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Abstract: The goal of this comment note is to express our considerations about the recent paper by
A. Ben Naim (Entropy 2017, 19, 48). We strongly support the distinguishing between the Shannon
measure of information and the thermodynamic entropy, suggested in the paper. We demonstrate
that the Voronoi entropy should also be clearly distinguished from the entropy of a two-dimensional
gas. Actually, the Voronoi entropy being an intensive value is the averaged Shannon measure of
ordering for a given pattern.
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The above paper by Ben Naim [1] criticized the identification of the Shannon measure of
information (abbreviated SMI) with the thermodynamic notion of entropy. We are quoting: “The first
(SMI) is defined on any probability distribution; and therefore it is a very general concept. On the
other hand, entropy is defined on a very special set of distributions” [1]. Actually, the thermodynamic
entropy is a special case of a SMI, corresponding to the distribution that maximizes the SMI, referred to
as the equilibrium distribution [1]. Thus, SMI should be clearly distinguished from the thermodynamic
entropy. In our comment we exploit the arguments suggested by Ben Naim [1–4] for distinguishing
between the Voronoi entropy [5] and the averaged Shannon measure of two-dimensional ordering
(abbreviated further SHMO), supplied by the Shannon-like expression, introduced by Voronoi [5].
The Voronoi entropy (known already to Kepler and Descartes [6,7]) is the useful notion, enabling the
estimation of ordering for the set of points (also called seeds or nuclei) located in a plane [8,9].

A Voronoi tessellation or diagram of an infinite plane is a partitioning of the plane into
non-overlapping convex polyhedral regions based on the distance to a specified discrete set of points.
For each seed, there is a corresponding region consisting of all points closer to that seed than to any
other. The Voronoi polyhedron of a point nucleus in space is the smallest polyhedron formed by the
perpendicularly bisecting planes between a given nucleus and all the other nuclei [8,9]. To quantify
the orderliness of the Voronoi tessellation the so-called Voronoi entropy is defined as:

Svor = −∑
i

PilnPi (1)

where Pi is the fraction of polygons with n sides or edges for a given Voronoi diagram [5,8,9].
Equation (1) has the form similar to SMI and the entropy in statistical mechanics [1]. That is why it
was called “the Voronoi entropy”. Ben Naim called the identification of SMI with the thermodynamic
entropy “grievous mistake” [1]. The same is true for the identification of the Voronoi entropy Svor with
the thermodynamic entropy of 2D gas. This identification is erroneous for several reasons:
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(1) The Voronoi entropy may be calculated for any set of points, starting from the number
N > 3. These points may represent the 2D gas, but this gas is not necessarily in the thermal
equilibrium [10] and it obviously may be time-dependent [10].

(2) The Voronoi entropy is an intensive value. This means that the Voronoi entropy of the pattern
characterized with the given and constant 2D order does not depend either on the area of the
pattern nor on the number of seed points (of course, this is true, when the boundary effects are
neglected). In contrast, the entropy is an extensive thermodynamic value, in other words it grows
with an increase in a number of particles constituting the system [11,12].

(3) The Voronoi entropy is not the relativistic invariant value. The relativistic contraction changes the
pattern and simultaneously it changes the Voronoi entropy related to the pattern. Whereas the
thermodynamic entropy is the relativistic invariant [13].

Therefore, what is measured by the Voronoi entropy? Following Ben Naim [1], we suggest
that actually the Voronoi entropy is the averaged Shannon measure of ordering for a given pattern
(SHMO). However, this definition also needs certain care. Indeed, it is reasonable to suggest that the
maximal value of the Voronoi entropy corresponds to random 2D patterns, for which Svor = 1.71 was
established [14,15]. Note, that we revealed recently ordered patterns, arising from the points located
on the Archimedes spiral (such as shown in Figure 1), demonstrating the Voronoi entropy, which
is markedly larger that Svor = 1.71, reported for random patterns [14–16]. Moreover, the Voronoi
entropy may grow unrestrictedly with the number of kinds of polygons appearing in the pattern.
The correct statement should be formulated as follows: The Voronoi entropy quantifies the ordering
for the patterns demonstrating the same number of polygons.

Following Ben Naim [1], we conclude that actually the Voronoi entropy should be clearly
distinguished from the thermodynamic entropy of the 2D gas, and actually it represents the averaged
Shannon measure of ordering for 2D patterns.
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2) The Voronoi entropy is an intensive value. This means that the Voronoi entropy of the pattern 
characterized with the given and constant 2D order does not depend either on the area of the pattern 
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Following Ben Naim [1], we conclude that actually the Voronoi entropy should be clearly 
distinguished from the thermodynamic entropy of the 2D gas, and actually it represents the averaged 
Shannon measure of ordering for 2D patterns.   

 

 

Figure 1. 80 points pattern (the total numbers N=80), built from seven types of polygons and 
demonstrating the Voronoi entropy Svor=1.8878 is shown. (Color mapping: Magenta polygons are 
triangles, green – tetragons, yellow – pentagons; grey – hexagons, blue – heptagons; brown – octagons, 
deep-green – nonagons). 
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Figure 1. 80 points pattern (the total numbers N = 80), built from seven types of polygons and
demonstrating the Voronoi entropy Svor = 1.8878 is shown. (Color mapping: Magenta polygons are
triangles, green—tetragons, yellow—pentagons; grey—hexagons, blue—heptagons; brown—octagons,
deep-green—nonagons).
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