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Abstract

Language change takes place primarily via diffusion of linguistic variants in a population of individuals. Identifying selective
pressures on this process is important not only to construe and predict changes, but also to inform theories of evolutionary
dynamics of socio-cultural factors. In this paper, we advocate the Price equation from evolutionary biology and the Pólya-
urn dynamics from contagion studies as efficient ways to discover selective pressures. Using the Price equation to process
the simulation results of a computer model that follows the Pólya-urn dynamics, we analyze theoretically a variety of factors
that could affect language change, including variant prestige, transmission error, individual influence and preference, and
social structure. Among these factors, variant prestige is identified as the sole selective pressure, whereas others help
modulate the degree of diffusion only if variant prestige is involved. This multidisciplinary study discerns the primary and
complementary roles of linguistic, individual learning, and socio-cultural factors in language change, and offers insight into
empirical studies of language change.
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Introduction

Language is a dynamic complex adaptive system [1] that

undergoes constant changes [2]. Well-documented examples of

language change include: the Great Vowel Shift in English during

the 14th to 16th century [3], the phonological mergers in Sinitic

languages [4], the lexical borrowing among languages [5,6], and so

on. Many changes were achieved via variant diffusion (shift in

proportions of different variants used by a population of individuals

over time [7], henceforth ‘‘diffusion’’). Regarding the numerous

diffusion cases, linguists are curious about the general ways in which

diffusion takes place and the separate or collective effects of various

factors on this process, with the purpose of identifying selective

pressures on diffusion (factors that explicitly and consistently drive the

diffusion of particular variants in a population) and gaining insights

on the human cognitive capacity for language [8–12].

Mathematical analysis and computer simulation have recently

joined the endeavor to study questions of language evolution. By

quantifying contact patterns and constraints within or across popu-

lations, mathematical analysis helps predict the outcome of language

competition [13–18]; by simulating individual behaviors during

linguistic interactions, computer modeling helps trace: how local

interactions among individuals spur the origin of a common set of

lexical items [19,20], how processing constraints lead to linguistic

regularities [21,22], and how social connections affect diffusion

[23,24].

As for diffusion in particular, the simulation approach usually

defines two types of variants (changed (C) and unchanged (U) forms) and

relevant rules to select C or U. As in [23,24], individuals are

situated in social networks, and choose their forms based on the

forms their neighbors (individuals directly connected to them) use

and the functional bias between C and U. By repetitively updating

individuals’ forms and calculating the proportions of C and U in

the population, these studies evaluate the threshold problem (minimum

bias for C to diffuse in the whole population [23]) and the effect of

social structures on diffusion. Meanwhile, the mathematical

approach usually treats diffusion as a Markov chain, and defines

differential equations describing changes among different language

states. As in [13], two states, X and Y, are defined. Change in the

proportion of the population using X is defined in (1), where x and

y are proportions of individuals respectively using X and Y, Pyx(x,s)

is the probability of converting from Y to X, and Pxy(x,s) is the

probability of a reverse conversion:

dx

dt
~yPyx(x,s){xPxy(x,s) ð1Þ

Here, Pyx(x,s) = cxas, Pxy(x,s) = c(1-x)a(1-s), and c, s and a define the

attractiveness of X or Y. Change in the proportion of the

population using Y can be defined similarly. Analysis on these

equations can reveal some stable states of the system. The later

work [16] extends [13] by including a bilingual state (Z) and

redefining the transition equations.

Both of these approaches bear some limitations. On the one

hand, simulations are sensitive to initial conditions; without

support from mathematical analysis, simulations only offer
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qualitative understanding. Combining simulation with mathemat-

ical analysis can efficiently overcome this limitation. As in [25], the

authors unify the two sets of equations in [13] and [16] with agent-

based simulations, and discover that individuals’ willingness to

change languages is prominent for diffusion of a more attractive

language and bilingualism accelerates the disappearance of one of

the competing languages. On the other hand, Markov models

usually involve many parameters and face a ‘‘data scarcity’’

problem (how to effectively estimate the parameter values based

upon insufficient empirical data). In addition, the number of

parameters increases exponentially with the increase in the

number of states. As in [13,16], adding a bilingual state extends

the parameter set from [c, s, a] to [cxz, cyz, czx, czy, s, a].

In this paper, we apply the principles of population genetics

[26,27] to language, and combine the simulation and mathematical

approaches to study diffusion. We borrow the Price equation [28] from

evolutionary biology to identify selective pressures on diffusion.

Though originally proposed using biological terms, this equation is

applicable to any group entity that undergoes transmission in a

socio-cultural environment [29–31], and involves components that

indicate selective pressures at the population level. In addition, this

equation relies upon average performance to identify selective

pressures, which partials out the influence of initial conditions.

Furthermore, compared with Markov chains, this equation needs

fewer parameters, which can be estimated from few empirical data.

Apart from this equation, we also implement a multi-agent model

that follows the Pólya urn dynamics from contagion research [32,33].

This model simulates production, perception, and update of

variants during linguistic interactions, and can be easily coordinated

with the Price equation.

Empirical studies in historical linguistics and sociolinguistics

have shown that linguistic, individual learning and socio-cultural

factors could all affect diffusion [8,10,34,35]. In this paper, we

focus on some of these factors (e.g., variant prestige, transmission

error, individual influence and preference, and social structure),

and analyze whether they are selective pressures on diffusion and

how non-selective factors modulate the effect of selective pressures.

Methods

Price Equation
Biomathematics literature contains several mathematical mod-

els of evolution via natural selection, among which the most well-

known ones are: (a) the replicator dynamics [36], used in the context of

evolutionary game theory to study frequency dependent selection;

and (b) the quasi-species model [37], applicable to processes with

constant type-dependent fitness and directed mutations. A third

member of this family is the Price equation [28,38], which is

mathematically similar to the previous two (see [30]), but has a

slightly different conceptual background.

The Price equation is a general description of evolutionary

change, applying to any mode of transmission, including genetics,

learning, and culture [30,39]. It describes the changing rate of (the

population average of) some quantitative character in a population

that undergoes evolution via (possibly non-faithful) replication and

natural selection. A special case thereof is the proportion of a

certain type in the entire population, which is the character

primarily studied by the other two models abovementioned.

In the discrete-time version, the Price equation takes the form as

in (2):

DX~Cov(si=s,xi)zE(Dxi|si=s) ð2Þ

Here, X is the population average of the quantitative trait to be

studied, and this difference equation denotes the time evolution of

this trait. The population is assumed to be divided into sub-

populations (single individuals or more coarse-grained aggregate

objects). Term s refers to the average fitness of the population, and

xi, Dxi and si respectively denote the average value of x, the

difference of this value between subsequent generations, and the

average fitness of the ith sub-population.

The right-hand side of the equation consists of two terms: a

covariance and an expectation. The covariance measures the

statistical association between fitness and trait value. It captures

evolutionary changes due to selection between sub-populations;

the stronger the selection for x, the stronger the covariance

between x and fitness. The expectation is a fitness-weighted measure

of the change in trait value between ancestor and descendant. It

tracks changes occurring in sub-populations. If sub-populations

are single individuals, the expectation captures unfaithful replica-

tion due to mutation or transmission errors; and if sub-populations

are more coarse-grained, the covariance captures between-group

selection, and the expectation captures both transmission errors

and within-group selection.

It is important to note the apparently tautological nature of the

Price equation. This nature makes it suitable for describing any

dynamic process involving populations at different time points. If

there is a complete specification of a dynamic process (say, by

means of a Markov chain), the description, by means of the Price

equation, of the same process will logically follow the specification.

In other words, the Price equation description might be equivalent

to the complete dynamic specification, or even contain less

information. However, it does not mean that this equation is an

alternative to Markov chains or similar specifications of dynamic

systems; rather, this equation is a conceptual means. Applying this

equation requires clarifying what relations between the stages of

the involved population can be considered as replication (Price

himself did not use this term, but Dawkins’ usage of the term [40]

is precisely what Price’s theory is about). It then provides a clear

separation in the population between those changes due to selection

and those due to other sources. Some scholars criticize Price’s

approach precisely because the Price equation does not add ant

new information to an existing specification of a dynamic process

(see for instance [41]), but these critiques do not affect the value of

this equation as a conceptual means.

The Price equation can predict the evolution of trait X at the

population level, provided the dynamics within sub-populations is well-

understood. It has proven useful especially in clarifying the concept of

group selection, since it gives a precise description of the interplay

between inter- and intra-group selective forces [39,42]. To our

knowledge, most applications use this equation as an analytical tool to

derive the dynamic behavior of an aggregate system from the

dynamic properties of its components. In this paper, we present

another application of this equation, namely as an empirical tool. The

right-hand side of this equation divides the population-level

dynamics into inter- and intra-group selections, plus unfaithful

replication. In systems that intra-group selection can be neglected,

this corresponds to a division between selection and unfaithful

replication. In this way, the Price equation decomposes an

empirically observed dynamic process into components respectively

tracing selection and unfaithful replication, with the purpose of

better understanding the nature of this process.

This paper studies simulations of rather simple dynamic processes

inspired by certain features of diffusion. Due to a complex

population structure, it is nevertheless not possible (or at least not

practical) to give an analytical treatment. However, the Price

equation, used in a top-down fashion as described above, serves as a

tool to measure the selection strength in different scenarios, thus

enabling a deeper understanding of the macroscopic properties of

Price Equation & Pólya-urn Dynamics in Linguistics

PLoS ONE | www.plosone.org 2 March 2012 | Volume 7 | Issue 3 | e33171



the studied processes. As a pilot study adopting this new

methodology, we envision practical applications of this approach

to non-simulation data from biological and/or cultural evolutions.

Pólya-urn Model
This model, first designed to study contagion, serves as a

suitable model studying diffusion within a population. A Pólya-urn

is an urn containing a number of red and green balls; at each time

step, a ball is drawn randomly from the urn, and returned to it

together with a number of balls of the same or different color. This

process is then iterated.

Our model, inspired from this prototypical one, consists of N

agents (individuals), each denoted by an urn. An urn is initiated

with V tokens, each belonging to a particular type (v1, v2, … vV) and

having a quantifiable feature xi (all feature values form F). At a time

step, an interaction occurs between two or more individuals, where

a token vi is drawn randomly from an urn (speaker), and pi (prestige

of vi, all prestige values form P) tokens of the same type are added

to the speaker itself or other urn(s) (hearer(s)). Here, token drawing

corresponds to production, and token adding perception and knowledge

update. Such drawing and adding processes repeat themselves,

causing variant type distributions in each urn and the whole

population to change over time. Unfaithful replication may occur if

an added token has a different type from the drawn one.

This Pólya-urn model is combinable with the Price equation. We

give two examples (see Figure 1) of calculating the Price equation

based on this model, under a simple setting: N = 2, V = 2, F = {1.0,

2.0}, i.e., the population has only two agents who exchange only two

types of variants. During interactions, only hearers update their urns.

There are two ways to calculate the Price equation, respectively

based on two quantifiable features, both reflecting change in the

variant type distribution in the population. The first way concerns

variant feature xi, and calculates change in the average feature

value DX between time steps. As in Figure 1(a), the numbers of

variants before (wi) and after (w9i) the interaction are:

w1~3, w2~2, w~
X

i

wi~5 and

w01~3, w02~4, w0~
X

i

w0i~7
ð3Þ

The relative frequencies (qi) and fitness (si) of variants are

q1~w1=w~3=5~0:6 and q2~w2=w~2=5~0:4 ð4Þ

s1~w01=w1~1, s2~w02=w2~2 and s~w0=w~1:4 ð5Þ

Then, the covariance is

E(si=s)~
X

i

qi|si=s~0:6|1=1:4z0:4|2=1:4~1:0

E(xi)~
X

i

wi=w|xi~3=5|1:0z2=5|2:0~1:4

Cov(si=s,xi)~E((si=s{E(si=s))(xi{E(xi)))

~
X

i

qi(si=s{1:0)(xi{1:4)

~0:6|(1=1:4{1:0)(1:0{1:4)z

0:4|(2=1:4{1:0)(2:0{1:4)~6=35

ð6Þ

Figure 1. The Pólya-urn dynamics (N = 2, V = 2, F = {1.0, 2.0}). Example (a) involves variant prestige (P = {1, 2}) but no unfaithful replication. At
time t, a token of v2 is produced by the speaker, due to its prestige (2), two tokens of v2 are added to the hearer, which forms the state at time t9.
Example (b) involves unfaithful replication but no variant prestige (P = {1, 1}). At t, a v2 is produced, due to unfaithful replication, a v1 is added, which
forms the state at t9.
doi:10.1371/journal.pone.0033171.g001
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With no unfaithful replication, offspring variants are identical to

their parents, so there is no feature discrepancy, Dxi = 0.0. Then,

the expectation is 0.0. In sum, the right-hand side of the Price

equation returns 6/35.

Meanwhile, DX can be calculated based on the expectations of

xi:

X 0~Exp(x0i)~
X

i

x0i|w0i=w~1:0|3=7z2:0|4=7~11=7

X~Exp(xi)~
X

i

xi|wi=w~1:0|3=5z2:0|2=5~1:4

DX~X 0{X~11=7{1:4~6=35

ð7Þ

Both sides return the same value, illustrating the tautology of the

Price equation.

As in Figure 1(b), w1, w2, and w are the same as in (3), and q1

and q2 the same as in (4). Here, we need to track which parent type

produces the mutated offspring, and calculate the contribution of

both faithfully and unfaithfully replicated tokens to the feature

value. To this purpose, we define niRj as the number of vi changing

to vj. In this example, n1R1 = 3, n1R2 = 0, n2R1 = 1, n2R2 = 2. Then

w01~n1?1zn1?2~3,w02~n2?2zn2?1~3 ð8Þ

s1~w01=w1~1,s2~w02=w2~1:5 and s~w0=w~1:2 ð9Þ

The covariance is:

E(si=s)~
X

i

qi|si=s~0:6|1=1:2z0:4|1:5=1:2~1:0

Cov(si=s,xi)~E((si=s{E(si=s))(xi{E(xi)))

~
X

i

qi(si=s{1:0)(xi{1:4)

~0:6|(1=1:2{1:0)(1:0{1:4)

z0:4|(1:5=1:2{1:0)(2:0{1:4)~0:1

ð10Þ

The feature discrepancies are:

x0i~
X

j

xj|ni?j=w0

x01~x1|n1?1=w0zx2|n1?2=w0~1:0|3=3z2:0|0=3~1:0

x02~x1|n2?1=w0zx2|n2?2=w0~1:0|1=3z2:0|2=3~1:5

Dx1~x01{x1~0:0 and Dx2~x02{x2~{0:5

ð11Þ

The expectation is:

E(si=s|Dxi)

~
X

i

qi|Dxi|si=s~0:6|0:0|1=1:2z0:4|({0:5)|1:5=1:2

~{0:25

ð12Þ

In sum, the right-hand side returns 20.15. Meanwhile, DX is:

X 0~Exp(x0i)~
X

i

x0i|w0i=w0~1:0|3=6z2:0|3=6

~1:25, X~Exp(xi)~1:4

DX~1:25{1:4~{0:15

ð13Þ

This calculation also returns 20.15.

In Text S1, we illustrate the second way of calculation, also

based on the examples in Figure 1.

These examples show that the Price equation can accurately

trace the evolutionary change in the average value of a

quantifiable feature in a population. The two ways of calculation

identify selective pressures from different angles. DX in the first

way of calculation is determined primarily by the covariance that

traces changes in the fitness ratio, whereas the expectation is zero

except for unfaithful replication. Then, any factor causing the

covariance to be consistently positive or negative can be identified

as a selective pressure. However, in the second way, any factor

causing the expectation to be consistently positive or negative is a

selective pressure.

In our Pólya-urn model, terms ‘‘feature’’, ‘‘prestige’’, and

‘‘unfaithful replication’’ have their counterparts in the context of

diffusion. Different types of linguistic variants possess feature values.

Due to certain characteristics, some type of variants can be

adopted and used with a higher probability than other(s). Then,

this type of variants is said to have a higher prestige value. For

example, in [6], borrowed lexical variants tend to have higher

prestige values than existing ones that encode identical meanings,

since the former are more salient to hearers than the latter. Other

characteristics, such as the ease in perception or production, may

also cause variants to have different prestige values [43]. As in

Cantonese, more easily produced pronoun variants ([o5] ‘‘I’’,

[lei5] ‘‘you’’, and [heoi5] ‘‘she/he/it’’, numbers indicate tones)

have higher prestige values than existing forms ([ngo5], [nei5], and

[keoi5]), since the nasals and voiceless plosive in existing forms are

more difficult to produce to normal speakers. Finally, during

cultural transmission, unfaithful replication usually corresponds to

transmission error.

Apart from these terms, this Pólya-urn model can also

incorporate other individual learning and socio-cultural factors.

For example, during diffusion, speakers, hearers, or both, can

innovate or have identical or different preferences for variants.

Speakers may prefer easily produced variants, as in the case of

Cantonese pronouns, whereas hearers may prefer easily perceived

or salient ones [4,44]. Such individual preference can be addressed by

clarifying situations where only speakers or hearers update their

urns. In addition, in a human community, individuals having

higher social, political or economic status are more influential than

ordinary people [45,46]. Such individual influence can be addressed

by defining either a non-uniform distribution of individuals’

influences (determining the number of hearers for each agent) or a

non-uniform distribution of individuals’ popularities (determining

the probabilities for agents to participate in interactions). Finally,

social connections among individuals can also restrict participants

of interactions, thus affecting diffusion. This can be addressed

using different types of social structure.

Price Equation & Pólya-urn Dynamics in Linguistics
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Results

For the sake of simplicity, we only consider two variant types

(V = 2), and arbitrarily set their feature values as F = {1.0, 2.0}. In

this case, variant features do not affect the covariance and

expectation, since they are cancelled out in the calculation. In

cases of multiple types of variants, unless certain types of variants

have extremely high or low feature values, variant features will not

greatly affect the covariance and expectation. In reality, feature

values can denote any quantifiable characteristics of variants, such

as vowel length, consonant voicing onset time, lexical item

recalling rate, and so on. We set up a 100-agent population and

2000 interactions among these agents (20 interactions per agent)

(in the later simulations, the number of interactions can be

extended to 5000), and conduct simulations in the following three

conditions:

1) Variant prestige with and without transmission error;

2) Individual influence with and without variant prestige;

3) Individual preference and social structure with and without

variant prestige;

In each condition, 100 simulations are conducted. In a

simulation, we calculate the Price equation at 20 sampling points

evenly distributed along 2000 interactions (in simulations having

5000 interactions, 50 sampling points are selected for calculation).

Since the Price equation traces only changes of variant types, we

also measure Prop at each sampling point as in (14):

Prop(t)~ max
i~1,2

(proportion(vi,t)) ð14Þ

The average Prop over 100 simulations helps evaluate the

conclusions drawn from the Price equation. The type of variants

having a higher proportion value is referred to as the majority type. In

Text S2, we show the pseudo codes of the Pólya-urn model and

the calculation of the Price equation.

Variant Prestige with and without Transmission Error
Variant prestige encompasses intrinsic properties of variants, not

of individuals who carry variants. High prestige value makes

certain type of variants more likely to be adopted by individuals. In

the simulations of this section, each interaction takes place

between two randomly chosen agents, and only hearers update

their urns. Variant prestige is introduced via pi. In conditions with

variant prestige, P = {1, 2} (conditions P = {1, 2} and P = {2, 1}

are conceptually the same, except that the dominant variant types

are different); in those without, P = {1, 1}. If pi = 2, two (instead of

one) tokens of the same type are added to the hearer’s urn,

modeling the enhanced adoption of variants with higher prestige

values. Transmission error is introduced via c = 0.02, denoting the

probability for an added token to become a mutant (a token of the

other type).

Figures 2(a) and 2(b) show the covariance without transmission

error and the expectation with transmission error. With variant

prestige, the covariance is consistently positive; otherwise, it

fluctuates around 0.0. The gradual decrease in the covariance is

due to the increase in the total number of variants, which reduces

the effect of a small number of changed variants in each

interaction. The consistent positivity of the covariance indicates

that variant prestige is a selective pressure on diffusion.

Meanwhile, with variant prestige, the expectation is consistently

negative; otherwise, it fluctuates around 0.0. This indicates that

transmission error reduces the selective pressure of variant

prestige, but due to the low error rate, this effect is smaller than

that of variant prestige.

Figure 2(c) shows Prop in these conditions. With variant prestige,

v2, having a higher prestige value, becomes the majority type, and

its Prop gradually reaches a high level (above 0.8) (Prop never

reaches 1.0, since the tokens of v1 are not removed. When they are

chosen for production, new tokens of v1 will be added); otherwise,

either type can be the majority type in different simulations, and

Prop remains around 0.5. These results confirm the selective

pressure of variant prestige. In addition, Figure 2(c) shows Prop in

conditions with transmission error (dotted lines). With variant

prestige, Prop with transmission error is lower than that without,

indicating that transmission error reduces the selective pressure of

variant prestige; otherwise, Prop with and without transmission

error are similarly low, around 0.5, indicating that transmission

error alone fails to significantly affect diffusion. These findings are

in accordance with the conclusions drawn from the Price equation.

By adjusting prestige values, we can simulate different degrees of

bias for the prestigious type of variants. Adjusting the ratios

between the two types of variants is similar to adjusting the

functional bias as in [23,24]. Figure 3 shows Prop and average

covariance in all the sampling points under different settings of P.

Once a slight bias for v2 is introduced via P, say P = {100, 101},

the average covariance will become consistently positive, and the

proportion of v2 will be above 0.5. In addition, the average

Figure 2. Results of variant prestige and transmission error: (a) covariance without transmission error; (b) expectation with
transmission error; (c) Prop. Each line is averaged over 100 simulations. Percentage values in the legends denote the proportions of the
covariance or expectation above, below or equal to 0.0.
doi:10.1371/journal.pone.0033171.g002
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covariance increases along with the increase in the degree of bias

for v2. It means that not only the consistent positivity or negativity

of the covariance can reflect selective pressures on diffusion, but

the average covariance can also indicate the strength of selection

and the degree of diffusion. This is also confirmed by Prop.

At the population level, the Price equation and simulation

results collectively show that: (a) variant prestige is a selective

pressure on diffusion; (b) transmission error can diminish such

pressure; and (c) transmission error alone fails to consistently drive

diffusion (noting this, we will not consider transmission error in

later sections). These conclusions are different from those drawn

from an empirical study [45], which finds no effect of variant

prestige on diffusion, but the authors of that study admit that their

focus is on individual bias and variant prestige is subsumed within

that focus.

These conclusions are based on simulations in a finite

population and within a limited number of interactions. In Text

S3, we prove that these conclusions also hold in a sufficiently large

population and an unlimited number of interactions. Meanwhile,

single histories of the Pólya-urn dynamics tend to show the

reinforcement or lock-in effect [46]. As shown in Figure S1 and

discussed in Text S4, such effect cannot affect our conclusions.

Individual Influence with and without Variant Prestige
Individual influence reflects the fact that members in a

community tend to copy the way of certain individuals. Such

factor is claimed to be able to enhance the benefit of cultural

transmission [47]. In our study, individual influence is discussed in

two ways. In the first way, we define a non-uniform distribution of

individuals’ influences. When an individual speaks, according to its

influence, a certain number of other individuals will be randomly

chosen as hearers and update their urns according to the token

produced by the speaker. Each individual has an equal chance to

be chosen as speaker, but the distribution of all individuals’

influences follows a power-law distribution [49,50] (inspired from the

data in [47], and used in [48]). The power-law distribution has the

form y~ax{l, where x is the agent index from 1 to N, y is the

influence an agent has, and a is a normalizing factor ensuring that

the sum of all probabilities is 1.0. The maximum integer smaller

than N6y is the number of hearers influenced by an agent with

index x. The minimum value of this number is 1. l characterizes

different power-law distributions; the higher the l, the more

hearers when agents with smaller indices speak.

In the second way, we define a power-law distribution of

individual popularities (probabilities for individuals to participate in

interactions). In this power-law, y measures the probability for an

individual to interact (as speaker or hearer) with others.

We consider power-law distributions whose l are 0.0, 1.0, 1.5,

2.0, 2.5, and 3.0. l values in many real-world power-law

distributions usually fall in this range. If l is 0.0, all agents have

the same influence or probability, which resembles the case of

random interaction. Values within (0.0 1.0) are excluded, because

the influences or probabilities under these values are sensitive to

the population size.

Figures 4 and 5 show the results under these two types of

individual influence. Without variant prestige, both types fail to

exert a selective pressure, indicated by the fluctuation of the

covariance; otherwise, both can affect diffusion. As shown in

Figures 4(c) and 5(c), l and Prop are correlated. To illustrate such

correlation, we define MaxRange as the maximum changing range

of Prop:

MaxRange~ max
t[½1,2000�

(Prop(t){Prop(0)) ð15Þ

Figures 4(d) and 5(d) compare MaxRange with and without

variant prestige. With variant prestige, under the first type of

individual influence, there is a negative correlation between l and

MaxRange (Figure 4(d)). With the increase in l, agents with smaller

indices become more influential, who can affect many others,

whereas those with bigger indices are less influential, who can only

affect 1 or 2 agents. Then, if the influential agents have not

developed a clear bias for the prestigious type of variants, their

great influence will delay the spread of such bias among others.

However, under the second type of individual influence, there is a

positive correlation between l and MaxRange (Figure 5(d)). With

the increase in l, agents with smaller indices will participate in

Figure 3. Results under different variant prestige (P): (a) average covariance under different P; (b) Prop. Bars in (a) denote standard
errors. Each line in (b) is averaged over 100 simulations.
doi:10.1371/journal.pone.0033171.g003
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more interactions than others. Then, the proportions of prestigious

variants in these agents will have more chances to increase, and

the bias for prestigious variants in these agents can get spread to

others. Therefore, the diffusion in the whole population is

accelerated.

Power-law distribution is omnipresent in social and cognitive

domains [51]. We show that in order for the two types of power-

law distributed individual influence to significantly affect diffusion,

variant prestige is necessary.

Individual Preference and Social Prestige with and
without Variant Prestige

In the above simulations, only hearers update their urns. As

discussed before, speakers may also update their urns during

interactions. These different ways of introducing new tokens may

affect diffusion in a multi-agent population. Meanwhile, a multi-

agent population possesses different types of social structure, which

could also affect diffusion. Simulations in this section adopt

complex networks (treating agents as nodes and interactions as

edges) to denote social connections among individuals. We

consider 6 types of networks: fully-connected network, star

network, scale-free network, small-world network, two-dimension-

al (2D) lattice, and ring. They characterize many real-world

communities. For instance, small-scale societies are usually fully-

connected, or have a star-like, centralized structure. Social

connections among geographically distributed communities can

be denoted by rings or 2D lattices. Large-scale societies generally

show small-world and/or scale-free characteristics [47].

Table 1 lists the average degree (AD, average number of edges per

node), clustering coefficient (probability for neighbors, directly

connected nodes, of a node to be neighbors themselves) and

average shortest path length (ASPL, average smallest number of edges,

via which any two nodes in the network can connect to each other)

of these networks. Seen from Table 1, from ring to 2D lattice or

small-world network, AD increases; from 2D lattice to small-world

or scale-free network, ASPL drops, due to short-cuts (edges between

non-locally distributed nodes) in small-world network and hubs

(nodes having many edges connecting others) in scale-free

Figure 4. Results with the first type of individual influence: covariance without (a) and with (b) variant prestige; Prop with variant
prestige (c), and MaxRange (d). Each line in (a–c) is averaged over 100 simulations. Bars in (d) denote standard errors.
doi:10.1371/journal.pone.0033171.g004
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network; and from 2D lattice to scale-free network, and then, to

star network, level of centrality (LC) increases, more nodes become

connected to some popular node(s).

In order to gather sufficient data for statistical analysis, we

extend the number of interactions to 5000 (50 interactions per

agent) and the number of sampling points to 50. There are two sets

Figure 5. Results with the second type of individual influence: covariance without (a) and with (b) variant prestige, Prop with
variant prestige (c), and MaxRange (d). Each line in (a–c) is averaged over 100 simulations. Bars in (d) denote standard errors.
doi:10.1371/journal.pone.0033171.g005

Table 1. Network characteristics: values are calculated based on 100 nodes.

Network Average degree Clustering coefficient Shortest path length

Fully-connected 99 1.0 1

Star 1.98 0.0 1.98

Scale-free 3.94 (4e-14) 0.14 (0.038) 3.01 (0.071)

Small-world 4 0.17 (0.031) 3.79 (0.086)

2D lattice 4 0.5 12.88

Ring 2 0.0 25.25

Scale-free network is formed by preferential attachment, with average degree around 4; small-world network is formed by rewiring from 2D lattice, with reviewing rate
as 0.1. Numbers within brackets are standard deviations of values in scale-free and small-world networks.
doi:10.1371/journal.pone.0033171.t001
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of simulations: (a) simulations with speaker’s preference, where only

speakers update their urns; and (b) simulations with hearer’s preference,

where only hearers update their urns. In both sets, simulations

under the 6 types of network are conducted. In a simulation, only

two directly connected agents can interact. Considering that one-

speaker-multiple-hearers interactions are common in real societies,

we also conduct simulations where all agents directly connected to

the speaker can be hearers and update their urns (hearer’s

preference). These results are shown in Figure S2 and discussed in

Text S5.

Figure 6 shows the simulation results with hearer’s preference

(results with speaker’s preference are similar). Figures 6(a) and 6(b)

show that without variant prestige, the covariance fluctuates

around 0.0; otherwise, it is consistently positive. Figures 6(c) and

6(d) respectively show Prop and MaxRange in those networks, given

variant prestige.

Based on Prop, we conduct a 2-way analysis of covariance

(ANCOVA) (dependent variable: Prop over 100 simulations; fixed

factors: speaker’s/hearer’s preference and 6 types of networks;

covariate: 50 sampling points along 5000 interactions). This

analysis reveals that speaker’s or hearer’s preference (F(1,

61187) = 6905.606, p,.001, gp
2 = .101) and networks (F(5,

61187) = 1111.425, p,.001, gp
2 = .083) have significant main

effects on Prop (Figure 7). The covariate, number of interactions

(sampling points), is significantly related with Prop (F(1,

61187) = 108285.542, p,.001, gp
2 = .639). Instead of ANOVA,

using ANCOVA can partial out the influence of the number of

interactions.

Figure 7(a) shows that hearer’s preference leads to a higher

degree of diffusion, compared with speaker’s preference. This is

evident in not only fully-connected network, which resembles the

case of random interactions and excludes network effects, but also

other types of networks.

During one interaction, whether the speaker or hearer updates

the urn has the same effect on the variant type distribution within

these two contacting agents. However, in a situation of multiple

agents and iterated interactions, these two types of preference

show different effects. Speaker’s preference is self-centered, disre-

garding other agents. For example, if an agent has v1 as its

majority type, when interacting as the speaker with another agent

whose majority type is v2, it still has a higher chance of choosing a

token of v1 and increasing v1’s proportion by adding more tokens

Figure 6. Results with hearer’s preference: covariance without (a) and with (b) variant prestige, Prop with variant prestige (c), and
MaxRange with variant prestige (d). Each line in (a–c) is averaged over 100 simulations. Bars in (d) denote standard errors.
doi:10.1371/journal.pone.0033171.g006
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of v1. In contrast, hearer’s preference is other-centered, allowing

hearer’s variant type distribution to be adjusted by other agents.

For example, if an agent has v1 as its majority type, when

interacting as the hearer with another agent whose majority type is

v2, it will have a higher chance of adding v2 tokens, which will

gradually adjust its variant type distribution to be similar to

others’. Therefore, given the same number of interactions, hearer’s

preference is more efficient for diffusion than speaker’s preference.

In one-speaker-multiple-hearers interactions, the effect of hearer’s

preference will be further enhanced.

With variant prestige, different types of networks show different

degrees of diffusion, as evident in ANCOVA and Figures 6(d) and

7(b). A similar tendency is also shown in Figure S2(d) (except in

fully-connected networks). Apart from ANCOVA, we conduct

post-hoc T-tests on the mean Prop of 100 simulations between

different pairs of networks (see Table 2).

The different degrees of diffusion in these networks can be

ascribed to several structural features of these networks. The first

feature is AD (average degree). As in Table 1, AD is 2 in ring, 4 in

2D lattice. Although in one-speaker-one-hearer interactions, Prop

between these two networks are not significantly different (see

Figure 6(c) and Table 2), in one-speaker-multiple-hearers interac-

tions, the effect of AD is explicit (see Figure S3 and Text S5, where

we further discuss the effect of AD on Prop). In addition, the similar

results between ring and 2D lattice but different results between

2D lattice and scale-free or small-world network indicate that

other structural features are taking effect. And AD alone fails to

explain why star network, having the lowest average degree (1.98),

has the highest Prop.

The second feature is short-cuts. From 2D lattice to small-world

network, rewiring introduces several short-cuts, and Prop in this

network is significantly higher than that in 2D lattice (see Table 2,

Table S1, and Text S5). However, short-cuts cannot explain why

star network, having no such short-cuts, has the highest Prop.

The third feature is LC (level of centrality). Star network has an

extremely centralized structure: there is a hub connecting all other

nodes, and this hub participates in all interactions with other

nodes. Then, with speaker’s preference, the hub has many chances

to update its variant type distribution; with hearer’s preference,

any update of variant type distribution can be quickly spread via

the hub to others. Apart from star network, scale-free network, due

to preferential attachment, also contains hubs connecting many

other nodes, but LC in scale-free network is less than that of star

network. Accordingly, Prop in scale-free network is significantly

smaller than that in star network (see Table 2, Table S1, and Text

S5). Furthermore, in small-world network, rewiring causes some

nodes to have slightly more edges than others, and these nodes will

play similar roles as hubs. However, rewiring is less efficient than

preferential attachment in forming hubs, so Prop in small-world

network is significantly smaller than that in scale-free network (see

Table 2, Table S1, and Text S5). Finally, lacking centralized

structures in other types of networks causes their Prop values to be

significantly smaller than those of star, scale-free, or small-world

networks.

As shown in Table 1, ASPL (average shortest path length)

reflects a combined effect of AD, short-cuts, and LC; if a network

has a high AD, many short-cuts, or a high LC, any two nodes in it

can be connected via a small number of edges. Since star network

has much lower ASPL (1.98), it has much higher Prop, and then

Figure 7. (a) Mean Prop with speaker’s (solid line) and hearer’s preference (dashed line) in different networks. (b) Mean Prop over two
types of preference in different networks.
doi:10.1371/journal.pone.0033171.g007

Table 2. Post-hoc T-test results on the mean Prop values of
100 simulations.

Network comparison Post-hoc T-test result

ring vs. 2D lattice t(198) = 21.206, p = 0.229

2D lattice vs. small-world t(198) = 23.239, p,0.001 *

small-world vs. scale-free t(198) = 23.884, p,0.001 *

scale-free vs. star t(198) = 25.099, p,0.001 *

star vs. fully-connected t(198) = 7.482, p,0.001 *

‘‘*’’marks significant difference.
doi:10.1371/journal.pone.0033171.t002
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scale-free network (3.01), small-world network (3.79), and 2D

lattice (12.88). Since ring has the highest ASPL (25.25), its Prop is

the lowest.

Discussion

Apart from its successful applications in group selection [39]

and altruism [31], the Price equation is introduced in this paper as

a new approach for studying language change, especially diffusion.

It offers a concise description of evolutionary processes that

abstracts away from specific properties of biological evolution

[29,30]. The covariance and expectation in it decompose a

dynamic process into a selection and an unfaithful replication

component, and quantitative analyses of these components can

lead to a better understanding of the effects of various factors on

diffusion. Meanwhile, this paper also borrows the Pólya-urn

dynamics from contagion studies to simulate diffusion. This

dynamics is not language-specific, and simulation results are less

dependent on population size and number of variants or

interactions. Both features make the findings based on this

dynamics also instructive to other socio-cultural phenomena that

involve variant transmission.

Based on the Price equation and Pólya-urn dynamics, we

identify that variant prestige is a selective pressure that can

consistently and explicitly drive the spread of variants with high

prestige values in the population. Other factors, including

transmission error, individual preference and influence, and social

structure, play complementary roles in diffusion, once variant

prestige is involved. To be specific, if variants show different

prestige values, transmission error can delay diffusion and help

preserve less prestigious variants; the two types of individual

influence can affect the degree of diffusion in different manners;

hearer’s preference is more efficient for diffusion than speaker’s

preference; and structural features, such as average degree, short-

cuts and level of centrality, can modulate the degree of diffusion.

These theoretical findings can yield important insights and offer

useful guidance on empirical studies of diffusion. As a socio-

cultural phenomenon, language evolution proceeds via individual

learning and cultural transmission [52]. Our findings suggest that

language-external factors in these two aspects have to take effect

via language-internal factors, such as variant prestige. Therefore,

regarding particular diffusion or other linguistic phenomena, we

should not disregard the primary roles of language-internal factors,

nor exaggerate the complementary roles of language-external

factors. Meanwhile, in empirical studies of diffusion, many

observed cases usually occur either as a single history of a

particular language or in a small- or medium-scale group of

individuals. As discussed in Text S4, genuine selective pressures

could be blurred by many factors, such as sampling bias or

historical reasons. Therefore, in order to accurately identify

selective pressures, we need large-scale sampling, systematical

comparison of the available diffusion cases, as well as large-scale,

repetitive simulations and statistical analysis as in this study.

Apart from these findings and insights, this paper also

exemplifies how computer simulation and mathematical analysis

assist each other. The Price equation can quantitatively clarify

selective and non-selective factors, but purely from mathematics, it

is difficult to evaluate how these factors affect each other during

diffusion. Such question can be nicely assessed by simulations

under particular settings. Such a combined approach is also

instructive to study other language evolution phenomena.

Finally, we can envisage some promising future work from the

current study. For instance, heterogeneity (e.g., different

individuals have different prestige values on the same type of

variants) may cause linguistic diversity or coexistence of multiple

types of variants. Simulating contradictory speaker’s and hearer’s

preferences for variants may further reveal the diffusion effi-

ciency of these ways of introducing variants, especially in one-

speaker-multiple-hearer interactions. And various forms of cul-

tural transmission among individuals of the same or different

generations may also modulate the degree of diffusion. All

these can help better elucidate particular diffusion cases in real

languages.
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Figure S1 (a) Variant type distribution in each of 100 agents

after 2000 interactions in a simulation without variant prestige. (b)

Variant type distribution in each of 100 agents after 2000

interactions in a simulation with variant prestige. X axis is agent

index, and Y axis is distribution of v1 and v2. Each bar is divided

into two parts: grey part denotes the proportion of v1, and white

part the proportion of v2. Solid lines mark mean Prop. ‘‘Above’’

and ‘‘Below’’ count the number of agents whose Prop values are

above or below the mean value. (c) Comparison of Prop values in

simulations with (right column) and without (left column) variant

prestige. (d) Mean proportion of v2 across all agents in a particular

run without variant prestige (the number of agents is 100). (e)

Distribution of proportions of v2 in all 100 agents of the same run.

(f) Correlation between the sample standard deviation of

proportion of v2 after 50000 interactions and the population size

(100 runs under each population size).

(TIF)

Figure S2 Results of one-speaker-multiple-hearers in-
teractions and hearer’s preference: covariance without
(a) and with (b) variant prestige, Prop with variant
prestige (c), and MaxRange with variant prestige (d).
Each line in (a–c) is averaged over 100 simulations. Bars in (d)

denote standard errors.

(TIF)

Figure S3 (a) Prop in lattices with different AD. (b) Mean Prop in

lattices with different AD. Each line in (a) is averaged over 100

simulations. Bars in (b) denote standard errors.

(TIF)

Table S1 Post-hoc T-test results on the mean Prop of
100 simulations with one-speaker-multiple-hearers in-
teractions. ‘‘*’’ marks significant difference.

(DOC)
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