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Fully automated preoperative 
segmentation of temporal bone 
structures from clinical CT scans
C. A. Neves1*, E. D. Tran2, I. M. Kessler1 & N. H. Blevins2

Middle- and inner-ear surgery is a vital treatment option in hearing loss, infections, and tumors of the 
lateral skull base. Segmentation of otologic structures from computed tomography (CT) has many 
potential applications for improving surgical planning but can be an arduous and time-consuming 
task. We propose an end-to-end solution for the automated segmentation of temporal bone CT using 
convolutional neural networks (CNN). Using 150 manually segmented CT scans, a comparison of 3 
CNN models (AH-Net, U-Net, ResNet) was conducted to compare Dice coefficient, Hausdorff distance, 
and speed of segmentation of the inner ear, ossicles, facial nerve and sigmoid sinus. Using AH-Net, 
the Dice coefficient was 0.91 for the inner ear; 0.85 for the ossicles; 0.75 for the facial nerve; and 0.86 
for the sigmoid sinus. The average Hausdorff distance was 0.25, 0.21, 0.24 and 0.45 mm, respectively. 
Blinded experts assessed the accuracy of both techniques, and there was no statistical difference 
between the ratings for the two methods (p = 0.93). Objective and subjective assessment confirm 
good correlation between automated segmentation of otologic structures and manual segmentation 
performed by a specialist. This end-to-end automated segmentation pipeline can help to advance the 
systematic application of augmented reality, simulation, and automation in otologic procedures.

Safe and effective middle- and inner-ear surgery requires extensive training and knowledge of radiological and 
surgical anatomy. Procedures such as cochlear implantation, tympanomastoidectomy, and superior semicircular 
canal dehiscence repair depend on the pre- and intra-operative identification of critical structures and an appre-
ciation of their complex interrelationships1. Individualized preoperative planning and the implementation of 
augmented reality systems may assist in such surgery given the intricacy and variability of anatomy involved. Such 
efforts require specialized anatomical and radiological knowledge of the key structures, which takes considerable 
time and effort to acquire. A method for the rapid and accurate generation of patient-specific, high-fidelity 3D 
models for preoperative planning2 and intraoperative navigation3,4 would offer a variety of potential benefits to 
both patient and surgeon.

Computed tomography (CT) imaging of the temporal bone is critical to provide otologists insights into a 
patient’s unique anatomy for pre-operative planning. However, identifying structures of interest and subtle devel-
opmental or pathologic variations may be challenging for both surgeons and radiologists due to the structures’ 
small size and inherent complexity. However, understanding their orientation and geometry is essential for suc-
cessful otologic procedures such as cochlear implantation or tumor removal5. In addition, although CT datasets 
are inherently volumetric, surgeons routinely review them as multiplanar two dimensional (2D) representations. 
This necessitates a mental translation of the data back into the three-dimensional (3D) relationships expected 
at the time of surgery. Efforts to enhance preoperative planning using innovative tools such as 3D simulations 
and augmented reality offer promise for improving operative safety and efficiency. However, these efforts are 
limited by the labor intensive step of manual segmentation of imaging data6,7 by highly trained specialists (Fig. 1). 
An automated pipeline of medical image segmentation for temporal bone CT (TBCT) scans might expand the 
application of simulation, planning, and procedural automation.

Cochlear implantation is an example of an otologic procedure that is both commonly performed and highly 
influenced by anatomic variability. As such, it has motivated a number of studies to integrate computer-assisted 
segmentation to increase safety and efficacy. Early works include computer-aided analysis of human temporal 
bone histopathology specimens by Nakashima et al.8. Noble et al.9–11 published a series of papers using atlas-
based approaches and other customized solutions for automated identification of the facial nerve, ossicles and 
intracochlear anatomy. Recently, Powell et al.12 and Gare5 also showed strong correlation of atlas-based auto-
segmentation of the temporal bone with ground truth. Hudson et al. used atlas-based models registered to 
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micro-CT scans and manually placed fiducials to identify facial nerves in cadavers13. However, these methods 
require significant manual input, and therefore may be limited in their scalability and subject to user-dependent 
variability.

Deep learning (DL) techniques have been successfully implemented in a number of methods for automated 
identification of structures and lesions on CT or magnetic resonance (MR) images14. Fauser et al.15 described an 
automated mixed 2-dimensional deep learning with shape regularization approach to predict successful trajec-
tories to the round window and to the internal auditory canal as a validation method. Algorithms based on con-
volutional neural networks have continually been improved for better prediction and faster implementation16–18. 
Efforts to connect the medical research community to the state-of-the-art machine learning tools such as NVIDIA 
Clara SDK19 and Slicer Artificial Intelligence Assisted Annotation (AIAA) Extension20 should leverage the devel-
opment of new diagnostic and treatment techniques.

We describe a completely automated pipeline of computer-generated segmentation of key structures of the 
temporal bone derived from CT datasets. This uses a DL model trained on a dataset manually segmented by an 
expert. This approach offers potential benefits to enhanced radiological diagnosis and preoperative planning for 
a wide variety of otologic procedures.

Results
The inner ear, facial nerve, ossicles, and sigmoid sinus were segmented manually by an expert in 150 de-identified 
TBCT (Fig. 1). The clinical evaluation of the dataset showed normal scans in 74%, post-operative changes in 
9.3%, inflammatory or dysventilation related findings in 11.3%, and superior semicircular canal dehiscence in 
2.7% (Table 1).

The reference TBCT volumes linked to the respective manually derived ground truth labels of each structure 
were successfully used to train the DL algorithm (Fig. 2) using AH-Net as well as 3D U-Net21 and 3D ResNet 
architectures22. At the completion of training, the with-in model prediction accuracy, measured by the Dice simi-
larity coefficient (DSC) over the training dataset was 0.86 ± 0.08 (DSC ± standard deviation, SD) for the inner ear 
(Fig. 3); 0.77 ± 0.11 for the facial nerve; 0.84 ± 0.07 for the ossicles; and 0.86 ± 0.09 for the sigmoid sinus (Table 2).

Figure 1.   Manual segmentation of temporal bone structures as seen in 3D Slicer: inner ear (red), ossicles 
(ivory); facial nerve (yellow), sigmoid sinus (blue). Crosshair is centered over the round window niche.
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To validate the models developed from the training data, we performed automated segmentation over the 
testing set (n = 25) using the NVIDIA Clara extension, which has been integrated with 3D Slicer. Using the auto-
mated prediction pipeline on this dataset produced a DSC of 0.91 ± 0.03 (DSC ± standard deviation, SD) for the 
inner ear; 0.75 ± 0.06 for the facial nerve; 0.85 ± 0.12 for the ossicles; and 0.86 ± 0.05 for the sigmoid sinus. The 
average Hausdorff distance (AHD) was 0.25, 0.21, 0.24 and 0.45 mm respectively, and the volumetric comparison 
had an average of 101% ± 23%. The results are displayed in Table 3.

The time required for expert segmentation of the relevant anatomical structures by a trained otologist, experi-
enced in the segmentation task was on average 211.1 s (Table 3). With the automated method, the key structures 
were segmented at an average of 2.7 s per structure. The automated otic capsule segmentation took an average 
of 2.2 s of processing.

Table 1.   Radiological findings from 150 temporal bone computed tomography scans (*Indicates overlapping 
of different procedures as well as inflammatory or dysventilation related changes in some sets). PORP Partial 
ossicular reconstruction prosthesis, TORP Total ossicular reconstruction prosthesis, SSC Superior semicircular 
canal.

Absolute Relative (%)

Normal 111 74.0

Stapedotomy 4 2.7

Ossiculoplasty 2 1.3

Middle ear prosthesis (PORP/TORP) 2 1.3

Mastoidectomy 5 4.0

Cochlear implant 1 0.7

Total post-operative 14* 9.3

Opacification of middle ear 9 6.0

Opacification of mastoid cells 5 3.3

Sclerotic mastoid 7 4.7

Total inflammatory or dysventilation findings 17* 11.3

SSC dehiscence 4 2.7

Others 4 2.0

• Resize and resample to 
256x256x240, 1mm

• Rescale intensity 
(Normaliza�on)

• Data augmenta�on
• Intensity oscilla�on
• Volume x-axis flip

Pr
ed

ic
�o

n 
pi

pe
lin

e

3D
 S

lic
er

 A
IA

A
Predic�on

Segmenta�on refinement

Resample to 0.25 mmCl
ar

a 
SD

K

Unseen data

Automated segmenta�on

Legend

Model

Figure 2.   Auto-segmentation pipeline. Manual segmentation of temporal bone structures from computed 
tomography were used to train a deep learning model using a 3D convolutional neural network. Automated 
segmentation of the structures was then performed on a testing set in the 3D Slicer platform.



4

Vol:.(1234567890)

Scientific Reports |          (2021) 11:116  | https://doi.org/10.1038/s41598-020-80619-0

www.nature.com/scientificreports/

An otologic surgeon reviewed the three-dimensional reconstructions of the auto-segmented anatomy from 
all 25 testing datasets and found all yielded expected anatomic geometry. Seven experts assessed the manual and 
computer-generated segmentations superimposed on 4 TBCT blinded to the method of segmentation used. Each 
expert scored the segmentations according to the accuracy of the labeled structures. The mean reviewer scores 
for all the segmentations were similar for the manual and auto-segmentation methods (4.2 vs 4.3, p = 0.91), and 
no statistical significance was found in the analysis of each structure separately (Table 4).

Discussion
Otologic surgery is challenging given its small surgical field and complex interrelationships of bone and vital 
neurovascular structures. Clinicians face these challenges regularly when treating diverse conditions such as 
hearing loss, infections, and tumors of the temporal bone. The required knowledge of radiologic and surgical 

Figure 3.   Training Dice similarity coefficient (a) and loss (b) for the inner ear training. The DSC graph 
demonstrates the improvement and eventual optimization of the model and the minimization of the loss 
function.

Table 2.   Mean Dice similarity coefficients from the training (cross-validation) and testing using different 
CNN architectures. SD: Standard deviation.

Inner ear Ossicles Facial nerve Sigmoid sinus

Training (n = 125)

ResNet (SD) 0.90 (0.05) 0.84 (0.06) 0.70 (0.07) 0.79 (0.10)

U-Net (SD) 0.89 (0.05) 0.86 (0.07) 0.73 (0.07) 0.73 (0.11)

AH-Net (SD) 0.86 (0.08) 0.84 (0.07) 0.77 (0.11) 0.86 (0.09)

Testing (n = 25)

ResNet (SD) 0.91 (0.03) 0.84 (0.10) 0.70 (0.07) 0.78 (0.09)

U-Net (SD) 0.89 (0.04) 0.84 (0.11) 0.71 (0.10) 0.74 (0.06)

AH-Net (SD) 0.88 (0.04) 0.86 (0.06) 0.71 (0.18) 0.83 (0.09)
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anatomy, as well as intraoperative 3D anatomical awareness, is achieved through extensive training, which takes 
considerable time and hands-on experience.

Computed tomography plays a central role in both the diagnosis and treatment planning of ear conditions. 
Although the datasets are volumetric, they are traditionally presented as a series of 2D multiplanar images to the 
surgeon, demanding experienced mental processing to transform these images to the required 3D representa-
tion. Virtual reality simulation systems can take advantage of reconstructed 3D models of anatomical structures 
and present them similarly to what is expected during surgery. It is reasonable to hypothesize that resulting 
virtual surgical rehearsal can result in a surgeon’s greater anatomic understanding, and ultimately improved 
patient safety. Intraoperative augmented reality may also help surgeons manage anatomic complexity4,23. The 
segmentation of key structures for these applications has been a limiting step due to the time and effort needed 
for this labor-intensive task.

Machine learning, particularly DL, which uses convolution neural networks, is promising in the automatic 
labeling of anatomical structures from clinical imaging because it is able to extract patterns that are not always 
readily apparent to the human eye. The growth of DL automatic segmentation has advanced with the availability 
of software toolkits such as the Clara SDK toolkit and the AIAA extension for 3D Slicer software19,20. The former 
facilitates the implementation of the computational environment for the training of algorithms and construc-
tion of automatic prediction models, while the latter provides a user-friendly interface to conduct segmentation 
predictions on robust research-oriented software.

The development of specific DL algorithms for three-dimensional data provides similar results faster than 2D 
algorithms when applied to volumetric tasks18,24,25. With the commercial availability of high-performance GPUs, 
we are now able to perform segmentation on images with input resolutions as high as 256 × 256 × 240, sufficient 
for the accurate identification of otologic structures as small as the semicircular canals and ossicles. In our work, 
the adapted AH-Net model showed faster inference time and similar accuracy results compared to other well-
established 3-D segmentation models (U-Net26 and ResNet27) (Fig. 3). This highlights the improved efficiency of 
such algorithms, which makes more feasible to scale the pipeline to handle high volumes. We noticed a slightly 

Table 3.   Results of objective validation of the automated segmentation of the testing dataset using the 
prediction pipeline (n = 25). SD Standard deviation.

Inner ear Ossicles Facial nerve Sigmoid sinus

Dice coefficient

ResNet (SD) 0.91 (0.03) 0.87 (0.04) 0.69 (0.11) 0.85 (0.04)

U-Net (SD) 0.91 (0.04) 0.86 (0.06) 0.73 (0.07) 0.81 (0.05)

AH-Net (SD) 0.91 (0.03) 0.85 (0.12) 0.75 (0.06) 0.86 (0.05)

Time for segmentation (s)

Manual (SD) 224.2 (54.6) 110.3 (19.2) 221.8 (59.1) 323.3 (100.0)

ResNet (SD) 4.58 (0.52) 4.75 (0.62) 4.83 (0.56) 4.64 (0.55)

U-Net (SD) 6.82 (0.74) 6.72 (0.69) 6.84 (0.77) 6.71 (0.71)

AH-Net (SD) 2.61 (0.82) 2.70 (0.61) 2.73 (0.66) 2.65 (0.73)

Hausdorff ’s distance (mm)

ResNet (SD) 0.23 (0.18) 0.23 (0.18) 0.46 (0.42) 0.45 (0.15)

U-Net (SD) 0.25 (0.21) 0.22 (0.16) 0.38 (0.20) 0.62 (0.21)

AH-Net (SD) 0.25 (0.24) 0.23 (0.14) 0.24 (0.19) 0.45 (0.16)

Volumetric similarity (%)

ResNet (SD) 104.8 (23.0) 101.2 (14.2) 108.7 (34.8) 104.7 (14.7)

U-Net (SD) 108.5 (13.2) 90.1 (11.9) 105.0 (32.9) 100.3 (25.1)

AH-Net (SD) 108.3 (13.3) 99.4 (30.9) 101.2 (24.3) 96.3 (18.9)

Table 4.   Expert reviewer ratings for the manually segmented and autosegmented temporal bone computed 
tomography scans. SD: Standard deviation.

Method Manual Auto

T-testStructure Mean accuracy score (1–5) SD Mean accuracy score (1–5) SD

Otic capsule 4.3 0.9 4.3 0.5 1

Inner ear 3.8 0.9 4.1 0.9 0.37

Ossicles 3.8 1 4 1 0.55

Facial nerve 4.6 0.5 4.4 0.5 0.44

Sigmoid sinus 4.8 0.5 4.5 0.7 0.17

Average 4.2 4.3 0.91
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inferior objective performance of AH-Net in the predictions of the inner ear and ossicles compared to those 
from other architectures. This may reflect a trade-off between speed and performance, since the AH-Net yielded 
predictions in about half the time as the other methods in many cases. Despite this, the AH-Net produced accept-
able segmentation results and were subjectively indistinguishable from those using other approaches. Future 
studies may elucidate specific features of CNN architecture to optimize the segmentation of given anatomical 
structures, considering both their geometry and adjacent relationships. At the completion of training, the mean 
DSC from cross-validation showed strong correlation with the manually segmented ground truth for the inner 
ear (0.86) with similarly good correlation for other structures.

The otic capsule is the hard bone that surrounds the inner ear. It is more radiodense than surrounding bone, 
although not easily identified with the window levels usually used during clinical CT review. Our method of 
segmenting the otic capsule leverages this difference in radiodensity and identifies all voxels adjacent to the 
autosegmented inner ear with a HU values indicative of compact bone. This approach yielded satisfactory visual 
results (Fig. 4). This modeling produced valuable spatial information of the otic capsule. In particular, the result-
ing identification of the round window niche could potentially help surgeons predict and plan approaches to 
the inner ear during cochlear implantation (Fig. 4). Another advantage of the method is the ability to identify 
and evaluate pathologic otic capsule defects, such as those occurring in superior semicircular canal dehiscence 
(Fig. 5). Knowing the size and location of such deficits in relation to surrounding anatomy may help select 
optimal surgical approaches (e.g., transmastoid vs middle fossa). We intend to investigate the clinical utility of 
this method in future studies.

The segmentations from the training and testing set showed overall similar results for the DSC, suggesting 
that the prediction model was not overfitting the data. We implemented a prediction pipeline in 3D Slicer plat-
form, which infers the structure segmentation and improves it by maximizing its contours as well as by removing 
extraneous voxels (false-positives). When applied to the testing set, the DSC for the post-processed segmenta-
tions were slightly increased compared to the coefficients of the raw prediction of the same dataset. This likely 
indicates a benefit from such post-DL refinement, and it is likely that additional post-processing techniques can 
be developed to improve the accuracy of DL auto-segmentation.

Our findings in the objective analysis are superior to those of other recently published automated segmenta-
tion methods for the inner ear, ossicles28 and facial nerve5,15. Despite these encouraging metrics, there is still 
variability between the structures. It is likely that auto-segmentation of the inner ear is facilitated by the fact that 
it is a fluid filled structure almost entirely surrounded by the radiodense hard bone of the otic capsule, providing 
consistent contrast with its surroundings. This is unlike the facial nerve, which has multiple interfaces with soft 
tissue, air, and heterogeneous bone throughout its convoluted course. This, coupled with its long path and small 
volume, likely reduces auto-segmentation accuracy. Similarly, the small size of the ossicles and absence of clear 
contours for the sigmoid sinus in the non-contrast TBCT used may have limited their DSC values.

Structure volumes were similar between the manual and autosegmented datasets with an average of 101% 
for all structures. For the facial nerve, we found a higher variance (SD = 24.3%) with the automated segmenta-
tion, which is likely influenced by its complex shape and the variability present in the manual segmentations.

While the DSC and volumetric comparison provide indices of similarity, the AHD represents the metric error 
between the different segmentation methods29. Therefore, a smaller AHD demonstrates a smaller error between 
the auto-segmentation and our ground truth manual segmentations. The AHD values indicated minimal errors 
for the inner ear, ossicles and facial nerve (0.25, 0.21 and 0.24 mm respectively). For the sigmoid sinus, the AHD 
was 0.45 mm. Although higher than the AHD of the other structures, it is still within an acceptable range for a 
structure with such a large volume.

Manual segmentation required focused user attention for an average of 211 s for each structure, whereas 
the automated method took only 2.7 s per structure. This 90-fold reduction in segmentation time demonstrates 
the significant efficiency gains of auto-segmentation and highlights the potential scalability for clinical use of 
the proposed pipeline. This will facilitate the integration of patient-specific anatomic models into planning and 
simulation systems by both surgeons and researchers30.

In the blinded expert review, both manual and automated segmentations were rated highly for accuracy. The 
ratings of manual and automated segmentations were similar for all structures, with no statistical significance 
apparent between the methods. These results further support the potential application of our method for clinical 
and research tasks previously requiring lengthy manual segmentation.

One limitation of our study is the relatively small size of the training dataset used to build the DL model. This 
was primarily the result of the laborious methods of manual segmentation. Due to the random assignment of the 
imaging studies to training and testing sets, it is possible that different ears from the same subject were included 
in both the training and testing set. Such inclusion could reduce the independence of these sets. However, in 
most cases there is considerable anatomic variability between different ears of a given subject31–33. We therefore 
expect that this possibility will do little to reduce the robustness of the model.

We anticipate that our current approach will provide the basis for obtaining many more segmented data-
sets, which can then be reviewed, refined and reintroduced into the training dataset. Through this process, our 
approach should yield even greater accuracy over time. Another limitation is that all of our training CT data 
were derived from a single institution and most contained normal anatomy. We hope that in the future, we can 
incorporate studies from a larger variety of scanners and include additional pathology to improve the robust-
ness of the model. It remains to be seen how pathologic variation will affect the auto-segmentation process. The 
inclusion of multi-modality imaging (such as contrast enhancement and/or MRI data) may also be used in the 
future to improve the auto-segmentation process.

Our end-to-end approach to temporal bone segmentation provides a number of potential advantages over 
prior attempts since it: (1) is entirely automated and requires no user input that could introduce variability, (2) 
yields segmentation results similar to those created by trained experts, (3) is considerably faster than manual 
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alternatives, making it more feasibly integrated into clinical workflow, (4) is built upon state-of-the-art machine 
learning techniques available through an open-source, freely available platform, ensuring the potential future 
refinement, and (5) is built from standard clinical scans, allowing for continual optimization with the addition 
of more varied patient datasets. We hope that our auto-segmentation platform will accelerate the segmentation 

Figure 4.   Round window niche (Crosshair) from a manual labeled scan (left—a) side by side with the auto-
segmented CT dataset (right—b). From top to bottom, windows from 3D Slicer showing the axial, sagittal, 
coronal and 3D rendered view of the middle ear. Inner ear (red), ossicles (ivory); facial nerve (yellow), sigmoid 
sinus (blue) and otic capsule (green).
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and utility of temporal bone imaging studies and advance efforts towards multi-institutional collaboration in 
the construction of more robust and accurate models.

Conclusion
We demonstrate a promising automated pipeline for segmentation of key otologic structures from clinical tem-
poral bone CT datasets with good accuracy, as measured by the mean Dice score, average Hausdorff distance, 
volumetric comparison, and expert validation.

There remain areas in which the accuracy of this approach needs to improve prior to clinical use. However, 
these early results are quite encouraging, and with additional optimization, the results should greatly assist in 
the generation of anatomic datasets for clinical AR and VR applications, as well as other technologies that can 

Figure 5.   Superior semicircular canal dehiscence as demonstrated from manual (a) and auto-segmented (b) 
CT dataset seen in 3D Slicer. Note the lack of bone covering the balance canal (at the crosshair). Understanding 
the location and size of such a defect can facilitate surgical planning. Inner ear (red), ossicles (ivory); facial nerve 
(yellow), sigmoid sinus (blue) and otic capsule (green).
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improve surgical planning, workflow, and outcomes. Our future studies will focus on addressing some of these 
efforts.

Methods
The study was approved by Stanford University Institutional Review Board (No. 38946), which granted a waiver of 
informed consent, since this retrospective study was conducted with anonymized data. All methods were carried 
out in accordance with institutional guidelines and regulations. TBCT clinical datasets with either 0.125 mm or 
0.25 mm resolution were collected from 150 imaged ears (81 patients). A crosswalk to the true identifier of each 
TBCT avoided duplicates on the dataset. Patients with normal anatomy as well as those displaying alteration 
by pathology (e.g., chronic mastoiditis, postoperative changes, etc.) were included. Images with motion artifact 
or metal artifact that limited the evaluation were excluded. Manual segmentation of key structures of the 150 
TBCT (Fig. 1) was conducted by a trained otologic surgeon and reviewed by an experienced neurotologist. 3D 
Slicer (www.slice​r.org), an open-source medical image analysis software34 was used to create label maps of the 
inner ear, facial nerve, ossicles, and the sigmoid sinus from these CT datasets.

125 randomly selected volumes were set for the training set. The 25 remnant scans were included in the testing 
set for the prediction pipeline. Pre-transforms on the training TBCT included resizing and resampling images 
and labels previously at 512 × 512 × 480, 0.125 mm to 256 × 256 × 240, 1 mm voxel resolution, converting all 
datasets as right sided for standardization. The images had their intensity rescaled to a range between 0.0 to 1.0 
by cropping the original image intensity between − 500 and 2000 HU. In order to increase the variability of our 
training sample and overcome the great variability in scans protocols for posterior inferences, data augmenta-
tion was achieved during the training by oscillating the intensity of the images in 10% of magnitude (intensity 
multiplied by a random factor between 0.9 and 1.1 in 10% of probability on every epoch) as well as horizontal 
flipping the images and labels in 50% of probability. Three 3D CNN (U-Net, ResNet and AH-Net) with Adam 
optimization algorithm35 were adapted for the task and trained on a Linux-based computer (Ubuntu 18.04) with 
AI capabilities in an environment facilitated by Clara SDK, an open-source toolkit to leverage deep learning 
projects in healthcare19.

U-Net36,37 has since been described for use in segmentation of biomedical images. Its architecture resembles 
the letter U, as it is characterized by the symmetrical sequence of contraction blocks followed by expansion 
blocks. The contraction comprises of convolution layers that reduce the size of the image and capture relevant 
features for its identification, whereas the expansion path includes a sequence of up-convolutions and concat-
enations that group feature with map information to allow image segmentation with accurate location. Since its 
advent, ResNet22 has been one of the most popular architectures in image segmentation applications. Its imple-
mentation of residual learning blocks as shortcut connections between the convolution layers targets to avoid the 
degradation of accuracy as the depth of the network increases. AH-Net25 is implemented in the ResNet structure, 
therefore it also has its contracting and expansion paths called encoder and decoder respectively. Radiological 
images in the clinical context are often acquired and presented as anisotropic volumes, and important infor-
mation can be contained between sequential cuts. To deal with this limitation and improve the between-slice 
information prediction, AH-Net uses a hybrid encoder derived from a 2D network and transformed into a 3D 
encoder as described in Liu et al.25. The AH-Net architecture also features dynamic input shape which aims to 
increase the inference speed.

Using 24 GB of GPU RAM (two Titan XP GPU—NVIDIA, Santa Clara-CA), the dataset of manually-seg-
mented CT images was used to train the DL algorithms for 2000 epochs with the initial learning rate set to 10–4. 
Along the training process the learning rate was set to a step decay by a third every 400 epochs and fivefold cross 
validation of the training set was performed to prevent overfitting.

The final prediction models were integrated into the 3D Slicer Nvidia AIAA client extension20 to perform the 
auto-segmentation of the inner ear, facial nerve, sigmoid sinus, and ossicles on the testing set (n = 25) (Fig. 2). 
We also created an automated model of the otic capsule by growing the margins of the auto-segmented inner 
ear within a compact bone HU threshold range (650–2500 HU).

The prediction pipeline was implemented in a 3D Slicer module to increase the inference speed, remove even-
tual noise, and maximize the contours of the segmentations. This step of post-processing included the resample 
of the volume to an isotropic spacing of 0.25 mm prior to the inference and automated margin correction of 
the predicted segmentations. Within the HU threshold range for the reference of each structure (e.g., bone HU 
threshold ranged from 100 to 2500 for ossicles, and soft tissue threshold ranged from -400 to 550 for the inner 
ear and facial nerve), the segmentation margins were maximized by its growing or shrinking within a certain 
Hounsfield unit range for each structure and small islands of discontinuous and incorrectly predicted voxels 
were excluded. The code for this process is publicly available38.

The objective assessment of the prediction model was done in the testing set using the mean Dice similarity 
coefficient (DSC), the average Hausdorff distance (AHD)29 and volumetric comparison. The time for manual 
segmentation and auto-segmentation was measured for each structure on the testing set, and it was used as 
metric to analyze the efficiency of the segmentation process.

For clinical validation, seven experts evaluated the segmentations of each structure on each of four TBCT (two 
expert manually segmented datasets and two automatically segmented datasets). Two head and neck radiologists 
and five neurotologists blinded to the method utilized (manual or automated) answered a 5-point Likert scale 
questionnaire to assess the accuracy of the segmentations (Supplementary Table S1). Two-tailed Student’s t-test 
was used to evaluate the similarities of the mean scores for each segmented structure. Estimates were considered 
statistically significant at α = 0.05.

http://www.slicer.org
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