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Abstract
Sugar chain binding antibodies have gained substantial attention as biomarkers due to their

crucial roles in various disorders. In this study, we developed simple and quick detection

method of anti-sugar chain antibodies in sera using our previously developed sugar chain-

immobilized fluorescent nanoparticles (SFNPs) for the point-of-care diagnostics. Sugar

chain structure on SFNPs was modified with the sugar moieties of the GM1 ganglioside via

our original linker molecule to detect anti-GM1 antibodies. The structures and densities of

the sugar moieties immobilized on the nanoparticles were evaluated in detail using lectins

and sera containing anti-GM1 antibodies from patients with Guillain-Barré syndrome, a neu-

rological disorder, as an example of disease involving anti-sugar chain antibodies. When

optimized SFNPs were added to sera from patients with Guillain-Barré syndrome, fluores-

cent aggregates were able to visually detect under UV light in three hours. The sensitivity of

the detection method was equivalent to that of the current ELISA method used for the diag-

nosis of Guillain-Barré syndrome. These results suggest that our method using SFNPs is

suitable for the point-of-care diagnostics of diseases involving anti-sugar chain antibodies.

Introduction
Sugar chains found on cell surfaces are involved in various biological processes, such as cell sig-
naling, cell-cell recognition, cancer and immunity. Because the structures and expression levels
of sugar chains vary depending on the cell states and cellular environments, some sugar chains
can be used as biomarkers [1]. Cancer cells produce various unique sugar chain markers includ-
ing fucose-containing sugar chains in hepatic cancer [2–4]. Specific sugar chains also act as anti-
gens that bind to natural or acquired antibodies to induce an immuno-compromised response
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[5–9]. The production of auto-antibodies against sugar chains occasionally leads to the develop-
ment of severe autoimmune diseases, such as Guillain-Barré syndrome (GBS) [10, 11].

GBS is the most frequent cause of acute flaccid paralysis. A commonmisconception is that
GBS has a good prognosis; however, up to 20% of patients remain severely disabled, and approxi-
mately 5% die [12]. One-third of patients with GBS develop the disease after infection by Cam-
pylobacter jejuni, which expresses a lipo-oligosaccharide that mimics sugar moieties of
ganglioside [13, 14]. The lipo-oligosaccharide induces an immune response and the production
of autoantibodies against sugar moieties of gangliosides, producing the autoimmune disease. Cur-
rently, an ELISA that uses GM1 and GD1a gangliosides to detect anti-ganglioside autoantibodies
in sera is utilized to confirm the diagnosis of GBS because it is often misdiagnosed as stroke [15,
16]. Although early diagnosis and medication is important for GBS treatment, the ELISA for GBS
is time consuming, and it can take several days to receive the assay results from a diagnostic labo-
ratory. Therefore, a rapid, simple and point-of-care diagnostic test for GBS is required.

For detection of anti-sugar chain antibodies, several detection methods including carbohy-
drate microarray and ELISA have been utilized [17–19]. However, those methods are not suit-
able for diagnosis in clinical facilities (point-of-care diagnostics) because it needs mature
techniques and/or special instruments. Recently, we developed sugar chain-immobilized fluo-
rescent nanoparticles (SFNPs) as a simple interaction analysis tool for sugar chain binding pro-
teins [20]. SFNPs can clearly visualize the interactions between sugar chains and sugar chain
binding proteins by forming specific fluorescent aggregates under UV irradiation. Additionally,
this method can be utilized for various types of sugar chain binding proteins because the sugar
chain structure on the SFNPs can be easily modified. In this study, we applied our SFNP tech-
nology to a novel detection method for anti-sugar chain antibodies, in which anti-ganglioside
antibodies in sera with GBS were visually detected in three hours as they form fluorescent
aggregates with the SFNPs. This method is simple and quick compared with the ELISA
method, and would be applicable for the point-of-care diagnostics.

Materials and Methods

Preparation of CdTe/CdS core/shell quamtum dots (QDs)
CdTe/CdS core/shell QDs stabilized with 3-MPA were prepared according to the method from
our previous report, with a slight modification [20]. Te powder (16.0 mg, 0.125 mmol, Nakalai
Tesque, Kyoto, Japan) and NaBH4 (18.9 mg, 0.50 mmol, Nakalai Tesque) were dissolved in
argon-bubbled water (2 mL). The resulting mixture was stirred at room temperature for 1.5 h.
In another flask, CdCl2 (9.17 mg, 50.0 μmol, Nakalai Tesque) and 3-MPA (5.45 μL, 63.0 μmol,
Nakalai Tesque) were dissolved in water (10 mL), and the pH of the solution was adjusted to 9
using 1 M NaOH. Argon gas was then bubbled through the reaction mixture for 30 min with
stirring. The resulting mixture was heated to 105°C and stirred vigorously. The NaHTe solu-
tion (200 μL) was quickly added to this mixture, and the resulting mixture was further stirred
at the same temperature under open-air conditions. After stirred for 2 h, the CdTe solution
was then cooled to room temperature. The CdTe QDs were then precipitated by adding 2-pro-
panol, and the QDs were dissolved in water. The solution was left for 10 h at 4°C in the dark. A
solution of thioacetamide (0.27 μL, 1.33 M) was then added to the CdTe solution. The reaction
mixture was stirred at 105°C for 57 h and then cooled to room temperature to obtain the solu-
tion of CdTe/CdS core/shell QDs.

Synthesis of sugar chain-ligand conjugate
GM1-Glc-f-mono was synthesized according to the methods described in our previous report
[21]. The GM1-Glc sugar chain [22] (1.0 mg, 0.86 μmol) and f-mono [21] (0.28 mg, 1.1 μmol)
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were dissolved in water (20 μL) and N,N-dimethylacetamide (30 μL), respectively. Then, the
GM1-Glc solution and acetic acid (6 μL) were added to the f-mono solution. After the reaction
mixture was incubated at 40°C for 6 h, sodium cyanoborohydride (1.5 mg, 24 μmol, Sigma-
Aldrich, St. Louis, MO, USA) in water (10 μL) was added. The reaction mixture was left at
40°C for 3 days and then lyophilized. The residue was then dissolved in water and purified over
an ODS column (eluted with 6:4 water:methanol) to obtain the desired GM1-Glc-f-mono as a
white powder. Yield: 0.69 mg (56%). MALDI-TOF MS calculated for C56H92N5O34S2: 1442.51;
found:m/z 1442.48 [M-H]−.

Immobilization of sugar chains onto the CdTe/CdS QDs
Sugar chains were immobilized onto the CdTe/CdS QDs according to the methods described
in our previous report, with a slight modification [20]. GM1-Glc-f-mono (1 mM, 50 μL), and
an aqueous solution of NaBH4 (10 mM, 50 μL) were mixed at room temperature, and then the
mixture was left for 10 min. Next, a CdTe/CdS QDs solution (1.8 μM, 100 μL) was added to the
mixture, which was then stirred for 24 h at room temperature in the dark. Excess ligand conju-
gates were removed by centrifugal filtration (14,000 g, 5 min) using an Amicon Ultra-10K
(Millipore, MA, USA). The residue was washed with water three times, and then, PBS was
added to prepare the GM1-SFNP solution.

Analysis of binding interactions between proteins and GM1-Glc-SFNPs
Each protein (Con A, RCA120, PNA, WGA, and BSA) was dissolved in PBS, and each protein
solution (5 μL, 3.6 μM) was placed in a microtube. Then, the SFNP solution (5 μL, 0.2 μM) was
added to each microtube. After incubating for 1 h in the dark, the mixture was centrifuged at
14,000 g for 5 min. Then, the fluorescence spectrum (excitation wavelength at 360 nm) of the
supernatant from each tube was measured.

Use of GM1-Glc-SFNPs to detect anti-ganglioside antibodies in sera
from patients with GBS
The sera used in this study were supplied from patients with GBS. Before being treated, all
patients or their family in some cases agreed to the written informed consent from the Dokkyo
University Hospital that samples from patients may be used for the clinical or preclinical study
performed by the Department of Neurology, Dokkyo Medical University. The study was evalu-
ated and approved by the Ethical Committee of Dokkyo Medical University (No. 1973). Serum
from a GBS patient (5 μL) and a GM1-Glc-SFNPs solution (5 μL, 0.1 μM) were mixed in a
microtube. After overnight incubation at 4°C in the dark, the mixture was centrifuged at
14,000 g for 5 min. Fluorescent aggregates were observed under UV irradiation, and the fluo-
rescent spectrum of the supernatant from each sample was measured.

SDS-PAGE and western blotting of aggregates of GM1-Glc-SFNPs and
anti-GM1 antibodies
The aggregates of GM1-Glc-SFNPs and anti-GM1 antibodies in sera from patients with GBS
were collected, washed three times with PBS, and then, dispersed in PBS. The dispersed solu-
tion was analyzed using SDS-PAGE and a 10% polyacrylamide gel stained with silver under
reducing conditions or an 8% polyacrylamide gel under non-reducing conditions according to
the typical procedure. Then, typical western blotting was performed to transfer proteins from
the gel to a PVDF membrane. The membrane was then blocked with 5% skimmed milk in PBS
with 0.05% Tween 20 (PBS-T) for 1 h. After washing with PBS-T three times, the membrane
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was incubated in a solution of HRP-conjugated anti-human IgG antibody (goat) and 5%
skimmed milk in PBS-T (1:5000) for 1 h at room temperature. The gel was then developed
using Chemi-Lumi One (Nakalai Tesque).

Inhibition of the agglutination assay using GM1 sugar chains
Patient serum (2.5 μL), a GM1-Glc-SFNP solution (5 μL, 0.1 μM), and a GM1 sugar chain solu-
tion (2.5 μL, 1–16 mM) were mixed in a microtube. After incubating for 6 h at 4°C in the dark,
the mixture was centrifuged at 14,000 g for 5 min. Aggregate formation was evaluated under
UV irradiation, and the fluorescent spectrum of the supernatant of each tube was measured.

SFNPs agglutination assay for 100 samples of sera from patients with
suspected GBS
A GM1-Glc/TEG(5:5)-SFNPs or GM1-SFNPs solution (15 μL, 0.1 μM) and serum (15 μL)
were mixed and incubated for 3 h at 4°C in the dark, and the mixture was centrifuged at 14,000
g for 5 min. The fluorescent aggregates were visually examined under UV irradiation. Titers of
serum IgG antibodies to gangliosides were determined by ELISA. Each serum was diluted at
1:500, and titers were graded as described previously [23]: An optical density at 492 nm of less
than 0.1 was judged to be negative. The optical density of 0.1 to 0.5 was categorized as 1+; 0.5
to 1.0, 2+; 1.0 to 1.5, 3+; 1.5 to 2.0, 4+; 2.0 to 2.5, 5+; and 2.5 or more, 6+ (S1 and S2 Tables).

Statistics
Differences in proportions were analyzed by the Fisher’s exact test using 2×2 tables. The p-val-
ues less than 0.05 were considered statistically significant.

Results

Preparation and binding experiments with SFNPs containing the GM1
sugar moieties
To develop a diagnostic test for GBS, fluorescent nanoparticles containing GM1 sugar-chain
moieties were designed. Sugar chain-ligand conjugates 1 and 2 were used as the GM1 sugar
moieties. The conjugates were prepared by reductive amination of a chemically synthesized
GM1-Glc sugar component [22] and a commercially available GM1 sugar component (ELICI-
TYL, Crolles, France), respectively, with a fluorescent linker molecule (f-mono, Fig 1) [21]. The
preparation of SFNPs with these conjugates was performed using our previous method, with a
slight modification (Fig 1B). CdTe/CdS core/shell quantum dots (CdTe/CdS QDs) were used
as fluorescent nanoparticles [20]. Ligand exchange reactions of CdTe/CdS QDs with
GM1-Glc-f-mono 1 and GM1-f-mono 2 produced GM1-Glc-SFNPs and GM1-SFNPs, respec-
tively. Both of the SFNPs showed distinct absorption patterns at approximately 310 nm,
derived from the f-mono linker, and at approximately 600 nm, derived from the QD, as well as
strong red fluorescence (Ex: 400 nm, Em: 650 nm; Fig 2A). The immobilization of GM1-Glc-f-
mono on the SFNP was qualitatively confirmed using MALDI-TOF MS analysis (Fig 2B). The
content of the GM1-Glc sugar chains was determined as 0.58 mg/mg of GM1-Glc-SFNP using
the ABEE method [24]. The concentration of the SFNP solution was calculated from its
absorption at 600 nm and was adjusted to approximately 0.1 μMwith PBS [25]. The diameter
of the GM1-Glc-SFNP was measured as 8.9 nm using dynamic light scattering (Fig 2C).
GM1-SFNP was also validated as above (S1 Fig).
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Fig 1. Preparation of GM1-Glc-immobilized fluorescent nanoparticles (GM1-Glc-SFNPs). (A) The
structures of synthesized ligand conjugates containing GM1 sugar chain moieties. (B) Scheme showing the
preparation of SFNPs containing GM1 sugar moieties.

doi:10.1371/journal.pone.0137966.g001

Fig 2. Characterization of GM1-Glc-immobilized fluorescent nanoparticles (GM1-Glc-SFNPs). (A) UV-Vis (dotted line) and fluorescence (solid line)
spectra of GM1-Glc-SFNPs. (B) Dynamic light scattering measurement of GM1-Glc-SFNPs. The average hydrodynamic diameter was 8.9 nm. (C)
MALDI-TOF MS analysis of GM1-Glc-SFNPs. The detected peak wasm/z: 1442.68 [M-H]−, corresponding to GM1-Glc-f-mono.

doi:10.1371/journal.pone.0137966.g002
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Binding experiments of SFNPs containing GM1 sugar chains with lectins
To investigate the functionality of the sugar chains on the prepared SFNPs, we examined the
binding interactions of GM1-Glc-SFNPs with various types of lectins, a sugar chain-binding
protein. Concanavalin A (Con A; known to specifically bind to αGlc- and αMan-), Ricinus
communis agglutinin I (RCA120; known to specifically bind to βGal), peanut agglutinin (PNA;
known to specifically bind to Galβ1-3GalNAc), wheat germ agglutinin (WGA; known to spe-
cifically bind to GlcNAc), and bovine serum albumin (BSA; known not to bind to sugar chains)
were used. GM1-Glc-SFNP specifically interacted only with PNA. Fluorescent aggregates were
produced in this process (Fig 3A), and the fluorescence intensity of the supernatant was specifi-
cally decreased (Fig 3B). Similar results were obtained with GM1-SFNPs (S1 Fig).

Agglutination assay using sera from patients with GBS
Because SFNPs containing GM1 sugar-chain moieties could agglutinate with a lectin in a struc-
turally specific manner, they were tested on sera from patients with GBS. The sera were sup-
plied from patients that agreed to the clinical or preclinical study performed by the
Department of Neurology, Dokkyo Medical University. The study was evaluated and approved
by the Ethical Committee of Dokkyo Medical University (No. 1973). Currently, the ELISA
method is used to identify anti-GM1 IgG autoantibodies in sera from patients with GBS in
Japan [15, 16]. The titers of anti-GM1 antibodies were confirmed and calculated by ELISA.
First, the serum samples were simply mixed with GM1-Glc-SFNPs and incubated overnight.
Then, they were centrifuged at 14,000 g for 5 min. In the case of samples positive for anti-GM1
antibodies, fluorescent aggregates formed after centrifugation (Fig 4A, samples 4–6), and the
fluorescence intensity of the supernatant decreased (Fig 4B). In contrast, sera negative for anti-
GM1 antibodies did not form any aggregates (Fig 4A, samples 1–3).

To determine the molecules that were involved in the aggregation, we separated the aggre-
gates and then analyzed them using SDS-PAGE. Four bands at approximately 25, 50, 75, and
150 kDa in a silver-stained gel (Fig 4C) and two bands at approximately 50 and 150 kDa in a
western blot with HRP-conjugated goat anti-human IgG (H+L chain specific; Fig 4D) were
clearly observed. These bands were interpreted as representing the binding to a fragment of
IgG and the binding to a whole IgG, respectively. The addition of free GM1 sugar chains to the
agglutination assay inhibited the formation of aggregates in a dose-dependent manner (Fig 5A
and 5B). These results indicate that the aggregation occurred via the interaction between
SFNPs and anti-GM1 IgG antibodies.

Fig 3. Interaction analysis of GM1-Glc-immobilized fluorescent nanoparticles (GM1-Glc-SFNPs) with lectins. (A) Analysis of interactions between
GM1-Glc-SFNPs and lectins. Visual image of the mixture of GM1-Glc-SFNPs and proteins under UV irradiation. (B) Fluorescence spectra of the supernatant
monitored by an excitation wavelength at 360 nm.

doi:10.1371/journal.pone.0137966.g003
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Fig 4. Agglutination assay of GM1-Glc-immobilized fluorescent nanoparticles (GM1-Glc-SFNPs) with
sera fromGBS patients. (A) Visual image of fluorescent aggregates under UV irradiation (samples 1 and 3:
negative for anti-GM1/GD1a antibodies; sample 2: positive for anti-GD1a antibodies; samples 4, 5, and 6:
positive for anti-GM1 IgG antibodies). (B) Fluorescence spectra of supernatants monitored by excitation at
360 nm. (C) Silver-stained SDS-PAGE of aggregates obtained from sample 6; 10% gel with
2-mercaptoethanol (2-ME; left) and 8% gel without reducing reagents (right). Lanes 1 and 4: GM1-Glc-SFNP;
lanes 2 and 5: aggregates of GM1-Glc-SFNPs; lanes 3 and 6: diluted serum. (D) Western blotting analysis of
fluorescent aggregates of GM1-Glc-SFNPs; 10% gel with 2-mercaptoethanol. Lane 1: aggregates of
GM1-Glc-SFNPs; lanes 2: diluted serum.

doi:10.1371/journal.pone.0137966.g004

Fig 5. Agglutination inhibition assay of GM1-Glc-immobilized fluorescent nanoparticles (GM1-Glc-
SFNPs) with sera fromGBS patients. (A) Visual image of the inhibition caused by the addition of free GM1
sugar chains to the agglutination assay (concentration of free GM1 sugar chain: 0 to 4 mM). (B) Fluorescence
spectra of the supernatants in the agglutination inhibition assay.

doi:10.1371/journal.pone.0137966.g005
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Optimization of sugar chain densities on SFNPs for agglutination of
lectin and autoantibodies from GBS patients
The density of sugar-chain moieties on the QD surfaces is important for the strength of the
binding interaction between sugar chains and proteins, and the appropriate sugar chain den-
sity can enhance the binding affinity by more than 10- to 1,000-fold [26–32]. Therefore, to
obtain the optimal tool for efficient and rapid agglutination assays, density-controlled SFNPs
were evaluated as follows: SFNPs with various sugar-chain densities were prepared via a reac-
tion with a mixture of GM1 sugar chain-containing ligand conjugates (1 or 2) and a tetra-
ethylene glycol-conjugated monovalent linker molecule (TEG) [20, 33] at ratios of 7:3, 5:5,
3:7, and 1:9.

The agglutination assay was performed using PNA at various concentrations (Fig 6A–6D
and Table 1). The dissociation constant (KD) of each SFNP was estimated using a Scatchard
plot based on the fluorescence intensity of the supernatants. Aggregate concentrations were
visually evaluated to estimate sensitivity. The results show that GM1-Glc/TEG(5:5)-SFNPs
and GM1-SFNPs were more effective at aggregation than the other SFNPs. The assay was
then performed using sera from patients with GBS (Fig 7A–7F). Interestingly, GM1-Glc/TEG
(5:5)-SFNPs were more effective than GM1-Glc-SFNPs in the agglutination assay, producing
aggregates after only 1 h of incubation (Fig 7G; see arrow). The assay was also performed
using serially diluted serum solutions to compare the detection sensitivities of GM1-Glc/TEG
(5:5)-SFNP, GM1-SFNP, and GM1/TEG(5:5)-SFNP. The results show that GM1-SFNP was
more effective than GM1-Glc/TEG(5:5)-SFNP or GM1/TEG(5:5)-SFNP after 3 h of
incubation.

Fig 6. Agglutination assay of PNA using sugar chain-immobilized fluorescent nanoparticles (SFNPs)
with different sugar-chain densities. (A) Image from an agglutination assay using GM1-Glc/tetraethylene
glycol-conjugated monovalent linker (TEG; 5:5)-SFNPs with peanut agglutinin (PNA). (B) Binding experiment
using GM1-Glc/TEG-SFNPs (5:5) to calculate KD values using a Scatchard plot. (C) Image from an
agglutination assay using GM1-SFNPs with PNA. (D) Binding experiment using GM1-SFNPs to calculate KD

values using a Scatchard plot.

doi:10.1371/journal.pone.0137966.g006
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Comparison of agglutination assay with ELISA for testing sera from
patients with suspected GBS
The agglutination assay was then evaluated using sera from 100 patients with suspected GBS
(S1 and S2 Tables). The ELISA method indicated that 50 of these samples contained anti-GM1

Table 1. Agglutination assay of sugar chain-immobilized fluorescent nanoparticles (SFNPs) with pea-
nut agglutinin.

SFNPs KD (nM) Lowest concentration required to form aggregate (nM)

GM1-Glc-SFNP 298 �113

GM1-Glc/TEG (7:3)-SFNP 231 �113

GM1-Glc/TEG (5:5)-SFNP 203 �113

GM1-Glc/TEG (3:7)-SFNP 1,333 225

GM1-Glc/TEG (1:9)-SFNP ND 450

GM1-SFNP 980 �113

GM1/TEG (7:3)-SFNP 2,500 225

GM1/TEG (5:5)-SFNP ND 225

GM1/TEG (3:7)-SFNP ND 900

GM1/TEG (1:9)-SFNP ND ND

ND, not determined.

doi:10.1371/journal.pone.0137966.t001

Fig 7. Agglutination assay of GM1-Glc-immobilized fluorescent nanoparticles (GM1-Glc-SFNPs) with
different sugar-chain densities and sera fromGBS patients. (A–C) Images from an agglutination assay
using GM1-Glc-SFNPs and serum from a GBS patient after incubation for (A) 1 h, (B) 3 h, or (C) 12 h. (D–F)
Images from an agglutination assay using GM1-Glc/TEG (5:5)-SFNPs and serum from a GBS patient after
incubation for (D) 1 h, (E) 3 h, or (F) 12 h. (G) Image from an agglutination assay of GM1-Glc/TEG (5:5)-
SFNPs, GM1-SFNPs, or GM1-Glc/TEG-SFNPs using serial dilutions of serum, after incubation for 3 h.

doi:10.1371/journal.pone.0137966.g007
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IgG antibodies. In this experiment, GM1-Glc/TEG(5:5)-SFNPs and GM1-SFNPs were used.
After 3 h or 12 h of incubation at 4°C in the dark, the mixture of SFNPs and serum was centri-
fuged at 14,000 g for 5 min. Then, the resulting aggregates were visually evaluated under UV
irradiation, and the supernatants were analyzed using a fluorescent spectrometer (S2 and S3
Figs). When GM1-Glc/TEG(5:5)-SFNPs were used, 37 of the serum samples formed aggregates
after 3 h of incubation, and 2 samples formed aggregates after 12 h of incubation. In contrast,
when GM1-SFNPs were used, 43 of the samples produced aggregates after 3 h of incubation
(Table 2). Some of the sera that was evaluated as positive for anti-GM1 antibodies using ELISA
only formed aggregates with either GM1-Glc/TEG(5:5)-SFNPs or GM1-SFNPs but not with
both of them. However, most of the sera that was evaluated as positive for anti-GM1 antibodies
using ELISA formed aggregates with GM1-Glc/TEG(5:5)-SFNPs and GM1-SFNPs (S4 Fig). In
the case of the sera that was evaluated as negative by ELISA, no aggregates were detected in
response to either GM1-Glc/TEG(5:5)-SFNPs or GM1-SFNPs. Overall, the sensitivity of the
agglutination assay using SFNPs compared with the ELISA method was as follows: 74% with
GM1-Glc/TEG(5:5)-SFNPs after a 3 h incubation, 78% with GM1-Glc/TEG(5:5)-SFNPs after a
12 h incubation, and 86% with GM1-SFNPs after a 3 h incubation, with 100% specificity in all
three cases. There is no significant statistical difference between these methods (Table 2). The
kappa coefficients for these results against ELISA method were calculated as 0.74, 0.78, and
0.86, respectively.

Discussion
Sugar chain binding antibodies have gained substantial attention as biomarkers due to their
crucial roles in various disorders. So far, several detection methods for anti-sugar chain anti-
bodies have been developed including carbohydrate microarray and ELISA [17, 18, 34]. How-
ever, those methods are not suitable for point-of-care diagnostics. Thus, we have developed a
clinically usable detection method for anti-sugar chain antibodies using our previously devel-
oped SFNPs [20]. In this paper, we report a simple and quick point-of-care diagnostic method
for GBS, which is as an example of disease involving anti-sugar chain antibodies.

We used the GM1 sugar chain to synthesize two types of sugar chain-ligand conjugates (1
and 2) and prepared 10 types of SFNPs possessing different sugar chain structures and densi-
ties for detection of anti-GM1 antibody involved in GBS. In the ligand conjugates, a 2,6-diami-
nopyridine moiety was conjugated with the GM1-Glc or GM1 sugar chain as a linker molecule
and was useful for detection during purification because of its fluorescence. The physical prop-
erties of all of the prepared SFNPs were similar regarding size, fluorescence, and dispersibility.
The presence of the immobilized sugar chains on the SFNPs was qualitatively confirmed using
MALDI-TOF/MS analysis and was quantified by the ABEE method. The analysis of lectin
binding property indicated that the sugar chains on SFNPs functioned well as ligands for lectin.

Table 2. Results of the agglutination assay for serum samples using sugar chain-immobilized fluorescent nanoparticles (SFNPs).

GM1-Glc/TEG(5:5)-SFNPs GM1-SFNP

3 h incubation 12 h incubation 3 h incubation ELISA

Positive 37 39 43 50

Negative 63 61 57 50

Total 100 100 100 100

p value compared with ELISA p = 0.087 p = 0.16 p = 0.40 –

TEG, tetraethylene glycol-conjugated monovalent linker molecule.

doi:10.1371/journal.pone.0137966.t002
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As in the previous work on lectin-binding interactions, PNA was bound to GM1 more strongly
than RCA120 [35].

Because our detection method is based on agglutination between SFNPs and anti-GM1 anti-
bodies in the patients’ sera, one potential problem could be nonspecific binding of the SFNPs
with other serum proteins. However, as described above, SFNPs bind to lectins in a specific
manner and did not form aggregates with BSA, indicating the binding specificity of the immo-
bilized sugar chain. Previous studies using ELISA to detect anti-GM1 antibodies showed that
anti-GM1 IgG antibodies specifically bind to GM1 and are detectable, even at low concentra-
tions [15, 16]. Thus, we also evaluated the agglutination assay using sera from patients with
GBS, and could visually detect aggregates of SFNPs and anti-GM1 antibodies under UV irradi-
ation after several hours of incubation.

Next, to decrease the diagnostic time and increase the sensitivity of the assay, we optimized
the sugar chain density and structure on the SFNPs. Gangliosides generally exist in a cluster
form in so-called lipid rafts on cell membranes where they regulate various biofunctions [36,
37]. Appropriate distances between sugar chains are required for the clustering effect, which
increases the interactions between sugar chains and proteins [38–40]. In addition, the sizes of
the nanoparticles and IgG antibodies are also an important factor in an agglutination assay.
The sizes of the CdTe/CdS nanoparticles, which were used as the core components, and the
sizes of the SFNPs are approximately 5 nm and 9 nm in diameter, respectively. The size of an
IgG antibody is approximately 15 nm in diameter, and the binding sites in the antibody are
approximately 10 nm away from each other [41]. Thus, it has been suggested that inter-nano-
particle interactions of antibodies are preferred over the intra-nanoparticle interactions. In the
agglutination assay using the patient’s sera, GM1-SFNPs were more effective than GM1-Glc/
TEG(5:5)-SFNPs in most cases, although GM1-Glc/TEG(5:5)-SFNPs were preferable in a few
cases. These results indicate that there were optimal sugar chain structure and density for effec-
tive interaction with antibodies. The numbers of sugar chains on GM1-SFNPs and GM1-Glc-
SFNPs were estimated as 165 and 135 per particle, respectively. We are currently using com-
puter simulations to perform a detail analysis of the interactions between various densities of
immobilized sugar structures and IgG antibodies; this analysis will be reported in a separate
manuscript. Further fine-tuning of the sugar structure and density on the SFNPs may be
required; however, the results described in this study suggest that more effective diagnostic
methods may be available with a combination of various SFNPs immobilized with different
sugar chain structures and densities.

SFNPs can be used for the quantitative assay. However, the agglutination assay in the cur-
rent study using sera from GBS patients was qualitative. Because purified anti-GM1 IgG anti-
body which forms aggregates with SFNPs was not available, the amount of the antibody was
not able to determine. In addition, there was no correlation between the titers of IgG to gangli-
osides and the grade of severity of GBS (S1 Table). Thus, it was difficult to assess the disease
from amount of aggregates. In the present study, when GM1-SFNPs were used, the kappa coef-
ficient for our system compared with the ELISA method was 0.86, which indicated good agree-
ment in the detection of anti-GM1 antibodies. Compared with ELISA, our diagnostic method
using SFNPs was simple because it only required incubation of the SFNPs with patient serum,
and it was fast (within 3 h). Thus, our system can be used in clinical facilities (point-of-care) to
diagnose GBS.

As the simple diagnostic methods for GBS, latex beads agglutination assay has been reported
by Alaedini, et al [42]. However, this method needs an optical microscope to observe aggre-
gates. In contrast, our method can visually diagnose under UV light without any special equip-
ment. Additionally, our method can be used for detection of wide variety of sugar chain
binding antibodies because the sugar chain structure on the SFNPs can be easily modified to

Visual Detection of Human Antibodies Using SFNP

PLOSONE | DOI:10.1371/journal.pone.0137966 September 17, 2015 11 / 14



various types of sugar chain. A number of anti-sugar chain antibodies have been found in sera
from patients with diseases, such as cancer, rheumatoid arthritis and others [19]. SFNPs tech-
nology can be applied to the point-of-care diagnostics of various types of diseases involving
anti-sugar-chain antibodies. Our method, therefore, would be a versatile platform for the
point-of-care diagnostics of various diseases.

Conclusions
We demonstrated a rapid and simple diagnostic test to detect anti-GM1 antibodies in sera
from patients with suspected GBS. Our method of detecting anti-GM1 antibodies is simpler
and faster than the ELISA method and may be utilized onsite to confirm GBS. Because our
SFNPs can be easily prepared with various sugar chains, disease-tailored SFNPs would be pow-
erful point-of-care diagnostic tools.

Supporting Information
S1 Fig. Characterization of GM1-sugar immobilized fluorescent nanoparticles
(GM1-SFNPs). (A) MALDI-TOF MS analysis of GM1-SFNPs. The detected peak wasm/z:
1442.73 [M-H]−, corresponding to GM1-f-mono. (B) Interaction analysis between
GM1-SFNPs and lectins. (left) Visual image of the mixture of GM1-SFNPs and proteins under
UV irradiation. (right) Fluorescence spectrum of the supernatant monitored by excitation
wavelength at 360 nm.
(TIF)

S2 Fig. Agglutination assay of GM1-Glc/TEG(5:5)-SFNPs with 100 serum samples. (A) The
image of agglutination assay with GM1-Glc/TEG(5:5)-SFNPs and anti-GM1 IgG antibody pos-
itive sera (top) and anti-GM1 IgG antibody negative sera (bottom) after 3 h incubation. (B)
Fluorescent intensity of supernatant monitored by excitation wavelength at 360nm.
(TIF)

S3 Fig. Agglutination assay of GM1-SFNPs with 100 serum samples. (A) The image of
agglutination assay with GM1-SFNPs and anti-GM1 IgG antibody positive sera (top) and anti-
GM1 IgG antibody negative sera (bottom) after 3 h incubation. (B) Fluorescent intensity of
supernatant monitored by excitation wavelength at 360nm.
(TIF)

S4 Fig. Agglutinating ability against either GM1-Glc/TEG(5:5)-SFNPs or GM1-SFNPs
after 12 h incubation.
(TIF)

S1 Table. Hughes functional grading scale and titers of IgG to various gangliosides includ-
ing GM1.
(DOC)

S2 Table. Titers of IgG to various gangliosides in sera of patients used for negative control.
(DOC)
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