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Mal-Lys: prediction of lysine 
malonylation sites in proteins 
integrated sequence-based 
features with mRMR feature 
selection
Yan Xu1, Ya-Xin Ding1, Jun Ding1, Ling-Yun Wu2 & Yu Xue3

Lysine malonylation is an important post-translational modification (PTM) in proteins, and has been 
characterized to be associated with diseases. However, identifying malonyllysine sites still remains 
to be a great challenge due to the labor-intensive and time-consuming experiments. In view of this 
situation, the establishment of a useful computational method and the development of an efficient 
predictor are highly desired. In this study, a predictor Mal-Lys which incorporated residue sequence 
order information, position-specific amino acid propensity and physicochemical properties was 
proposed. A feature selection method of minimum Redundancy Maximum Relevance (mRMR) was used 
to select optimal ones from the whole features. With the leave-one-out validation, the value of the area 
under the curve (AUC) was calculated as 0.8143, whereas 6-, 8- and 10-fold cross-validations had similar 
AUC values which showed the robustness of the predictor Mal-Lys. The predictor also showed satisfying 
performance in the experimental data from the UniProt database. Meanwhile, a user-friendly web-
server for Mal-Lys is accessible at http://app.aporc.org/Mal-Lys/.

Post-translational modifications (PTMs) play crucial roles in various cell functions and biological processes, as 
well as in regulating cellular plasticity and dynamics. Among the 20 types of natural amino acids occurred in 
proteins, lysine is one of the most heavily modified residues1,2. Recent discoveries of multiple types of new protein 
lysine acylations, such as malonylation, succinylation, and glutarylation, have greatly expanded our understand-
ing of the types of protein PTMs1,3–9. Because malonyl, succinyl and glutaryl groups contain a negatively charged 
carboxyl group, the three types of acidic lysine modifications are structurally similar and have the potential to 
regulate different proteins in different pathways5. It is also confirmed that malonylation, succinylation, and glu-
tarylation of lysine residues are evolutionarily conserved and dynamic under diverse biological and cellular con-
ditions, such as stress response, metabolisms, and genetic mutations10,11.

In 2011, lysine malonylated substrates were firstly identified though a high-throughput proteomic analysis, 
while the results demonstrated that malonyllysine in proteins is present and conserved in both eukaryotic and 
prokaryotic cells8. However, its potential functions and roles associated with human diseases remain largely 
unknown. A recent study characterized that lysine malonylation regulates the glycolytic flux by modifying mouse 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) at K184 to inhibit its enzymatic activity3. Also, using the 
liver tissues of db/db and ob/ob mice, it was observed that malonylation plays a potential role in type 2 diabetes, 
whereas further bioinformatic analysis of the proteomic results revealed the enrichment of malonylated proteins 
in metabolic pathways, especially the pathways of glucose and fatty acid metabolisms4.

In view of the potential importance of malonylation, identifying the malonylated sites in proteins is extremely 
urgent and may provide useful information for biomedical research. However, the identification and investigation 
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of the malonylated sites are desirable and mainly depend on mass spectrometry which is expensive and laborious. 
As a complement for experiments, a computational method for timely and effectively identifying the malonylly-
sine sites is necessary when facing multitudinous protein sequences generated in the post-genomic age.

In this article, a new computational method of Mal-Lys which predicts malonyllysine sites from protein 
primary sequences is proposed. Amino acid position information has been succeeded in PTM prediction and 
achieved satisfying results12,13. Sequence order information (k-grams14), position-specific amino acid propensity 
and physicochemical properties (AAIndex15) were utilized to construct features. The algorithm of support vector 
machines (SVMs) was used for training the computational model, whereas the leave-one-out validation and 6-, 
8- and 10-fold cross-validations were adopted to evaluate the prediction accuracy and robustness of Mal-Lys. The 
satisfying performance suggested that Mal-Lys can be a useful tool to identify potential lysine malonylation sites 
in proteins for further experimental consideration.

Results and Discussion
The construction of feature vectors. Totally, 494 non-redundant malonyllysine sites were collected from 
a previously reported large-scale study4. The detailed processing of the dataset was shown in Methods. Then the 
position specific amino acid propensity and sequence order information were utilized to convert peptide frag-
ments into mathematical expressions for the feature construction. A peptide was denoted as

= − − − − P R R R R KR R R R (1)6 5 2 1 1 2 8 9

where Ri can be any of the 20 native amino acids or the dummy code X.
The k-grams14 feature construction was utilized to generate features. A k-gram is simply a pattern of 

k consecutive letters which could be amino acid symbols or nucleic acid symbols. We used the basic and the 
position-specific k-grams (k is the length of an amino acid sequence to be generated). Since there are 21 possible 
letters (20 native and 1 dummy amino acid) for each position, there are 21k possible basic k-grams for each value 
of k. We used the basic k-grams feature generation with k =  1, 2 and got 211 +  212 =  462 dimensions.

Another position-specific k-grams simply records which k-gram appears in a particular position in the 
sequence segment. We consider only 1-gram, that is, k-grams for k =  1. Since each segment has 6 up-stream and 9 
down-stream amino acids flanking each side of the target lysine (K), there are 15 position-specific 1-grams. Here, 
let us use the numerical codes 1, 2, 3, … , 20 to represent the 20 native amino acids according to the alphabetic 
order of their single letter codes, and use 21 to represent the dummy amino acid X.

Each amino acid has its own specific physicochemical and biologic properties which have direct or indirect 
effects on protein properties. AAIndex15 is a database which contains various physicochemical and biologic prop-
erties of amino acids. In this work, 14 properties were selected from AAIndex database, including hydrophobicity, 
polarity, polarizability, solvent, accessibility, net charge index of side chains, molecular weight, PK-N, PK-C, 
melting point, optical rotation, entropy of formation, heat capacity and absolute entropy which have shown an 
excellent predicted performance in the prediction of protein pupylation sites16. For the pseudo amino acid X, it 
was defined 0 as its physicochemical property value. Therefore, each amino acid was constructed into 14 features 
through AAIndex database. For a peptide fragment, a 210-D (15*14 =  210) feature vector was obtained through 
AAIndex encoding scheme.

Combining the three features each sequence segment is encoded into a 211 +  212 +  15 +  210 =  687 dimen-
sional vector. The 35 features which are the same values in malonylated and non-malonylated peptides were been 
deleted. The peptide was encoded into a 652 (687–35) dimensional vector.

The post probability SVMs algorithm was implemented in LIBSVM17, a public and widely used SVM library. 
The kernel function was RBF (Radial Basis Function) kernel with the parameter g =  0.0125. For a query peptide 
P as formulated by feature construction, suppose Pr(y =  1|P) is its probability to the malonylated peptides. Thus, 
the prediction rule for the query peptide P can be formulated as.

∈





= > θ
−

.
y

P
Pmalonylated peptide, if Pr( 1 )

non malonylated peptide, otherwise (2)

The cutoff value θ  is 0.5 for balancing the true positive and negative rate. The predictor established via the 
above procedures is called Mal-Lys, where “Mal” for “malonylation”, and “Lys” for lysine residue.

The evaluation of the prediction performance and accuracy. In statistical prediction, the following 
three cross-validation methods are often used to evaluate a predictor for its effectiveness in practical application: 
independent test, subsampling or k-fold (such as 6-, 8-, or 10-fold) cross-validations and the LOO validation. The 
LOO validation has been widely used in the performance evaluation of PTM site prediction18,19 for its unique 
result. In this work, we used the LOO validation and 6-, 8- and 10-fold cross-validations to evaluate the accuracy 
and robustness of the proposed predictor Mal-Lys.

There were 652 features in the encoding schemes and some of them were redundancy. In this study, the mutual 
method of minimum Redundancy Maximum Relevance (mRMR) was applied to select features (http://penglab.
janelia.org/proj/mRMR/)20–23. We selected 50 features which had the maximum relevance to the classifier and 
minimum redundancy to the former features. The 6-, 8- and 10-fold cross-validations had been done for 30 times 
and the average values were calculated. The receiver operating characteristic (ROC) curves were drawn and the 
area under the curve (AUC) values were also calculated (Fig. 1). In the 6-, 8- and 10-fold cross-validations, the 
AUC values were 0.8196, 0.8167 and 0.8178, respectively. They are similar to the LOO AUC value 0.8143 which 
illustrated the performance and robustness of the predictor Mal-Lys.

http://penglab.janelia.org/proj/mRMR/
http://penglab.janelia.org/proj/mRMR/
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To illustrate the performance of Mal-Lys, we collected experimental lysine malonylation sites including 33 
malonyllysine sites (25 Human, 5 Bovine, 2 E.coli, 1 A. thaliana) from UniProt database (http://www.uniprot.org/).  
These 25 human lysine malonylation sites were used as the independent test. The AUC was 0.7935 which also 
showed the performance of the predictor Mal-Lys. The predicted results of human solute carrier family 25 
member 5 (SLC25A5, UniProt accession: P05141) and GAPDH (P04406) have been plotted with IBS software24 
(Fig. 2). Previously, SLC25A5 was experimentally identified to be malonylated at K23, K92, K96 and K1478 
(Fig. 2a). Mal-Lys not only correctly predicts all four sites as positive hits, but also predicts two additional sites 
of K105 and K199 to be potential malonylation sites with high confidence (Fig. 2a). For human GAPDH, two 
lysine residues K194 and K215 was experimentally identified as real malonylation sites, whereas Mal-Lys can 
predict K215 as a positive hits. Newly predicted sites of K107, K254 and K263 can be useful candidates for further 
experiments.

Feature analysis. Sequence occurrence frequency on every position was utilized in the feature construc-
tion. From the sequence Logo of the experimental 458 positive malonylysine peptides and 3,974 negative 
non-malonylysine peptides25 (Fig. 3a), we found that there were not significantly statistical difference between 
malonylation and non-malonylation peptides. Using another web-based tool of Two Sample Logo with the t-test 
(p-value <  0.05)26, we observed that malonylation and non-malonylysine peptides have considerably difference 
sequence preferences (Fig. 3b). The polar amino acid glycine (G) was enriched at position − 3, − 1 and + 2 in mal-
onylation peptides, while basic lysine (K) was enriched at position + 1, + 2 and + 8 in non-malonylation peptides. 
These differences in malonylation and non-malonylation peptides may improve the performance of the classifier.

The online web-service of Mal-Lys. For the convenience of the vast majority of experimental scientists, 
a user-friendly and publicly accessible web-server is one of the keys in developing a practically useful prediction 
method. In view of this, we have developed a web-server for the Mal-Lys predictor in JAVA. The web-server for 
Mal-Lys can be freely accessible at http://app.aporc.org/Mal-Lys/. One or multiple protein sequences should be 
input in the FASTA format, and the output results will be shown in a tabular format (Fig. 4).

Conclusion
As a newly discovered PTM, lysine malonylation has been characterized to regulate both histones and non-histone 
proteins4,6,9. Currently, hundreds of lysine malonylated proteins have been discovered, and experimental evidence 
demonstrated that malonylation frequently occur together with other types of lysine PTMs such as succinylation 
and glutarylation, modifies both cytosolic and mitochondrial proteins, regulates the protein enzymatic activity, 
play a potential role in the regulation of metabolic pathways, and has been associated with type 2 diabetes3,4,6,8,9,27. 
In this regard, the identification of site-specific malonylation events in specific proteins is fundamental for further 
understanding the molecular mechanisms and regulatory roles of lysine malonylation.

In contrast with labor-intensive and time-consuming experimental efforts, computational prediction of pro-
tein malonylation sites can efficiently and rapidly provide useful information for further experimental manip-
ulation. In this study, a new predictor Mal-Lys was developed for identifying the lysine malonylation sites in 
proteins. The benchmark dataset for training and testing was taken from a previously published large-scale exper-
iment. Residue sequence order information, position-specific amino acid propensity and physicochemical prop-
erties have been used in feature construction. The mRMR method was used to select the optimal features. An 
online web-server was developed for the predictor which would facilitate the use for the biologists. The improved 

Figure 1. The ROC curves and their AUC values for the LOO validation and 6-, 8- and 10-fold cross-
validations on the training dataset. 

http://www.uniprot.org/
http://app.aporc.org/Mal-Lys/
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prediction of malonylation sites in proteins will be done when new malonylation sites data become available. We 
anticipate that Mal-Lys can be helpful for a better understanding of lysine malonylation.

Methods
Benchmark Dataset. The experimentally validated malonyllysine benchmark dataset used in this study 
was derived from a recently reported large-scale study4. There are 573 malonylated peptides (mainly lysine and 
cysteine) and 494 unique malonyllysine sites from 246 proteins were collected and the corresponding complete 
sequences were derived from the UniProt database28 (release 2015_01, http://www.uniprot.org/). To facilitate 
description later, for every peptide fragment with lysine (K) located at its center, it can be expressed as.

= ξ ξ η η− − − − − − P R R R R KR R R R (3)( 1) 2 1 1 2 ( 1)

where the subscript ξ , η  are integers, R−ξ represents the ξ –th uptream amino acid residue from the center, Rη the 
η –th downstream amino acid residue, and so forth.

The average lengths of upstream and downstream are 4.804 ±  1.414 and 8.511 ±  0.707, respectively from the 
experimental peptides. So ξ  =  6, η  =  9 were adopted and the (ξ  +  1 +  η  =  16)-tuple peptide can be further classi-
fied as positive peptide if K was malonylated, otherwise negative peptide if K was non-malonylated.

The benchmark dataset can be formulated as   ∪= + − where + only contained the positive samples; −
only contained the negative samples. If the upstream or downstream in a peptide was less than ξ  or η , the lacking 
residues were filled with a dummy residue “X”. To reduce the redundancy and avoid homology bias which would 
overestimate the predictor, we removed those peptides that had ≥ 40% pairwise sequence identity to any other 
from the benchmark datasets.

Finally, we obtained the benchmark dataset which contained 458 (positive) +  3,974 (negative) peptide samples 
(see Table 1 and the Supplementary Information).

Four metrics for measuring prediction quality. To illuminate the performance of the proposed predic-
tor, four frequent measurements: sensitivity (Sn), specificity (Sp), accuracy (Ac), and Mathew correlation coeffi-
cient (MCC) were utilized.

Figure 2. The prediction results of two human malonylated proteins, including (a) SLC25A5 (P05141) and  
(b) GAPDH (P04406). The experimentally identified malonyllysine sites were shown in yellow, whereas 
predicted results consistent with known sites were shown in blue. Newly predicted sites with high potentials to 
be real malonylation sites were marked in red.

http://www.uniprot.org/
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Figure 3. The sequence preferences of malonylation and non-malonylation peptides. (a) The amino 
acid residue frequency of positive and negative peptides on the experimentally data which contained 458 
malonyllysine and 3,974 non-malonyllysine peptides. (b) The results of Two Sample Logo for malonylation and 
non-malonylation peptides with t-test (p-value <  0.05).

Figure 4. The output of the online predictor Mal-Lys. A mouse malonylated substrate, Carbonic anhydrase 3/
Ca3 (P16015), was chosen as an example.

No. Positive Negative

Dataset S 458 3974

Table 1. The number of the benchmark dataset.
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Sn TP
TP FN

Sp TN
TN FP

Ac TP TN
TP TN FP FN

MCC (TP TN) (FP FN)
(TP FP)(TP FN)(TN FP)(TN FN) (4)

where TP (true positive) denotes the number of malonylated peptides correctly predicted, TN (true negative) 
the numbers non-malonylated peptides correctly predicted, FP (false positive) the non-malonylated incorrectly 
predicted as the malonylated peptides, and FN (false negative) the malonylated peptides incorrectly predicted as 
the non-malonylated peptides. Apart from the above criteria, the AUC value was used as an efficient indicator of 
robustness.
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