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Abstract

Regulation of gene expression levels is essential for all living systems and transcription fac-

tors (TFs) are the main regulators of gene expression through their ability to repress or

induce transcription. A balance between synthesis and degradation rates controls gene

expression levels. To determine which rate is dominant, we analyzed the correlation

between expression levels of a TF and its regulated gene based on a mathematical model.

We selected about 280,000 expression patterns of 355 TFs and 647 regulated genes using

DNA microarray data from the Gene Expression Omnibus (GEO) data repository. Based on

our model, correlation between the expressions of TF–regulated gene pairs corresponds to

tuning of the synthesis rate, whereas no correlation indicates excessive synthesis and

requires tuning of the degradation rate. The gene expression relationships between TF–

regulated gene pairs were classified into four types that correspond to different gene regula-

tory mechanisms. It was surprising that fewer than 20% of these genes were governed by

the familiar regulatory mechanism, i.e., through the synthesis rate. Moreover, we performed

pathway analysis and found that each classification type corresponded to distinct gene func-

tions: cellular regulation pathways were dominant in the type with synthesis rate regulation

and terms associated with diseases such as cancer, Parkinson’s disease, and Alzheimer’s

disease were dominant in the type with degradation rate regulation. Interestingly, these dis-

eases are caused by the accumulation of proteins. These results indicated that gene

expression is regulated structurally, not arbitrarily, according to the gene function. This fund-

ing is indicative of a systematic control of transcription processes at the whole-cell level.

Introduction

Gene expression is an essential process for all living systems [1, 2]. In general, expression levels

are controlled via the balance between the synthesis rate and the degradation rate. When the

synthesis rate is dominant, the expression level of a regulated gene is controlled by the expres-

sion level of a transcription factor (TF). In each transcription process, a TF induces or

represses the expression of the gene alone or with the help of other proteins constituting a

complex [3–5]. More than 2,000 TFs are thought to be encoded in the human genome [6, 7]

and the expression levels of many genes are actually controlled through the synthesis rate. In
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contrast, some genes are not regulated by the synthesis rate, but by TFs that simply set the on/

off state of the synthesis process and are not responsible for the synthesis rate [8, 9]. In such

cases, the expression level is regulated via the degradation process; i.e. the degradation rate is

dominant for the control of the expression level. Thus, the transcription of some genes is regu-

lated by the synthesis rate, and the transcription of other genes is based on on/off regulation.

However, which rate is dominant for each gene is still unclear.

The regulatory mechanisms of some genes have been studied intensively, but a comprehen-

sive study is still difficult from a technological standpoint. Recent advances in protein quantifi-

cation technologies have enabled draft maps of the human proteome to be analyzed [10, 11];

however, no high-throughput technology is currently available for analyzing the abundance of

proteins at the whole-cell level. It has been widely reported that alterations in protein abun-

dance are strongly associated with changes in mRNA expression levels [10, 12–14]. Based on

this reported relationship, we used available mRNA data [15–18] to obtain a perspective view

for the regulatory mechanisms of each gene at the whole-cell level.

Here, our objective is to determine which rate is dominant, the synthesis rate or the degra-

dation rate, in the control of each gene expression level. Based on a simple mathematical

model, the expression levels of a TF and the regulated gene show a correlation when the syn-

thesis rate is dominant, but no such correlation is shown when the degradation rate is domi-

nant. We studied this correlation by constructing approximately 280,000 scatter diagrams of

“TF–regulated gene” pairs. All the scatter diagrams were classified into four types depending

on the regulatory mechanisms. We also characterized each type in terms of gene function and

found that the regulatory mechanisms were assigned systematically (not arbitrarily), according

to the gene functions. This result illustrates that the regulatory mechanisms of gene expression

levels correspond to gene function at the whole-cell level.

Results

Four types in scatter diagrams of TFs and regulated genes

We constructed about 280,000 scatter diagrams of expression levels of TFs and their regulated

genes using DNA microarray data from the Gene Expression Omnibus (GEO; http://www.

ncbi.nlm.nih.gov/geo/) at the NCBI [19]. We selected 135 series of GEO DataSets (GDS) for

Homo sapiens that were composed of more than 50 GEO samples. The list of the selected GDS

records is in S1 Table. For details of the data preparation, see Methods. To match TFs to regu-

lated genes, we used the TRANSFAC database provided by BioBase and selected 2,073 TF–

regulated gene pairs from among 355 TFs and 647 regulated genes. Note that we analyzed TF–

regulated gene pairs only with regulations are already confirmed.

We identified four typical types of scatter diagrams depending on the regulatory mecha-

nisms between the TF–regulated gene pairs (Fig 1): constant expression levels for both a TF

and the regulated gene, albeit with small fluctuations (no-change type); correlation between

expression levels of a TF and the regulated gene (correlation type); no correlation between

expression levels of a TF and the regulated gene because the gene has a constant expression

level (horizontal-distribution type); and no correlation between expression levels of a TF and

the regulated gene because the TF has a constant expression level (vertical-distribution type).

We analyzed 2,073 (pairs) ×135 (GDS) to give approximately 280,000 scatter diagrams, and all

the diagrams could be classified into these four types.

Classification of TF–regulated gene relationship in four correlation types

We studied how the four classification types are implemented. We also characterized each

scatter diagram with six indicators to define the classification criteria. Four of them are
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standard variables: absolute value of slope (|s|) and coefficient of determination (R2) from a

least squares approximation, and variance in TF distribution (VTF) or regulated gene distribu-

tion (VRG). The other two parameters, the uniformity count for a TF (UTF) or its regulated

gene (URG), were introduced to distinguish a uniform distribution from the no-change type

with a few outliers. The uniformity count is defined as the number of filled units when the area

between a maximum and a minimum value is divided into 10 units. These indicators are

shown schematically in Fig 2.

The no-change type. The no-change type (Fig 1a) is trivial and is the type that occurs

most frequently because this relationship exists when there is no need to change the expression

Fig 1. The four typical types of the scatter diagrams for TF–regulated gene pairs. The expression level of a transcription factor (TF;

X-axis) and the regulated gene (Y-axis) are plotted. Data from GDS1962 were used. One point represents one sample in the GDS,

namely, 180 points are shown in each diagram. (a) The no-change type; both a TF (RELA) and the regulated gene (IKBKE) are expressed

at constant levels with small fluctuations. (b) The correlation type: a strong correlation between a TF (STAT1) and its regulated gene

(PSMB9). (c) The horizontal-distribution type: a regulated gene (CTNNB1) shows a constant expression level regardless of changes in the

TF (NKX2-5) expression level. (d) The vertical-distribution type: a regulated gene (CCK) undergoes changes in the expression level even

at a constant expression level of the TF (CREB1).

https://doi.org/10.1371/journal.pone.0177430.g001

Fig 2. The six classification indicators used to classify the scatter diagrams. (a) An absolute value of slope

(|s|) and a coefficient of determination (R2) defined from a least squares approximation, and variance in TF

distribution (VTF) or regulated gene distribution (VRG) representing characteristic ranges for data distributions. (b)

The uniformity count for a TF (UTF) or its regulated gene (URG) defined as the number of filled units among 10

units dividing the area between a maximum and a minimum value, respectively. A unit is filled if there is at least

one data point in it and it is unfilled if there are no data points.

https://doi.org/10.1371/journal.pone.0177430.g002
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levels of both a TF and the regulated gene under the experimental conditions. Environmental

changes are known to change the expression levels of some relevant genes, while the expres-

sion levels of many other genes are unchanged (thereby contributing to homeostasis, an essen-

tial attribute for all living organisms). In addition, the experimental conditions for each GDS

differed and only some specific genes were affected. Thus, the observation that many genes

have constant expression levels is only natural.

The correlation and horizontal-distribution types. The mechanisms of the correlation

type (Fig 1b) and the horizontal-distribution type (Fig 1c) can be described by a simple mathe-

matical model for a transcription process (see Methods for details). Suppose a TF molecule sto-

chastically binds to or dissociates from a promoter sequence, and the regulated gene is

transcribed only when the TF binds to the sequence. Assuming an equilibrium state, the

mRNA level of the regulated gene in a steady state ([RG]�) can be written as a function of the

expression level of the TF in the steady state ([TF]�) as,

RG½ �
�
¼

1

g

TF½ ��=K
1þ TF½ ��=K

: ð1Þ

Here, K is the dissociation constant for the TF and the promoter sequence, and γ is the ratio

of the degradation rate to synthesis rate for the regulated gene. Eq (1) describes two character-

istic relations between [TF]� and [RG]� depending on the K value (Fig 3). [RG]� shows a strong

correlation with [TF]� when K� 1, corresponding to the correlation type (Fig 1b). The

expression level of the regulated gene changes depending on the TF expression level; in other

words, the expression level of the regulated gene is finely regulated by the TF. Conversely,

when K� 1, [RG]� remains at a constant level regardless of [TF]�, corresponding to the hori-

zontal-distribution type (Fig 1[c]). The regulated gene is always synthesized in large excess

because the binding–dissociation equilibrium is strongly shifted toward the binding state, i.e.,

synthesis. Therefore, fine regulation of the gene expression level is impossible, and the on/off

state of the process can only be regulated when K� 1.

In Eq (1), [TF]� represents the protein concentration of a TF, but in our study we have used

mRNA expression data. Although protein concentration and mRNA expression data represent

different biological processes, studies have shown that there is a tolerably good correlation

between the two [10, 12–14]. By assuming this correlation, we can conclude that the correla-

tion and horizontal-distribution type relations result from differences in the transcriptional

Fig 3. The correlation and horizontal-distribution relationships between TF–regulated gene pairs.

Typical examples of the relation between a transcription factor ([TF]*: the X-axis) and the regulated gene

([RG]*: the Y-axis) according to Eq (1). Both axes have a logarithmic scale. [RG]* changes as a function of

[TF]* when K� 1 (left). [RG]* maintains a constant expression level when K� 1 (right).

https://doi.org/10.1371/journal.pone.0177430.g003

Regulatory pattern of gene expression level and gene function

PLOS ONE | https://doi.org/10.1371/journal.pone.0177430 May 11, 2017 4 / 14

https://doi.org/10.1371/journal.pone.0177430.g003
https://doi.org/10.1371/journal.pone.0177430


regulation mechanisms. Even without this assumption, we can say that the correlation between

a TF and its regulated gene indicates fine regulation, whereas the horizontal distribution indi-

cates the absence of regulation by the TF.

Now, we define the classification criteria of the two types as follows. The scatter diagram of

the correlation type is approximated by a straight line with a finite slope (0.1< |s|<10) with a

certain level of accuracy (R2 > 0.3). The expression levels of both a TF and its regulated gene

need to change significantly (VTF> 0.25 and VRG> 0.25) to show such a linear correlation.

On the other hand, the diagram of the horizontal-distribution type is approximated by a hori-

zontal line (|s|<0.1). The TF expression level needs to change significantly compared with the

expression level of its regulated gene (VTF> 0.25 and VTF/VRG> 3) and also show uniform

distribution (UTF ⩾ 7).

The vertical-distribution type. We have not elucidated the mechanism behind the verti-

cal-distribution type (Fig 1d). It is conceivable that genes in this type are regulated not only by

TFs, but also by other factors, such as translational mechanisms.

The diagram of this type is characterized by a vertical line (|s|>10). In contrast to the hori-

zontal-distribution type, the expression level of the regulated gene changes significantly com-

pared with the TF (VRG> 0.25 and VTF/VRG< 1/3) and is distributed uniformly (URG ⩾ 7).

The numerical classification criteria are summarized in Table 1 (see Methods for details).

Assignment of the regulated genes to the four types using the

classification criteria

After classifying the nearly 280,000 diagrams into the four types (Fig 1), we assigned one corre-

lation type to each regulated gene. It should be noted that one TF can regulate multiple genes

and one gene can be regulated by multiple TFs. In addition, one regulated gene can be classi-

fied into different types depending on the experimental conditions or cellular states. To avoid

ambiguous classifications, we defined a logical rule (see Methods) and assigned one type for

each regulated gene depending on the GDS.

Each regulated gene was classified into different relation types depending on the GDS, as

shown in Fig 4. However, some genes were classified into one definite type in most GDS. To

fix the type for each gene, we integrated the results from the 135 GDS by selecting a majority

type from among the correlation, horizontal-distribution, and vertical-distribution types. We

ignored the no-change type because our aim was to study how gene expression levels are con-

trolled through the TF–regulated gene correlation. The no-change type occurs when there is

no need to change expression levels under the experimental condition of a GDS. For example,

PSMB9 was assigned into the correlation type as 53 GDS showed the correlation and only 3

GDS showed the vertical-distribution type (Table 2). In a similar way, CTNNB1was assigned

into the horizontal-distribution type and CCK was assigned into the vertical-distribution type

Table 1. Classification criteria used to classify the scatter diagrams into the four types.

Correlation type Horizontal-distribution type Vertical-distribution type

Absolute value of slope (|s|) 0.1–10 < 0.1 > 10

Coefficient of determination (R2) > 0.3 - -

Variance for TF (VTF) > 0.25 > 0.25 > 0

Variance for regulated gene (VRG) > 0.25 > 0 > 0.25

VTF /VRG - > 3 < 1/3

Uniformity count for TF (UTF) - ⩾ 7 -

Uniformity count for regulated gene (URG) - - ⩾ 7

https://doi.org/10.1371/journal.pone.0177430.t001
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according to the selecting a majority type rule (Table 2). Using the classification criteria, we

successfully classified most of the 647 regulated genes: 111 into the correlation type, 178 into

the horizontal-distribution type, and 318 into the vertical-distribution type; 40 genes could not

be classified because they fell into two majority types (S2 Table).

Gene functions of the regulated genes in three types of scatter diagrams

We performed pathway analysis of the gene functions in the correlation, horizontal-distribu-

tion and vertical-distribution types using the curated gene sets in the Canonical pathways (C2:

CP) from the Molecular Signatures Database (MSigDB; http://www.broadinstitute.org/gsea/

msigdb) [20] with the hypergeometric test at the 1% level of significance (see Methods). We

obtained 25 significant pathways for the correlation type, 19 significant pathways for the hori-

zontal-distribution type, and 14 significant pathways for the vertical-distribution type (S3

Table). To compare the different relation types, we categorized the pathways according to the

hierarchical framework by denoting a pathway by the top-class entity of its hierarchical frame-

work (Fig 5).

To our surprise, we found that some of the genes in each relation type were associated with

type-specific functions: cellular regulation (e.g., Cell Cycle and DNA Replication) for the corre-

lation type, Human Diseases for the horizontal-distribution type, and Metabolism or Signal
Transduction for the vertical-distribution type. It is interesting that serious diseases, such as

cancers, Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease, were observed in

the horizontal-distribution type, i.e., the degradation dominant type. The implications of this

observation are considered in the Discussion. To summarize, the scatter diagrams for the TF–

regulated gene pairs were characterized systematically according to the functions of the

Fig 4. The classification results for all 647 regulated genes and for all 135 GEO DataSets. Blue

represents the correlation type, magenta represents the horizontal-distribution type, green represents the

vertical-distribution type, and the white areas with no points represent the no-change type or unclassified.

Elements on both axes were arranged in the order of the descending proportion of the horizontal-distribution

type.

https://doi.org/10.1371/journal.pone.0177430.g004

Table 2. The assigned type and the numbers of GDS classified into each type are shown for regulated genes used in Fig 1.

number of GDS showed gene

gene assigned type no-change type correlation type horizontal-distribution type vertical-distribution type

PSMB9 Correlation 79 53 0 3

CTNNB1 Horizontal-distribution 117 4 13 1

CCK Vertical-distribution 90 3 6 36

https://doi.org/10.1371/journal.pone.0177430.t002
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regulated genes. The results indicate that the mechanisms that regulate gene expression levels

correspond to gene functions at the whole-cell level.

Discussion

In this work, we studied regulatory patterns of gene expression where TFs regulate the tran-

scription process in a fine or on/off manner. We drew scatter diagrams for TF–regulated gene

pairs using publicly available DNA microarray data and classified the diagrams into four types

based on our simple mathematical model of a transcription process. We also performed path-

way analysis and found that the relation types could be linked to the gene functions. Genes

related to cellular regulation processes belonged to the correlation type, which indicates fine

regulation of the transcription rate. Genes related to diseases belonged to the horizontal-

distribution type, which indicates on/off regulation of the transcription process. Genes related

to metabolism or signal transduction belonged to the vertical-distribution type, where the reg-

ulatory mechanism is unclear. These findings imply that the regulatory mechanisms for

Fig 5. Analysis of pathways of gene functions in three types of scatter diagrams at the 1% level of

significance. The number of appearances (X-axis) is shown for each hierarchical framework denoted by the

top-class entity (Y-axis). Only the hierarchical frameworks that contain at least one significant pathway are

shown from four pathway databases: REACTOME (from Cell Cycle to Signal Transduction), KEGG (from

Metabolism(K) to Human Diseases), the Pathway Interaction Database (from Pathways of replication, repair,

gene expression, and protein biosynthesis to Transcription factor-mediated signaling pathways), and the

BioCarta (from Adhesion to Neuroscience). If a pathway belonged to more than one (np) hierarchical

framework, we counted 1/np for each.

https://doi.org/10.1371/journal.pone.0177430.g005
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transcription processes are determined not arbitrarily but systematically depending on gene

function, and pointing to the presence of a whole-cell regulatory mechanism.

Here, we classified 647 regulated genes into four classification types. To our surprise, the

correlation type (fine regulation of a transcription process) was observed less frequently than

we expected (less than 20% of the genes), although such fine regulation has often been

assumed. The regulatory mechanism of the correlation type requires the expression levels of

both the TF and the regulated gene to be fine-tuned to specific values depending on cellular

states. Such fine-tuning would be a challenging task for many genes and would be impossible

on a whole-cell level. This might explain why the correlation type was rarer than expected.

We used mRNA expression data in this study because of technical limitations. The final

product of gene expression processes is usually a protein, and we plan to study protein data in

the near future. Studies on the human proteome are still a developing field [11, 21, 22], and

there are several challenges for protein quantification and for the organization of such

data into databases [10, 12]. The mechanisms regulating protein abundance are more compli-

cated than for mRNA, but in the simplest terms, protein abundance can be regulated via the

balance between synthesis rates and degradation rates. The analytical method that we devel-

oped here could also be applied to protein data. Analyses of protein data will shed more

light on the mechanisms that govern the transfer of the quantitative property of genomic

information.

Finally, it is worth discussing genes classified in the horizontal-distribution type (on/off reg-

ulation of a transcription process). They are often over-expressed; therefore, it can be hypothe-

sized that the abundance of the encoded protein needs to be controlled by degradation to the

appropriate levels after excessive synthesis. Regulation through degradation is not as common

as the regulation via synthesis [23, 24]. Examples of regulation through degradation include

the well-studied proteins p53, which is a tumor suppressor that also regulated the cell cycle

[25–27], and β-catenin, which is a signal transducer in the Wnt signaling pathway that also

regulates cell-cell adhesion [28]. In addition, some reports have indicated that HIF-1α, a TF

that responds to a shortage of oxygen [29], may be regulated through degradation. In the pres-

ent study, p53 and β-catenin were classified into the horizontal-distribution type during our

analysis, but we did not have sufficient data to classify HIF-1α.

It should also be noted, that the pathway analysis showed that genes in the horizontal-distri-

bution type were associated with diseases, especially serious diseases such as cancer, Parkin-

son’s disease, and Alzheimer’s disease, and both p53 and β-catenin have been strongly

implicated in cancer [30]. These diseases are caused by the abnormal accumulation of some

proteins [31], and for good health, their abundance needs to be kept at low levels. Interestingly,

we found that their abundance was regulated not through synthesis but through degradation

after over-expression, although such regulation seems irrational and risky in cases when pro-

tein accumulation causes diseases. We expect that our future theoretical research will give

some clues to such inconsistencies.

Methods

Preparation of DNA microarray data sets

We used the DNA microarray data from GDS as the expression data in this study. First, we

normalized the expression data and removed measurement specificity, generally involving dif-

ferent DNA microarray instruments, to compare the different GDS. Several normalization

procedures are available and each has its own advantages [32–37]. In this study, we needed a

general-purpose method applicable to various measurement platforms and used a popular

method, Z scores [33, 37, 38], as follows.

Regulatory pattern of gene expression level and gene function
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For each sample in a GDS, we first transformed the original expression data given as

{x1,x2,. . .,xs} to the log-scale,

flnðx1Þ; lnðx2Þ; � � � ; lnðxsÞg: ð2Þ

Then, we normalized the values using the Z-score method by defining

E ¼
1

s

Xs

i¼1

ln ðxiÞ;V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
s � 1

1

s

Xs

i¼1

ðlnðxiÞÞ
2
� E2

( )v
u
u
t : ð3Þ

The normalized value is given as

lnðxiÞ � E
V

ð4Þ

for every xi.

TF-regulated gene scatter diagrams

We constructed scatter diagrams for expression levels of each TF (TFi) and its regulated

gene (RGi) from a GDS. Suppose a GDS contains Ni(⩾50) samples, then the diagram has Ni

points as explained below. When a sample had only one data point for TFi (RGi), we used this

value for plotting, and when a sample contained more than one data point for TFi (RGi), we

used the average value. Thus, one sample yielded one point, and the diagram had Ni points in

total.

One GDS normally contains subclasses such as an experimental group and a control group.

It could be that each subclass produces a different domain structure in the diagram and falsely

represents an imaginary correlation. Namely, if the samples in one subclass show smaller TFi
and RGi and the samples in another subclass show higher TFi and RGi because of the experi-

mental conditions, a correlation may be observed between TFi and RGi even if there is no real

correlation. We confirmed that such imaginary correlations appeared rarely and did not influ-

ence the results.

TF-regulated gene binding transcription model

We considered a general and simple mathematical model of a transcription process. We ana-

lyzed two situations: TF promoting gene expression (up-regulation), and TF suppressing gene

expression (down-regulation). First, we explain the up-regulation case in detail and next the

down-regulation case in brief.

For the up-regulation case, suppose a TF molecule stochastically binds to or dissociates

from a promoter sequence, and transcription takes place only when the TF binds to the

sequence. Then, Pb is the probability of the TF’s binding to the promoter sequence, and is

defined as a fraction of bound TF molecules among all TF molecules. By assuming that the

binding process and dissociation process are in equilibrium, we get the following equation:

kb TF½ �ð1 � PbÞ ¼ kuPb: ð5Þ

Here, [TF] represents the TF concentration, and kb and ku are the reaction coefficients for

the binding and dissociation processes, respectively. The left side of Eq (5) represents the reac-

tion rate of the TF binding process proportional to the product of the TF concentration ([TF])

and the unbound promoter sequence (1−Pb). On the other hand, the right side represents the

TF dissociation reaction rate regulated by the bound promoter sequence(Pb). From Eq (5), we

Regulatory pattern of gene expression level and gene function
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obtain

Pb ¼
TF½ �=K

1þ TF½ �=K
ð6Þ

where the dissociation constant K = ku/kb. Because transcription occurs only when the TF

binds to the promoter region, the mRNA synthesis rate of the regulated gene should be pro-

portional to Pb. Therefore, we can write the time dependence of the expression of the regulated

gene mRNA ([RG]) as

d RG½ �

dt
¼ a

TF½ �=K
1þ TF½ �=K

� b RG½ �: ð7Þ

Here, a and b are reaction coefficients for the synthesis and degradation. By considering

a steady state of Eq (7),
d½RG��

dt ¼ 0, we finally obtain the steady-state mRNA level of the

regulated gene ([RG]�) as a function of the steady-state TF concentration ([TF]�) as shown in

Eq (1),

RG½ �
�
¼

1

g

TF½ ��=K
1þ TF½ ��=K

: ð1Þ

For the down-regulation case, we obtain the following equation from a similar analysis

except that the production rate is proportional to the dissociation probability (1−Pb):

d RG½ �

dt
¼ a0 1 �

TF½ �=K 0

1þ TF½ �=K 0

� �

� b0 RG½ � ð8Þ

and therefore

RG½ �
�
¼

a0

b0
1

1þ TF½ ��=K 0
: ð9Þ

Eq (9) describes the same two types of characteristic behaviors as Eq (1) depending on the

dissociation constant K0, although [RG]� shows a strong negative correlation with [TF]� when

K0 � 1 and [RG]� remains at a constant level regardless of [TF]� when K0 � 1. In the up-

regulation or down-regulation cases, the correlation between a TF and the regulated gene indi-

cates fine-tuned rate regulation, whereas the horizontal distribution indicates the absence of

regulation.

Classification criteria

We defined the criteria for classifying the scatter diagrams into the four types as follows. First,

we excluded the data with VTF = 0 or VRG = 0 because they probably originate from a measure-

ment flaw. It is virtually impossible for all the samples in a GDS to show exactly the same

expression level of a gene. We also assumed that the expression level of a TF (or a regulated

gene) changed significantly when VTF> 0.25 (VRG> 0.25), whereas it is constant, albeit

with small fluctuations, when VTF ⩽ 0.25 (VRG ⩽ 0.25). After that, we classified those with

0.1< |s|<10 and R2 > 0.3 into the correlation type when VTF> 0.25 and VRG> 0.25. We then

classified diagrams with |s|<0.1, VTF> 0.25 (VRG> 0), VTF/VRG> 3, and UTF ⩾ 7 into the hor-

izontal-distribution type, and diagrams with |s|>10, VRG> 0.25 (VTF> 0), VTF/VRG< 1/3,

and URG ⩾ 7 into the vertical-distribution type. The remaining diagrams were assigned to the

no-change type. The baseline values used here were set arbitrarily, but the discussion will not

change if the values are changed to some extent.
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Logical rule for combining multiple TFs

In many cases, TFs and regulated genes do not have a one-to-one correspondence. When a

regulated gene has several TFs, some of the TFs finely regulate the transcription process

whereas others simply switch the process on or off. The former TF–regulated gene pairs may

match the correlation type, whereas the latter often correspond to the vertical-distribution

type. In such a mixed case, the regulated gene should be classified into the correlation type not

into the vertical-distribution type. Similarly, when TF–regulated gene pairs match the horizon-

tal-distribution type and others correspond to the no-change type, the regulated gene should

be classified into the horizontal-distribution type. Using these rules, we classified every regu-

lated gene as follows.

Suppose a gene has M TFs (M ⩾ 1) and among them, Mn TFs are of the no-change type, Mc

of the correlation type, Mh of the horizontal-distribution type, and Mv TFs are of the vertical-

distribution type. When Mh>Mc and Mv, the regulated gene is classified into the horizontal-

distribution type; when Mv ⩾Mh ⩾Mc = 0, the regulated gene is classified into the vertical-

distribution type; and when Mc>Mh ⩾ 0, the regulated gene is classified into the correlation

type, regardless of Mv. This is because a TF, even if it serves as a single TF, can determine the

correlation type as explained above. We classified a regulated gene into the no-change type

only when Mn = M. For the remaining cases, we aborted the classification because there was

not sufficient evidence. We thus assigned one classification type to each regulated gene

depending on the GDS.

The hypergeometric test

We determined whether a list of genes (genes of each relation type) over-represents a biologi-

cal process (gene sets for a pathway from MsigDB) using the hypergeometric test. Suppose we

listed n genes from a total of N genes; i.e., we selected n genes without replacement from the N
genes. M genes among the total of N genes are involved in the biological process, and m genes

among the listed n genes are involved in the same process. Then, the probability distribution

of m (p(m)) is described by the hypergeometric distribution as

pðmÞ ¼

M
m

� �
N � M
n � m

� �

N
n

� � : ð10Þ

Our goal is to determine whether the case of m genes being involved in the biological pro-

cess (out of the n listed genes) is statistically significant or happened by chance. Because we are

testing whether our gene set corresponds to over-representation, the hypergeometric p value

(p) is calculated as the probability of random involvement of m or more genes in the biological

process (out of n genes) and is expressed as

p ¼
Xn

x¼m

pðxÞ ¼
Xn

x¼m

M
x

� �
N � M
n � x

� �

N
n

� � : ð11Þ

When the p value is less than the value we set as the level of significance (1%), we conclude

that our set of genes is over-represented, i.e., the m genes occurred non-randomly. However,

when the p value is greater than the threshold value, we conclude that the m genes are selected

by chance.
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