread function to limit errors introduced by the

microscope setup.

To analyze interaction and internalization during phagocytosis

(cf. Fig. 2B and 2C) Oregon Green-labeled bacteria were used.

The opsonizing IgG on non-internalized bacteria were visualized

by the addition of anti-human Cy3-conjugated F(ab’)2 fragments

(Jackson Immunoresearch, Baltimore, PA).

NBT assays
Oregon Green-labeled bacteria were suspended in PBS

containing 1 mg/ml NBT (Roche Diagnostics, Bromma, Sweden).

After allowing phagocytosis as described above, the samples were

fixed using 2% PFA. To distinguish extracellular bacteria from

intracellular, the former were stained using a goat anti-strepto-

coccal antibody (1:600) and Alexa Fluor 594 F(ab’)2 fragment of

anti-goat IgG (1:600). The presence of blue-black formazan

precipitates, caused by the reduction of NBT by the superoxide

anion (O2
2) [48], was quantified by microscopy. In order to

quantitate the intracellular respiratory burst, cells were allowed to

phagocytose IgG-opsonized BMJ71 bacteria for 5 min or were

treated with 160 nM phorbol 12-myristate 13-acetate (PMA,

Sigma-Aldrich, Stockholm, Sweden) [49] in the presence of 1 mg/

ml NBT. The samples were treated with 70% methanol followed

by 2 M KOH, after which the formazan precipitates were

dissolved using concentrated DMSO as described by Mollinedo et

al. Finally, absorbance (600 nm and 450 nm) was measured using

a Victor3 plate reader (PerkinElmer).

Oxidant susceptibility assay
H2O2 was added to 2?109 bacteria at a final concentration of

1.5% (v/v). Samples were incubated at 37uC for 15, 30 and 60

minutes, respectively, after which catalase (1000 U/ml) was added

to stop the reaction as described by Liu et al. [50]. Samples were

fixed using 1% PFA and stained using the Viagram Viability Kit

(Invitrogen, Copenhagen, Denmark). Bacterial viability was

analyzed by fluorescence microscopy. Alternatively, analysis of

H2O2-treated bacteria (non-fixed) was performed by counting

colonies after 16 h incubation on Todd-Hewitt agar at 37uC.

Statistics
GraphPad Prism 5 was used for t-test analysis in all figures

except in Figure 5 where a two-way ANOVA with Bonferroni was

used.
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