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Abstract

Viral reactivation occurs frequently in the context of immunodeficiency and immunosuppres-

sion after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and can cause

severe complications. The aim of this single-center retrospective analysis was to character-

ize viral infections in the first year after HSCT, to investigate risk factors and to study the

impact of viral infections on transplantation outcome. This will facilitate the identification of

at-risk patients and the development of new preventive strategies. 107 pediatric allo-HSCT

from January 2005 through December 2015 were analyzed for infections with Epstein-Barr

virus (EBV), cytomegalovirus (CMV), human herpesvirus 6 (HHV-6), adenovirus (ADV), her-

pes simplex virus (HSV) and varicella zoster virus (VZV). Viral infections were detected

after 68.2% of transplantations. The viruses most commonly encountered were HHV-6 (36/

107) and EBV (30/107). Severe viral disease was rare (7/107) and none of the patients died

as result of viral reactivation. Important risk factors for viral infections were higher age at

HSCT, donor type and occurrence of acute graft-versus-host disease (aGvHD). Especially

for EBV, transplant from an unrelated donor and in-vivo T-cell depletion (TCD) had a signifi-

cant effect on infection rates, whereas for CMV the strongest effect was seen by donor and

recipient serostatus with recipient seropositivity most predictive for reactivation. The occur-

rence of severe aGvHD was associated with EBV and ADV infections. For HSV, the recipi-

ent serostatus was identified as prognostic factor for HSV infections, while we found higher

age at time of HSCT as risk factor for VZV infections. The overall survival of patients with or

without viral infections did not differ significantly. Interestingly, when looking at the 85

patients in our cohort who had received an HSCT for a malignant disease, a tendency

towards lower relapse rates was seen in patients affected by viral infections (HR 0.51, 95%

CI 0.25 – 1.06, p = 0.072). Viral reactivations are common after pediatric allo-HSCT, though

severe complications were rare in our collective. Determining risk factors for viral reactiva-

tions may help to identify patients in need of intensified monitoring and to individualize pre-

ventive strategies.
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Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is an established therapy for a

variety of malignancies, congenital and acquired hematological diseases as well as immunode-

ficiencies. Viral infections account for a large part of complications and even fatalities after

HSCT [1–3]. While hygienic measures and isolation of the patient protect against some patho-

gens, a special risk originates from viruses that silently persist within the patient or the trans-

planted cells. After primary infection, viruses like Epstein-Barr virus (EBV), cytomegalovirus

(CMV), human herpesvirus 6 (HHV-6), adenovirus (ADV), herpes simplex virus (HSV) and

varicella zoster virus (VZV) can reactivate especially in the context of immunodeficiency and

immunosuppression.

Previous reports on risk factors for viral reactivations after HSCT showed variable results,

especially for pediatric patients: An age-dependency, particularly for VZV reactivation in chil-

dren, was shown by Vermont et al. [4], but the literature available is inconclusive for other

members of the herpesvirus family. In patients receiving a human leukocyte antigen (HLA)

mismatched or unrelated transplant, viral infection rates tend to be higher than in matched

related donors (MRD) [5]. The introduction of haploidentical HSCT made transplants for

children without a matching donor possible, but also rendered extensive T-cell depletion

(TCD) necessary. The reduced amount of mature immunocompetent cells has been generally

associated with a decreased protection against viral infections, especially in adult patients [6].

Graft-versus-host disease (GvHD), one of the main complications after HSCT, as well as its

prophylaxis and treatment put patients at risk of viral reactivations [1, 3, 7, 8]. The therapy of

simultaneously occurring GvHD (requires increase of immunosuppression) and viral infec-

tions (reduction of immunosuppression can be supportive) poses a challenge.

Several studies showed an association between sex mismatch and viral reactivations [9] or

the occurrence of GvHD, especially in the combination of a female multiparous donor and a

male recipient [10]. Also, some authors suggest a higher risk of infections for ABO blood

group antigen incompatible allo-HSCT [11].

To date, most existing studies on viral reactivation focus on an adult collective, although it

is well known that pediatric immune recovery differs in terms of velocity and the availability of

an intact thymus [12]. There are little data gathered on HHV-6 and ADV reactivations so far,

as their significance in the context of HSCT attracted notice only in recent years [13–15].

Additionally, most existing studies only consider one virus, but in most cases, patients are

affected by multiple viral reactivations after HSCT.

Therefore, we chose to conduct a 11-year analysis in a pediatric collective of relevant viruses

that impose the risk of reactivation: EBV, CMV, HHV-6, ADV, HSV and VZV. First, we char-

acterized incidence and onset of infections with these viruses. Secondly, we studied the associa-

tion of viral infections (in general and also separately for each virus) with IgG serostatus of

donor or recipient, age at time of transplant, donor type, origin of transplant, mismatch of sex

or blood type, the use of total body irradiation (TBI), time to engraftment, immune recovery,

GvHD and TCD. Thirdly, we evaluated the effect of viral infections on transplantation outcome,

relapse rate and overall survival. The obtained data will facilitate the development of individual

preventive strategies and the identification of patients in need of intensified monitoring.

Subjects and methods

Patients

In this retrospective cohort study, the clinical records and medical charts of children (aged

0–25 years) who underwent allo-HSCT at the University Children’s Hospital Würzburg from
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January 2005 through December 2015 were analyzed. Two HSCT had to be excluded from the

evaluation due to their divergent execution in an emergency setting. If a patient received more

than one allogeneic transplant, only the first allo-HSCT was evaluated, with the date of the sec-

ond transplant defining the end of the follow-up of the first HSCT. This resulted in a total of

107 transplantations available for analysis. The detailed characteristics of the study collective

are reported in S1 Table. Patients or legal guardians gave informed consent to scientific analy-

sis and anonymized publication of their medical data in accordance with the Declaration of

Helsinki. The ethical committee of the University Hospital Würzburg has determined that for

analysis and publication of single center case series this informed consent is sufficient and no

specific review of retrospective data analysis projects are required. All data were fully anon-

ymized before statistical analysis.

All patients were treated in conformity with the current guidelines of the GPOH (Gesell-

schaft für Pädiatrische Onkologie und Hämatologie) and the DAG-KBT (Pädiatrische Arbeits-

gemeinschaft für Knochenmarks- und Blutstammzelltransplantation) of that time and

conditioned according to disease-specific protocols of the EBMT (European Society for Blood

and Marrow Transplantation) working parties.

The main indication for HSCT was leukemia (46.7%). Lymphoma accounted for 10.3% and

solid tumors for 11.2% of the transplantations. The remaining 31.8% cover other diseases of

the hematopoietic system (e. g. myelodysplastic syndrome, severe aplastic anaemia, beta thalas-

semia), immunodeficiencies and rare congenital diseases. 11.2% of these other diseases were

malignant. Of the 85 patients suffering from a malignant disease, 12.9% showed stable disease

(SD, 11/85) at time of transplant. 61.2% were in first complete remission (CR1, 52/85) and

25.9% in the second complete remission (CR2, 22/85). 8.4% of all investigated HSCT were pre-

ceded by an autologous transplantation.

The median age on the day of the stem cell infusion was 9.00 years (interquartile range

(IQR) = 11.9), with the youngest patient being 2 months and the oldest being 22.2 years old.

Most commonly peripheral blood stem cells (PBSC) were used (80.4%; bone marrow (BM)

18.7%). One patient received a combination of PBSC and BM of the same donor, which we

classified as PBSC, and one patient received cord blood (0.9%).

For 28.0% an HLA-identical family donor (MRD) was available. 37.4% underwent trans-

plant from HLA-identical unrelated donors (matched unrelated donor, MUD) and 17.8%

from mismatched unrelated donors (MMUD,� 9/10). In another 16.8% the donor was a hap-

loidentical family member.

All patients received a myeloablative conditioning regimen. 38 patients (35.5%) received

TBI in the context of conditioning.

In-vitro TCD was conducted in 33.6% of cases. Mostly, CD3+/CD19+-depletion (16/36,

44.4%) was used. Other depletion schemes included TCRαβ+/CD19+-depletion (7/36, 19.4%),

CD34+-selection (1/36, 2.8%) and individual TCD schemes (including only partly T-cell

depleted preparations). In-vivo TCD through the application of a total of 30 mg/kg rabbit anti-

thymocyte globulin (ATG) shortly before transplant was administered in 66.4% of cases.

23.4% of patients received both, in-vitro and in-vivo TCD. 23.4% of patients did not receive

any kind of TCD.

In the majority of cases, patients received cyclosporine A (CSA) as longtime GvHD prophy-

laxis (82.2%). GvHD prophylaxis with CSA was generally introduced 2 days prior to the trans-

plantation and continued until day 80–120 post-HSCT, depending on signs of GvHD or other

individual risk factors. 19.6% received mycophenolate mofetil (MMF), either in addition to

CSA or as monotherapy (in extensively T-cell depleted haplo-HSCT). 72.9% of patients

received methotrexate (MTX). None of the haploidentical transplants received post-transplant

cyclophosphamide.
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For the evaluation of acute GvHD (aGvHD), the modified Glucksberg criteria [16] were

used and chronic GvHD (cGvHD) was diagnosed based on the criteria demonstrated in Filipo-

vich et al. [17]. In our cohort, 73.8% of the patients (79/107) experienced aGvHD, though

mainly a mild form (Grade I: n = 52/79, 65.8%). We saw aGvHD grades II-IV only after 25.2%

of HSCT. In 22 cases (20.6%), cGvHD occurred.

Generally, the initial treatment of aGvHD consisted of systemic corticosteroids (2–3 mg/kg

prednisone) (57/79; 72.2%). If no response was seen after 7 days or the symptoms increased

after 3 days, second line treatment was initiated. This was necessary for 36.7% (29/79) of

patients affected by aGvHD and mainly consisted of further immunosuppressants like MMF

(24/79) and tacrolimus (4/79) or immunomodulatory agents like etanercept (4/79), tocilizu-

mab (4/79) and others. For 18 patients affected by aGvHD (22.8%), no therapy was initiated.

Therapy of cGvHD consisted of different approaches over the 11 years covered in this study

but generally included the use of local or low-dose systemic corticosteroids for limited

cGvHD. Extensive cGvHD was mainly treated with high-dose systemic steroids often in com-

bination with other immunosuppressants. Salvage therapy of cGvHD consisted of individual

regimens including drugs like CSA, MMF, systemic steroids, MTX, everolimus, etanercept,

phototherapy and extracorporeal photopheresis among others.

Engraftment was defined as the first of three consecutive days with a leukocyte count above

1000/μl in peripheral blood samples.

A median observational period of 3.8 years (1393 days; range 22 – 4304 days) was achieved.

Short follow-ups were mainly due to early death. For the event-free survival, events were

defined as either death or the recurrence of malignant disease, whichever occurred first. If no

event occurred until the end of the observation period, the data were censored.

Monitoring and treatment of viral reactivations

Data on viral infections were obtained from the database of the Institute of Virology and

Immunobiology, University of Würzburg. The serostatus for EBV, CMV, HHV-6, HSV and

VZV had routinely been acquired at diagnosis of the underlying disease and shortly pre-trans-

plant. Monitoring of viral infections was performed with routine diagnostic polymerase chain

reaction (PCR) assays of serum or plasma samples. Qualitative PCR with a threshold of

approximately 200 copies were conducted for all examinations of viral infections. Assays were

performed as clinical routine in the following intervals: once or twice a week during the first

40 days, weekly from day 40 to 60 and from day 60 on every second week for EBV, CMV,

HHV-6 and ADV until cessation of immunosuppression, but at least until day 100. For haploi-

dentical transplantations, the biweekly screening was further continued until CD3+ counts

were higher than 500/μl. Afterwards, PCR testing was reduced to EBV and CMV only. The

screening was intensified and extended when patients showed clinical signs of infections. One

or more positive results in the PCR screening were defined as infection; no unambiguous dis-

crimination between reactivation and reinfection could be made in our study setting. HSV

and VZV infections were diagnosed by their typical appearance of cutaneous vesical eruptions

or at least one positive PCR result of blood samples, vesical fluid or samples obtained from the

respiratory tract. Viral disease was defined as proven organ manifestation of one of the evalu-

ated viruses. Data on viral infections until one year after HSCT were included in this study.

All patients received aciclovir at prophylactic doses (20–40 mg/kg/d, preferably enterally)

post-HSCT until 4 weeks after cessation of immunosuppression and until they reached a

CD4+ count> 250/μl. For T-cell depleted HSCT, the antiviral prophylaxis was continued until

successful B- and T-cell reconstitution. The medication was paused if the application of

another antiviral agent was necessary. Positive EBV levels were only treated with rituximab

Viral reactivations after HSCT in children
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when accompanied by clinical signs of post-transplant lymphoproliferative disease (PTLD).

There was no specific CMV-prophylaxis for CMV seronegative recipients of a CMV-positive

transplant. A preemptive CMV therapy was initiated when one blood sample was positive for

CMV in the PCR. In our collective mostly foscarnet was used due to its concomitant effective-

ness against HSV and VZV. Symptomatic infections that were most likely attributed to HHV-

6 were treated with either foscarnet or cidofovir. For ADV, preemptive therapy was considered

in highly T-cell depleted patients, otherwise, therapy with cidofovir was initiated when symp-

toms were most likely attributed to ADV. Aciclovir in therapeutic doses (30 mg/kg/d i.v. + top-

ical medication if possible) was applied in HSV and VZV infections.

Immune recovery

Routinely, FACS (fluorescence activated cell sorting) analyses of peripheral blood for T-, B-

and NK-cell subpopulations were conducted after HSCT. The schedule for the assessment was

once a week for day 7–30, every second week until day 60, every fourth week until day 200 and

from then on once a year. To assess the speed and quality of immune recovery, three thresh-

olds were defined:> 500 CD3+-cells/μl, > 1000 CD3+-cells/μl and> 10% CD4+CD45RA+.

The threshold was rated as reached, when 3 consecutive measurements above these values

were documented.

Statistical analysis

Statistical analyses were performed using SPSS for Windows Version 25 (IBM SPSS Statistics,

Chicago, Illinois, USA). All p-values were two-sided with values of� 0.05 indicating statistical

significance. Analyses of categorial variables were performed using χ2 test and Fisher’s exact

test for binary variables. Mann-Whitney U test was used for the comparison of numerical vari-

ables of two independent samples with unequal variances. Cox regression with time dependent

covariates was used for survival analysis. A Kaplan-Meier function was used for overall survival

estimates.

A binary logistic regression analysis was conducted to determine factors associated with

viral infections after HSCT independently. The variables age at HSCT, HLA mismatch, unre-

lated donor, seropositivity of donor (if available), seropositivity of recipient (if available),

aGvHD, cGvHD and in-vitro as well as in-vivo TCD were first tested in a univariate analysis.

Variables with an p-value < 0.20 in the univariate analysis were considered for the binary

regression analysis. The variable with the highest p-value was additionally excluded in “any

infection”, “EBV” and “CMV”, as the small cohort limited the number of variables that could

be included in the analysis.

Results

Characteristics of viral infections

In our pediatric cohort of 107 cases the intended one-year follow-up of virologic data was

achieved in 70.1% (75/107) of HSCT. Earlier termination was mainly due to fatalities (n = 25).

The median follow-up was 365 days (range = 22–365 days).

Viral infections were detected after 68.2% (73/107) of transplantations. In most cases,

patients experienced infections with only one virus (27/73, 37.0%) or two different viruses (26/

73, 35.6%) after HSCT. However, the time until the first positive testing significantly varied for

the different viruses (p< 0.001; Fig 1). 28.0% of HSCT (n = 30) were affected by EBV infec-

tions which occurred after a median of 41.5 days (range = 11–154 days). We observed that

HHV-6 was detected most frequently after HSCT (33.6%, n = 36). 14 of these patients were

Viral reactivations after HSCT in children
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treated with foscarnet, 8 with cidofovir and 2 with both. Infections with HHV-6 occurred very

early with a median of 19.5 days (range = 7–80 days) post-transplant, with 58.3% of infections

arising in the third or fourth week. Two patients (1.9%) showed constantly high viral load on

PCR testing without any symptoms, therefore, we suspected them to have a chromosomally

integrated form of HHV-6 infection as reported elsewhere [18–20]. Infections with CMV were

detected after 22.4% of HSCT (n = 24) and, like HHV-6, tended to occur early after the trans-

plantation with a median of 19.5 days after HSCT (range = 4–63 days) until the first positive

testing. ADV infections made up for the third largest proportion with 29 patients being

infected (27.1%). In contrast to the viruses mentioned so far, we saw a wide range of time until

detection of ADV (median = 40.0 days, range = 4–350 days). HSV and VZV were observed

after 10.3% (n = 11) and 15.0% (n = 16) of HSCT, respectively. VZV infections occurred signif-

icantly later than infections with other viruses at a median of 158.0 days post-transplant

(range = 90–351 days, p< 0.001), HSV also occurred later (63.0 days, range = 7–285 days), but

not significantly compared to other infections.

In every patient affected by CMV or HHV-6, the first positive sample could be documented

before day 100. EBV, ADV and HSV infections also mainly emerged before day 100. VZV, in

contrast, was never detected in the first 2 months after transplantation, instead VZV reactiva-

tions could be detected until the end of our observation period (see Fig 1).

We documented 7 cases of severe viral disease. Two patients suffered from EBV-PTLD and

had to be treated with rituximab, another one suffered from EBV tonsillitis and pharyngitis.

One patient was diagnosed with HHV-6 pneumonia, another with HHV-6 encephalitis. In

one case a patient developed CMV-associated colitis after HSCT and another generalized her-

pes zoster. Most of these patients had several potential risk factors for viral infections, such as

higher age at time of HSCT, MUD, aGvHD or seropositivity of donor or recipient. Impor-

tantly, none of the 7 patients with severe viral disease died due to the viral infection.

Univariate analysis of potential risk factors for viral infections

We studied the association between viral infections and the IgG-serostatus of donor and recip-

ient (D/R; Table 1). The seroprevalence for EBV-IgG was high among stem cell donors (89.2%,

83/93, data missing in 14 cases) compared to recipients before HSCT (48.0%, 48/100, data

unavailable for 7 patients). With 42.5% of patients affected, the highest risk of EBV infections

was seen in the combination of D+/R-. A tendency for less infections in the combination D

+/R+ (20.5%, 8/39) compared to D+/R- (42.5%, 17/40) was seen (p = 0.053). In contrast, trans-

plantation from a seronegative donor never resulted in EBV infections. An EBV positive

donor serology was significantly associated with a higher rate of EBV infections (27/83, 32.5%)

compared to donors with a negative serology (0/10, 0.0%) (p = 0.032). The difference of EBV

infections in patients with negative (17/52, 32.7%) and positive serostatus (11/48, 22.9%) was

statistically not significant (p = 0.37).

41.1% (44/107) of donors had IgG-antibodies against CMV, in contrast to 24.3% of recipi-

ents (26/107) pre-transplant. CMV infections were most frequently detected in CMV seroposi-

tive patients receiving a seropositive transplant (20/23, 87.0%), whereas no infections were

seen in the combination of both seronegative donor and recipient. A positive CMV serology of

the recipient was a significant risk factor for CMV infections (p< 0.001). A higher rate of

infections was detected in this collective (22/26, 84.6%) than in patients with a negative CMV

serology (2/81, 2.5%). Among patients receiving a CMV seropositive transplant the CMV

infection rate was significantly higher (22/44, 50.0%), compared to patients receiving a sero-

negative transplant (2/63, 3.2%; p< 0.001). The group of CMV seronegative patients receiving

a seropositive transplant had a tendency towards more CMV infections (2/21, 9.5%) compared

Viral reactivations after HSCT in children
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Fig 1. Cumulative incidence of viral infections after HSCT. Time until the first positive testing of infections with Epstein-Barr virus (EBV), cytomegalovirus

(CMV), human herpesvirus 6 (HHV-6), adenovirus (ADV), herpes simplex virus (HSV) and varicella zoster virus (VZV) are presented in a Kaplan-Meier

graph. Time until first positive testing differed significantly between the tested viruses with a p-value of< 0.001 in the Log-rank test.

https://doi.org/10.1371/journal.pone.0228451.g001

Table 1. Incidence of infections with Epstein-Barr virus (EBV) and cytomegalovirus (CMV), according to the EBV/CMV serostatus of donor (D) and recipient (R).

Overall seropositivity for EBV was 89.2% for donors and 48.0% for recipients. For CMV, the overall seropositivity was 41.1% for donors and 24.3% for recipients.

no EBV infection EBV infection no CMV infection CMV infection

Number of cases (%) 77 (72.0) 30 (28.0) 83 (77.6) 24 (22.4)

Serostatus donor, n (%)

D- 10 (100.0) 0 (0.0) 61 (96.8) 2 (3.2)

D+ 56 (67.5) 27 (32.5) 22 (50.0) 22 (50.0)

unknown 11 (78.6) 3 (21.4) - -

p-value (χ 2) 0.032 < 0.001

Serostatus recipient, n (%)

R- 35 (67.3) 17 (32.7) 79 (97.5) 2 (2.5)

R+ 37 (77.1) 11 (22.9) 4 (15.4) 22 (84.6)

unknown 5 (71.4) 2 (28.6) - -

p-value (χ 2) 0.37 < 0.001

Serostatus donor/recipient, n (%)

D or R unknown 15 (75.0) 5 (25.0) - -

D-/R- 6 (100.0) 0 (0.0) 60 (100.0) 0 (0.0)

D-/R+ 2 (100.0) 0 (0.0) 1 (33.3) 2 (66.7)

D+/R+ 31 (79.5) 8 (20.5) 3 (13.0) 20 (87.0)

D+/R- 23 (57.5) 17 (42.5) 19 (90.5) 2 (9.5)

https://doi.org/10.1371/journal.pone.0228451.t001
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to CMV seronegative patients transplanted with a seronegative preparation (0/60, 0.0%;

p = 0.065).

Further data on recipients’ seroprevalence were only available for HHV-6 (91.7%, 88/96,

data missing in 11 cases), HSV (36.4%, 36/99, data unavailable in 8 patients) and VZV (78.0%,

78/100, data missing for 7 patients). HSV infections occurred in a higher proportion in

patients with a positive HSV serology (10/36, 27.8%) compared to patients with a negative

serology (1/63, 1.6%). This difference was significant (p< 0.001). For HHV-6 and VZV, no

association of viral infections and the IgG-serostatus of the recipient could be found.

For 33 patients, data on vaccinations were accessible. 10 of them had received one (n = 6)

or two (n = 4) doses of VZV vaccine prior to HSCT. 23 patients had received no VZV vaccina-

tion of which 5 (21.7%) had an VZV infection after HSCT, while no vaccinated patient had a

VZV reactivation.

Patients who suffered from one or more viral infections after HSCT were significantly older

(median = 10.1 years) than those without infections (median = 3.4, p-value: < 0.001). When

considering the different viruses separately, we found that patients experiencing a VZV infec-

tion after HSCT were significantly older than patients who did not (median = 14.6 years vs. 8.2

years, p = 0.004). VZV seropositivity increased significantly with age (p< 0.001). Also, patients

experiencing HSV infections were significantly older than patients who did not (median = 14.0

years vs. 8.2 years, p = 0.025). Other viruses did not show significant age-dependency.

Considering donor type, the highest infection rates were recorded in patients receiving a

MMUD transplant (16/19, 84.2%) and the lowest for MRD (15/30, 50.0%). In MUD and hap-

loidentical transplantation, 70.0% (28/40) and 77.8% (14/18) of patients experienced infections

in our cohort, respectively. This varied when looking at the viruses separately: For EBV, we

saw infections mainly in patients receiving a transplant from an unrelated donor (MUD 42.5%

(17/40) and MMUD 52.6% (10/19) vs. MRD 6.7% (2/30) and haploidentical HSCT 5.6% (1/

18)). This association was significant (p< 0.001). In contrast, CMV infections preferably

occurred in HLA-mismatched settings (MMUD 26.3% (5/19) and haploidentical HSCT 38.9%

(7/18) vs. MRD 16.7% (5/30) and MUD 17.5% (7/40); p-value = 0.090). HHV-6, ADV, HSV

and VZV all had the smallest infection rate for MRD, although a significant association

between the type of donor and rate of infections was only discernible for HHV-6. Most HHV-

6 infections were seen in haploidentical HSCT.

There was no significant relationship between infections and the stem cell source. In addi-

tion, no significant association were found for TBI conditioning or the mismatch of blood

type. For sex mismatch, significantly more infections were only found for HSV (17.0% vs.

3.7%, p-value = 0.029).

3/107 transplants (2.8%) failed to engraft. The affected patients died very shortly after

HSCT (days 22, 28 and 33) from complications. One of these patients had already been tested

positive for EBV and HHV-6, another for CMV, but in none of these patients were viral infec-

tions the cause of death. The median time to engraftment was 15.0 days (IQR = 6). There was

no significant difference in time to engraftment between patients with (median = 14.0 days)

and without infections after HSCT (median = 16.0 days). We registered 3 cases of graft failure

after engraftment, mostly in the first month after transplant (days 16, 21 and 86). In one

patient the graft failure was preceded by a CMV infection, in another patient by an HHV-6

infection.

The goal of> 500/μl CD3+-cells was reached with a median of 133.5 days post-HSCT

(IQR = 160) and > 1000/μl CD3+-cells were reached with a median of 266.5 days (IQR = 286).

Patients with infections after HSCT did not reach the thresholds defined for CD3+-cells signifi-

cantly later than those without infections, however, we found a significant difference for the

threshold of> 10% CD4+CD45RA+-cells (p = 0.014): While patients without viral infections
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reached the threshold with a median time of 102.0 days (IQR = 114), those with infections

reached it at a median time of 154.0 days (IQR = 166). Also, significantly less patients reached

the goal of> 10% CD4+CD45RA+-cells in the group with viral infection (HR 0.51, 95% CI

0.30–0.85, p = 0.010). For the threshold of> 500/μl CD3+-cells and > 1000/μl CD3+-cells no

significant difference could be shown.

Data on GvHD are presented in S2 Table. We found no significant difference of infection

rates between patients with and without aGvHD (72.2% vs. 57.1%, p = 0.16). Considering the

viruses separately, we found significantly more ADV infections in patients suffering from

aGvHD (32.9% vs. 10.7%, p = 0.026). All patients with severe aGvHD (grade III or IV) had at

least one viral infection and there were significantly more infections in this group than in

patients having no or only mild aGvHD (grade I or II) (100% vs. 63.4%; p = 0.004). Consider-

ing this association for the viruses separately, we found that patients with severe aGvHD had a

significantly higher incidence of EBV (57.1% vs. 23.7%; p = 0.021) and ADV infections (78.6%

vs. 19.4%; p< 0.001) than those suffering from no or only mild aGvHD. There was no signifi-

cant association of the occurrence of cGvHD and the occurrence of viral infections.

In our pediatric cohort of 107 cases, 33.6% had received an in-vitro T-cell depleted trans-

plant. As presented in Table 2, a significant association of in-vitro TCD and CMV infections

after HSCT was seen. In-vivo TCD through the application of ATG was conducted in 66.4% of

cases. Significantly more infections with EBV were seen in patients who had received ATG

(29/71, 40.8%) compared to patients who did not undergo in-vivo TCD (1/36, 2.8%;

p< 0.001). A general tendency towards more infections in the in-vivo depleted group was

seen. Of the 7 patients affected by severe viral diseases, 4 (suffering from HHV-6 encephalitis,

generalized zoster and two cases with suspected EBV-PTLD) had received in-vitro T-cell

depleted preparations. These 4 patients and the patient affected by EBV tonsillitis and pharyn-

gitis had also been treated with ATG.

Multivariate analysis of potential risk factors for viral infections

In the multivariate analysis (Table 3), higher age at HSCT, HLA mismatch and aGvHD were

identified as independent risk factors for viral infections after HSCT. Patients who received an

Table 2. Incidence of viral infections for (a) in-vitro T-cell depletion (TCD) and (b) in-vivo TCD (anti-thymocyte

globulin).

(a)

infection rates no in-vitro TCD, n = 71 in-vitro TCD, n = 36 p-value (Fisher)

any infection, n (%) 45 (63.4) 28 (77.8) 0.19

EBV infection, n (%) 22 (31.0) 8 (22.2) 0.37

CMV infection, n (%) 11 (15.5) 13 (36.1) 0.026

HHV-6 infection, n (%) 19 (26.8) 17 (47.2) 0.051

ADV infection, n (%) 19 (26.8) 10 (27.8) > 0.999

HSV infection, n (%) 6 (8.5) 5 (13.9) 0.50

VZV infection, n (%) 11 (15.5) 5 (13.9) > 0.999

(b)

infection rates no in-vivo TCD, n = 36 in-vivo TCD, n = 71 p-value (Fisher)

any infection, n (%) 20 (55.6) 53 (74.6) 0.051

EBV infection, n (%) 1 (2.8) 29 (40.8) < 0.001

CMV infection, n (%) 4 (11.1) 20 (28.2) 0.052

HHV-6 infection, n (%) 12 (33.3) 24 (33.8) > 0.999

ADV infection, n (%) 7 (19.4) 22 (31.0) 0.25

HSV infection, n (%) 3 (8.3) 8 (11.3) 0.75

VZV infection, n (%) 4 (11.1) 12 (16.9) 0.57

https://doi.org/10.1371/journal.pone.0228451.t002
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HLA mismatched graft were 3.92 times (95% CI: 1.24 – 12.4; p = 0.020) more likely to develop

viral infections after HSCT. Considering EBV, transplants from an unrelated donor and in-

vivo TCD were associated significantly with a higher infection rate, whereas higher age at

HSCT was not significant in the multivariate analysis. CMV seropositive recipients had the

highest odds for CMV infection (OR 100.31; 95% CI: 15.94 – 631.38; p< 0.001), but a signifi-

cant effect of CMV seropositivity of the donor on infection rates was also observed (OR 11.59;

95% CI: 1.22 – 109.95; p = 0.033). Patients with positive HSV serostatus were 20.93 times (95%

CI: 2.51 – 174.49; p = 0.005) more likely to develop HSV infections than those with negative

HSV serostatus. For HHV-6 and ADV no significant variable was identified in the multivariate

analysis. VZV infections were not tested in a binary logistic regression analysis as only one var-

iable with a p-value < 0.20 in the univariate analysis had been identified.

Effects of viral infections

Overall mortality was 28.0% (30/107) in our cohort, of which 9 fatalities (9.3%) were trans-

plant-related (TRM = transplant-related mortality) and 19 (17.8%) were categorized as dead of

disease (DOD). One patient died from a parainfluenza infection (0.9%). DOD was the main

cause of death in patients with and without infections after HSCT. There was no significant

association of viral infections and DOD (11/73, 23.5% vs. 8/34, 15.1%; p-value = 0.29) or TRM

(8/73, 11.0% vs. 1/34, 2.9%; p–value = 0.27).

Table 3. Binary logistic regression analysis of risk factors for viral infections after HSCT.

odds ratio 95% confidence interval p-value

any infection

age at HSCT 1.24 1.12–1.37 < 0.001

HLA mismatch 3.92 1.24–12.40 0.020

unrelated donor 1.16 0.27–5.02 0.85

aGvHD 3.39 1.08–10.63 0.036

in-vivo TCD 2.81 0.62–12.71 0.18

EBV

age at HSCT 1.08 1.00–1.17 0.057

unrelated donor 5.05 1.24–20.63 0.024

in-vivo TCD 10.68 1.15–98.86 0.037

CMV

seropositivity donor 11.59 1.22–109.95 0.033

seropositivity recipient 100.31 15.94–631.38 < 0.001

in-vitro TCD 2.54 0.38–16.85 0.34

HHV-6

age at HSCT 1.07 0.99–1.14 0.078

HLA mismatch 1.54 0.54–4.35 0.42

aGvHD 2.43 0.85–6.95 0.099

in-vitro TCD 2.08 0.73–5.93 0.17

ADV

aGvHD 3.59 0.97–13.33 0.056

cGvHD 1.73 0.63–4.76 0.29

HSV

age at HSCT 1.11 0.97–1.28 0.14

seropositivity recipient 20.93 2.51–174.49 0.005

https://doi.org/10.1371/journal.pone.0228451.t003
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The 1-year- and 2-year-survival for our collective was 80.6% and 76.5% respectively. The

overall survival of patients with or without infections after HSCT did not differ significantly

(HR 1.14, 95% CI 0.52 – 2.47, p = 0.75).

Of the 85 patients who had been transplanted because of a malignant disease, 31 (36.5%)

relapsed or experienced progress of the primary disease. In the cox regression analysis, a ten-

dency towards more relapses and progresses of the primary disease were found in patients

without viral infections compared to those with infections (HR 0.51, 95% CI 0.25 – 1.06,

p = 0.072). The small number of patients in the subgroups precluded a virus-specific analysis.

Discussion

Reactivation of viral infections with EBV, CMV, HHV-6, ADV, HSV and VZV after HSCT is

common, as we could confirm in this single-center retrospective study. The aim of our report

was to assess risk factors for and impacts of infections with these viruses in pediatric patients.

For EBV, CMV, HHV-6 and ADV we showed a temporal concurrence with the time of

peak immunosuppression after HSCT, with all patients affected by CMV or HHV-6 infections

developing viremia in the first 100 days post-transplant. Additionally, the majority of EBV and

ADV infections were first detected in this period.

The incidence of EBV infection in our collective was comparable to other pediatric studies

reporting infections after 22 – 32% of HSCT [21, 22]. Little data are available regarding the

donor and recipient serostatus for EBV in pediatric patients. For EBV we showed the highest

infection rates in D+/R- and no infections in patients receiving an EBV-negative transplant.

Meijer et al. suggest, that EBV infection after HSCT frequently results from reinfection with an

exogenous EBV strain instead of a true reactivation, but do not investigate whether this strain

derives from the donor [23]. Interestingly, there seems to be a protective effect of EBV-sero-

positivity in patients receiving cells of an EBV-seropositive donor, as we found a tendency

towards less infections in the combination D+/R+ compared to D+/R-. A similar protective

effect was demonstrated by Bordon et al. [21].

The incidence of CMV infections in our study was similar to the 22 – 24% reported in other

pediatric studies [1, 7, 24]. Consistent with these studies, we were able to show that recipient

seropositivity had a significant effect on the incidence of CMV infection. Because of the signifi-

cantly lower rate of CMV infections in seronegative patients, our data suggest that the reactiva-

tion of latent CMV in the host is the most frequent cause of CMV infection after HSCT.

Furthermore, many studies were able to show advantages of a CMV seronegative donor for a

seronegative recipient and this is also recommended uniformly in current guidelines [8, 25].

Our data support this recommendation, as we saw a trend towards less infections in D-/R-

compared to D+/R-. Especially in pediatric collectives, the rate of CMV infections in CMV

seropositive recipients varies. While Qayed et al. and Yoon et al. showed the highest incidence

for CMV infections in D+/R+ [7, 26], other authors found the highest incidence in D-/R+ [24,

27, 28]. The reported rates of CMV infection in these pediatric studies varied from 17 to 71%

for D-/R+, which is in line with our study, and 24 to 57% for D+/R+, which is lower than in

our collective.

HHV-6 viremia is detected frequently after pediatric HSCT, with more than a third of

transplantations being affected [13, 29]. In two patients (1.9%), we suspected a chromosomal

integrated form of HHV-6 due to constantly high viral load and missing clinical symptoms.

This phenomenon has been reported with an incidence of 1 – 4% for the total population in

previous studies [18–20, 30]. Though very rare, it is important to keep this in mind to avoid

unnecessary antiviral treatment of these patients, for example the escalation of potentially

toxic antiviral therapy when no response in viral load is seen. It is still unclear to which extent
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chromosomally integrated HHV-6 can be activated after HSCT and induce pathogenic effects

[30].

The risk of ADV infections is elevated in pediatric patients and an increase of infection

rates has been reported over the last decades [31]. The incidence of ADV infections in our

study is in line with 25–50.4% determined in other studies [32, 33]. The infections are mainly

due to reactivation of asymptomatic ADV persistence [33].

As expected, VZV occurred significantly later than infections with other viruses, which is

very likely due to the use of an extended prophylaxis as seen in other studies using aciclovir

[34, 35, 36, 37]. HSV is classically seen as a virus reactivating very early, especially in the first 4

weeks after HSCT [35, 38, 39, 40]. However, in our study cohort aciclovir prophylaxis was rou-

tinely used and HSV was not under active surveillance. Here, in 8/11 cases, HSV reactivation

was seen later than one month after HSCT. Additionally, we registered very low rates of HSV

and VZV reactivations with 10.3% and 15.0% respectively compared to studies without routine

aciclovir prophylaxis [4, 39, 41, 36]. However, these findings are in line with the few data exist-

ing on pediatric cohorts receiving aciclovir prophylaxis: Maltezou et al. for example detected

an incidence of 14% for HSV infections in the first two years after HSCT [42] while Aytaç et al.

and Han et al. recorded rates of 13.6% and 11.2% respectively for VZV reactivations in the first

year after HSCT [34, 37]. For HSV, significantly more infections occurred in seropositive than

in seronegative recipients; this suggests that HSV infections post-HSCT are mainly due to

reactivation of HSV in seropositive patients.

We saw less VZV infections in patients vaccinated prior to HSCT, but as data on VZV vac-

cination were limited in our study, this association was not significant. Further research into

VZV vaccination is needed to evaluate the effect on VZV reactivation after HSCT, though

some reviews already suggest vaccination of VZV seronegative HSCT recipients at least 4

weeks before start of conditioning [43, 44]. A study on a German pediatric cohort was able to

show a decline of VZV infections in oncology patients which might partly be attributed to the

universal recommendation for varicella vaccination that was introduced in Germany in 2004

[45].

The occurrence of severe aGvHD was associated with increased rates of EBV and ADV

infections. As viral infections and aGvHD occur at the same early post-transplant period, it is

difficult to make a statement about causality. A different study design will be necessary to dif-

ferentiate whether GvHD increases rates of viral infections or whether viral infections increase

the risk of GvHD.

Patients suffering from viral reactivation were significantly older than those who were not

affected, which could be due to seroprevalence increasing with age, but also due to a slower

thymic recovery in older children [46, 47]. In line with our findings, Berman et al. were able to

indicate an age> 10 years as a risk factor for VZV infections [41]. Vermont et al. also showed

that pediatric allo-HSCT patients suffering from VZV infections were significantly older than

those who did not have VZV infections after transplantation [4]. Additionally, we were able to

show a similar age-dependency for HSV, but not for the other viruses included in this study.

As expected, the highest infection rates were seen in patients who underwent HSCT from a

MMUD. In patients receiving an HLA-mismatched or unrelated transplant, viral infection

rates tend to be higher than in MRD, probably due to the necessity of an intensified GvHD

prophylaxis with immunosuppressive agents or the increased use of TCD. Additionally, the

occurrence of GvHD itself can delay immune reconstitution and therapeutic measurements

may include an augmented immunosuppression. For EBV, the lowest risk of infection was

seen in haploidentical HSCT, which is probably due to B-cell depletion in these patients. The

highest risk of EBV infection was seen in patients receiving an unrelated transplant, as

described by Bordon et al. [21]. In contrast, most CMV infections were documented in
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patients who underwent HSCT from a mismatched donor. The increased use of in-vitro TCD

in the setting of mismatched transplantation, compared to unrelated donors, might explain

this observation, as significantly more CMV infections were seen in patients receiving an in-

vitro T-cell depleted graft.

Except for CMV, a significant association of in-vitro T-cell depleted HSCT with increased

rates of viral infections could not be found. For in-vivo TCD, significantly more infections

were only observed for EBV. Some tendencies towards more infections in the depleted group

were discernible and most patients with severe viral disease had received TCD, but the effect

was much milder than expected. This might be due to the heterogeneity of the cohort with

many different forms of TCD and the low number of subjects in general. Also, patients trans-

planted with T-cell depleted graft might have received a longer aciclovir prophylaxis due to a

slower immune reconstitution. The negative effect of TCD on infection rates after HSCT was

mainly shown for adult collectives and attributed to a slower immune reconstitution. It is con-

ceivable that the impact might be smaller in children due to their generally different and faster

immune reconstitution.

Stem cell source, TBI and mismatch of blood type had no significant effect on infection

rates.

In one patient failed engraftment was preceded by a CMV infection, in another patient by

an HHV-6 infection, but we assume that these infections were concomitant and not cause of

rejection. No difference in the velocity of immune reconstitution for CD3+-cells was seen

when comparing patients with and without viral infections after HSCT, though the goal

of> 10% CD4+CD45RA+-cells was reached faster in patients not affected by viral infections.

This might indicate that the reconstitution of a more diverse immune system reduces the vul-

nerability to viral infections.

Interestingly, when looking at the 85 patients in our cohort who had received an HSCT for

a malignant disease, a tendency towards a lower relapse risk was seen in patients affected by

viral infections. Several studies showed similar results for CMV, especially in acute myeloid

leukemia (AML) patients [48–50], Auger et al. for EBV and Nordlander et al. for HSV infec-

tions [51, 52]. The underlying mechanism of this relapse reduction remains unknown. It is

hypothesized, that this observation might be accounted for by virally triggered expression of

peptides by AML blasts which can serve as target for immune cells and thereby increase the

graft-versus-leukemia (GvL) effect [49].

There are little data on viral infections after HSCT in pediatric patients. The consistent

development of new conditioning and prophylaxis schemes as well as new forms of transplan-

tations make new studies necessary. We chose to observe several viruses in the same collective

to better represent the fact that most patients are affected by multiple viral infections after

HSCT.

The retrospective character of this study with data of a single institution limits the transfer-

ability of our findings to other collectives. To verify our findings, a prospective multicenter

study should be conducted. An acquisition of quantitative data on viral load might provide

additional insights. The use of a uniform detection method in the context of a prospective

analysis would make the acquired data more reliable. Furthermore, the impact of routine VZV

vaccination on the development of VZV infections after HSCT needs to be investigated more

extensively. In order to explore the effect of TCD on viral reactivation in children in greater

detail, larger prospective studies with homogenous cohorts should be performed.

In conclusion, viral infections are very common after allo-HSCT in children. However, our

data suggest that severe viral disease and death due to viral reactivation are rare. Age at time of

transplantation, the occurrence of aGvHD and donor type were the most important risk fac-

tors for viral infections after HSCT in general. Especially for EBV, transplant from an
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unrelated donor and in-vivo TCD had a significant effect on infection rates, whereas for CMV

the strongest effect was seen by donor and recipient serostatus with recipient seropositivity

most predictive for reactivation. The occurrence of severe aGvHD was associated with EBV

and ADV infections. In HSV infections, the recipient serostatus was identified as prognostic

factor for HSV infections, while we found higher age at time of HSCT as risk factor in VZV

infections. These evaluated risk factors allow further tailoring of prophylaxis strategies for chil-

dren, who are at the highest risk of viral infections.
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