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Glioma is one of the most common intracranial malignancies that plagues people around the world. Despite current
improvements in treatment, the prognosis of glioma is often unsatisfactory. Necroptosis is a form of programmed cell death.
As research progresses, the role of necroptosis in tumors has gradually attracted the attention of researchers. And lncRNA is
regarded as a critical role in the development of cancer. Therefore, this study is aimed at establishing a prognostic model based
on necroptosis-associated lncRNAs to accurately assess the prognosis and immune response of patients with glioma. The RNA
sequences of glioma patients and normal brain samples were downloaded from The Cancer Genome Atlas (TCGA) and GTEx
databases, respectively. The coexpression analysis was performed to identify the necroptosis-related lncRNAs. Then, we utilized
LASSO analysis following univariate Cox analysis to construct a prognostic model. Subsequently, we applied the Kaplan-Meier
curve, time-dependent receiver operating characteristics (ROC), and univariate and multivariate Cox regression analyses to
assess the effectiveness of this model. And the functional enrichment analyses and immune-related analyses were employed to
investigate the potential biological functions. A validation set was obtained from the Chinese Glioma Genome Atlas (CGGA)
database. And qRT-PCR was employed to further validate the expression levels of selected necroptosis-associated lncRNAs.
Seven necroptosis-related lncRNAs (FAM13A-AS1, JMJD1C-AS1, LBX2-AS1, ZBTB20-AS4, HAR1A, SNHG14, and
LINC00900) were determined to construct a prognostic model. The area under the ROC curve (AUC) was 0.871, 0.901, and
0.911 at 1, 2, and 3 years, respectively. The risk score was shown to be an important independent predictor in both univariate
and multivariate Cox regression analyses. Through functional enrichment analyses, we found that the differentially expressed
genes (DEGs) were mainly enriched in protein binding and signaling-related biological functions and immune-associated
pathways. In conclusion, we established and validated a novel necroptosis-related lncRNA signature, which could accurately
predict the overall survival of glioma patients and serve as potential therapeutic targets.

1. Introduction

Glioma is the most common type of primary intracranial
malignancy, accounting for approximately 84% of all malig-
nant brain tumors (1). Traditional treatments of glioma are
mainly based on surgery, supplemented by radiotherapy
and chemotherapy, but the outcomes of patients are often
poor (2). The five-year survival rate of high-grade glioma
(HGG) patients is less than 5% (3). Although the prognosis
of patients with low-grade glioma (LGG) is better than that
of glioblastoma (GBM), they often face the risk of recurrence

and transition to HGG (4, 5). Therefore, new treatment
strategies to handle this enormous burden are urgently
needed.

Necroptosis is a novel type of programmed cell death
mediated mainly through the activation of the RIPK1-
RIPK3-MLKL signaling pathway by the TNFR superfamily,
which ultimately leads to plasma membrane rupture, lysis,
and the release of inflammatory factors (6, 7). Among the
mechanisms of drug resistance in tumors, the evasion of
and resistance to apoptosis are considered to be the most
important causes and often lead to the failure of traditional
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chemotherapy regimens (8). In contrast, related studies have
shown that some conventional proapoptotic chemothera-
peutic agents can bypass the resistance mechanism and exert
antitumor effects by inducing necroptosis (9, 10). This plays
an extremely significant role in the death of tumor cells.
Moreover, some reports have suggested that necroptosis
plays a key role in limiting cancer metastasis, for example,
shikonin could reduce osteosarcoma metastasis through
induction of necroptosis (11, 12).

Long noncoding RNAs (lncRNAs) have extremely
important biological functions and play critical roles in cell
cycling, proliferation, immune response, transcription, and
translation (13–15). There are increasing evidences that
lncRNAs are closely related to tumor development. For
instance, HOTAIR is overexpressed in various cancers and
correlates with the metastasis and invasion of these cancers
(16). MALAT1 has been determined to be an important
potential therapeutic target in lung adenocarcinoma and,
in addition, it has a role in tumor growth inhibition in
patients with glioma (17, 18). Therefore, developing new
lncRNA-related therapeutic strategies and relevant tumor
subtypes seem to be of great practical importance.

Our study is aimed at creating a necroptosis-associated
lncRNA model to predict the prognosis of patients with gli-
oma and to explore the immune status and tumor microen-
vironment of patients in different subtypes to provide new
insights for individualized treatment of glioma.

2. Materials and Methods

2.1. Acquisition and Collation of Raw Data. The RNA
sequences (FPKM value) and matching clinical data of 698
glioma patients (project: TCGA-GBM, TCGA-LGG; Disease
Type: gliomas) were obtained from TCGA database (https://
portal.gdc.cancer.gov). The RNA expression data of 1152
normal brain samples were downloaded from the GTEx
database (https://gtexportal.org/home/datasets). We com-
bined TCGA and GTEx data and then performed the “nor-
malizeBetweenArrays” algorithm of the “limma” package
to eliminate the batch effects. And the genetic mutation files
of GBM and LGG patients were downloaded from TCGA
database. Clinical and transcriptome data of 1018 glioma
samples were achieved from the CGGA database (http://
www.cgga.org.cn/) for external validation. We then excluded
patients with unknown clinical features. Finally, the training
and testing cohorts were constructed after integration and
standardization.

2.2. Screening of Differentially Expressed Necroptosis-Related
lncRNAs. We captured 67 necroptosis-related genes from
previous studies and listed them in Table S1 (19–21).
Firstly, we applied the “maftools” package to generate
mutation waterfall plots for LGG and GBM separately.
Then, we downloaded the human gene annotation file
from the GENCODE website (https://www.gencodegenes
.org). Through the “gene biotype” in the file, we can know
which gene belongs to protein-coding RNA and which
gene belongs to long noncoding RNA. We used a Perl
script to extract the lncRNA matrix from the gene

expression matrix of the training set based on the “gene
biotype” in the annotation file. And finally, a total of 732
lncRNAs were screened out. Next, we performed
correlation analysis to determine the necroptosis-related
lncRNAs with the criterion of correlation coefficients > 0:6
and p < 0:001 (Table S2). And the “limma” package was
utilized to identify the differentially expressed lncRNAs
between normal and tumor tissues (FDR < 0:05 and jlog 2
FCj ≥ 1). Finally, we took the intersection of the two
results to obtain the differentially expressed necroptosis-
associated lncRNAs and then listed them in Table S3.

2.3. Construction and Validation of a Prognostic lncRNA
Signature. The univariate Cox analysis was conducted to
identify the differentially expressed necroptosis-associated
lncRNAs with prognostic significance, and the results were
placed in Table S4. Then, we utilized the “glmnet” package
to perform LASSO regression of these lncRNAs. For
minimizing the deviations, we used the “cv.glmnet”
function to choose the best lambda. And eventually, the
prognostic signature was established. Each glioma patient
was assigned an individual risk score, and the formula for
the risk score was defined as follows (where n, exp ðlncRN
AiÞ, and coefðlncRNAiÞ represented the quantity of those
screened lncRNAs, the relevant expression level of each
candidate lncRNA, and the regression coefficient of each
lncRNA, respectively):

risk score = 〠
n

i=1
exp lncRNAi

� �
∗ coef lncRNAi

� �
: ð1Þ

For predicting the accuracy of the prognostic model,
the “timeROC” package was employed to do the ROC
analysis. And we utilized the “ggplot2” and “Rtsne”
packages to perform the principal component analysis
(PCA) and t-distributed stochastic neighbor embedding
(t-SNE) analysis. Then, univariate and multivariate Cox
regression analyses were applied to assess whether the
risk score could be used as an independent predictor of
prognosis. Finally, we used the “rms” package to integrate
the risk score, gender, age, and tumor grade to draw a
nomogram and applied calibration curves to assess
whether the prediction results matched the actual ones.

2.4. GO and KEGG Enrichment Analyses. The Kyoto Ency-
clopedia of Genes and Genomes (KEGG) and Gene Ontol-
ogy (GO) enrichment analyses were conducted using the
Sangerbox tools, a free online platform for data analysis
(http://www.sangerbox.com/tool). And the criterion was
p < 0:05 and FDR < 0:1.

2.5. Immune-Related Analyses. The single-sample gene set
enrichment analysis (ssGSEA) was carried out using the
“GSVA” and “limma” R packages, and then, we calculated
the infiltration scores of 16 immune cells and analyzed the
activity of 13 immune-related pathways based on ssGSEA.
Furthermore, we utilized the “limma” package to compare
the expression levels of immune checkpoints in glioma
patients from the high- and low-risk subgroups.
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2.6. Exploration of Tumor Microenvironment. For investigat-
ing the differences in tumor microenvironment between the
high- and low-risk categories, we utilized the “estimate” R
package to score each glioma patient. And then, we visual-
ized the results with the “ggpubr” package.

2.7. Quantitative Real-Time Polymerase Chain Reaction of
Glioma Tissues and Matched Normal Brain Tissues. All tis-
sues were collected from the Department of Neurosurgery

of Liuzhou Workers’ Hospital and approved by the hospi-
tal’s medical ethics committee. Each patient has signed the
relevant informed consent. We first extracted total RNA
from glioma tissues and normal brain tissues using the
Animal Total RNA Isolation Kit (Invitrogen, Beyotime,
Shanghai, China) and then reversed the RNA into cDNA
using the Transcription First-Strand cDNA Synthesis Kit
(Beyotime, Shanghai, China). Finally, the quantitative
real-time polymerase chain reaction (qRT-PCR) analysis
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Figure 1: Genetic mutation diagrams and identification of necroptosis-related lncRNAs in the training cohort. (a, b) The genetic mutation
landscapes of necroptosis-related genes in GBM and LGG patients. (c) The result of 12 differentially expressed necroptosis-associated
lncRNAs. (d) Heatmap of the differences in 12 lncRNAs between the tumor and normal individuals.
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Figure 2: Continued.
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was performed using BeyoFast™ SYBR Green (Beyotime,
Shanghai, China). All expression data were calculated
based on the 2-ΔΔCt method, and we used GAPDH as
an internal control. The primers used in this study were
as follows: FAM13A-AS1 forward primer, 5′-CCTGTG
TGGGTCTCCATTCT-3′; FAM13A-AS1 reverse primer,
5′-TCCTCACGTGTGTGAAAGGT-3′; JMJD1C-AS1 forward
primer, 5′-GGGAACCGATGAAACCTCAC-3′; JMJD1C-
AS1 reverse primer, 5′-CTGGGAGTCCAAAGGAGTGT-3′;
LBX2-AS1 forward primer, 5′-GGCATGGCATACAGAC
AAGG-3′; LBX2-AS1 reverse primer, 5′-GCAAGGGCAAC
TTCAAGGAA-3′; ZBTB20-AS4 forward primer, 5′-CCGT
AATCCCAGCACTTTGG-3′; ZBTB20-AS4 reverse primer,
5′-GGTCTCGAACTCCTGACCTT-3′; HAR1A forward
primer, 5′-GACAGAAGATGGGCGTTCCA-3′; HAR1A
reverse primer, 5′-TGCCAGGTGTGAGATTGACC-3′;
SNHG14 forward primer, 5′-CTTTTTCCCCTGCAAT
GCGT-3′; SNHG14 reverse primer, 5′-CCCCCGGGTCA
TGAAAACAT-3′; LINC00900 forward primer, 5′-ACTG

TGCTTCTGATGACCCG-3′; LINC00900 reverse primer,
5′-ATCAGTGTCAGCGTTGAGGG-3′; GAPDH forward
primer, 5′-CCGCATCTTCTTGTGCAGTG-3′; GAPDH
reverse primer, 5′-TCCCGTTGATGACCAGCTTC-3′.

3. Results

3.1. Genetic Mutation and Necroptosis-Associated lncRNA
Screening. The genetic mutation diagrams of necroptosis-
related genes in GBM and LGG were shown in
Figures 1(a) and 1(b). We found that 36.92% (144/390) of
GBM patients had genetic mutations in necroptosis-
associated genes. The highest mutation frequency among
these genes was in EGFR, followed by ATRX and IDH1.
While, in LGG patients, mutations were found in 89.13%
(451/506) of the samples, the highest mutation rate was in
IDH1, followed by ATRX and EGFR. Missense mutation
was the most common type of variant in both GBM and
LGG samples, and C>T was the most common in the SNV
class. And as shown in Figure 1(c), we identified 12
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Figure 2: Establishment of a prognostic lncRNA model. (a) The lncRNAs with prognostic value extracted from the univariate regression
analysis. (b, c) LASSO regression analysis was conducted to determine the final component lncRNAs of the prognostic model. (d) The
Sankey diagram of model-related lncRNAs and associated necroptosis genes. (e, f) Heatmaps of the model-related lncRNAs and clinical
features in the training cohort and validation cohort.
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differentially expressed necroptosis-associated lncRNAs
between normal and tumor samples. We then presented a
heatmap to demonstrate the differential expression between
the two categories in Figure 1(d). As the heatmap showed, 6
lncRNAs were upregulated and 6 lncRNAs were downregu-
lated in the tumor category.

3.2. Construction and Validation of the Prognostic lncRNA
Signature. Based on the univariate regression analysis, we
found that all 12 differentially expressed necroptosis-
associated lncRNAs were significantly related to prognostic
value (p < 0:001) (Figure 2(a)). We then did LASSO regres-
sion analysis on these lncRNAs and finally determined 7
lncRNAs to construct the prognostic model (Figures 2(b)

and 2(c)). According to the model, we calculated the risk
score for each glioma patient and classified the patients into
two subgroups by median value. And we plotted heatmaps
of the model-related lncRNAs and clinical characteristics
between the two risk categories in the training cohort and
the CGGA cohort, respectively (Figures 2(e) and 2(f)). The
distributions of age, grade, IDH mutation status, 1p19q
codeletion status, and MGMT methylation status were
found to diverge between the low- and high-risk categories.
MGMT methylation, IDH mutation, and 1p19q codeletion
were more frequently seen in patients in the low-risk group
compared to the high-risk group. And patients of advanced
age and high pathological grade were more often clustered
in the high-risk group. In addition, we also created a Sankey
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Figure 3: Validation of the prognostic model. (a, b) The median value and distribution of the risk scores in the training and validation
cohorts. (c, d) The survival status of glioma patients with different risk scores in the training and validation cohorts. (e–h) The t-SNE
and PCA plots of the training and validation cohorts. (i, j) The Kaplan-Meier curves of patients in the high-risk subgroup and low-risk
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diagram (Figure 2(d)). The next step was to verify the effec-
tiveness of the model. As shown in Figures 3(a) and 3(b),
patients were separated into two subgroups based on the
median cutoff value. And we found that patients in the high-
and low-risk groups had dramatically different survival sta-

tus (Figures 3(c) and 3(d)). The t-SNE and PCA analyses
revealed that patients in both risk categories were distributed
in different directions in the training cohort (Figures 3(e)
and 3(f)) and validation cohort (Figures 3(g) and 3(h)).
Depending on the Kaplan-Meier analysis, we discovered that
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Figure 4: Nomogram and independent prognostic analysis. (a–d) The univariate and multivariate Cox regression analyses of the lncRNA
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patients in the low-risk subgroup had better results than
those in the high-risk category (p < 0:001, Figures 3(i) and
3(j)). Finally, we performed ROC analysis in order to inves-
tigate the predictive power of this signature. The AUC of the
lncRNA signature in the training set was 0.871, 0.901, and
0.911 at 1, 2, and 3 years, respectively (Figure 3(k)), while
in the validation set the AUC was 0.716 at 1 year, 0.787 at
2 years, and 0.784 at 3 years (Figure 3(l)). And we observed
superior predictive ability in our risk model compared to
clinical characteristics (Figures 3(m) and 3(n)).

3.3. Independent Prognostic Value of the lncRNA Signature.
The univariate Cox regression analysis revealed that the risk
scores in both the training and validation cohorts were sig-
nificantly associated with overall survival (OS) (training
set: HR: 3.002, 95% CI: 2.646-3.405, p < 0:001, Figure 4(a);
validation set: HR: 1.667, 95% CI: 1.564-1.777, p < 0:001,
Figure 4(b)). Furthermore, the multivariate Cox regression
analysis indicated that the risk score could be considered
an important independent prognostic predictor even when
combined with other confounding factors (training set:
HR: 1.975, 95% CI: 1.643-2.374, p < 0:001, Figure 4(c); vali-
dation set: HR: 1.311, 95% CI: 1.219-1.411, p < 0:001,
Figure 4(d)). More details can be found in Table S5.

3.4. Creating and Verifying a Nomogram. Based on the Cox
regression analysis, we constructed a nomogram to predict
the prognosis of glioma patients (Figure 4(e)). The nomo-
gram allowed us to score each patient and finally derive a
total score to project the 1-, 2-, and 3-year OS occurrences.
And as presented in Figure 4(f), we also plotted 1-, 2-, and
3-year calibration curves to assess the predictive value of
the nomogram.

3.5. Functional Enrichment Analyses. The key biological
activities of DEGs linked with the risk model were deter-

mined using GO and KEGG functional analyses. As shown
in Figures 5(a)–5(c), the GO analysis suggested that the
DEGs were significantly enriched in biological functions
such as cell signaling and protein binding. Moreover, the
KEGG pathway analysis indicated that the DEGs were
remarkably concentrated in immune-related pathways,
including phagosome, antigen processing, and presentation
(p < 0:05, Figure 5(d)).

3.6. Exploration of the Immune Responses in Different Risk
Subgroups. We performed the ssGSEA to investigate the
immune responses of different risk categories. As presented
in Figure 6(a), we found that most of the immune cells
had higher infiltration levels in the high-risk group, except
for the Th1 cells and neutrophils which infiltrated more in
the low-risk category. Furthermore, in the high-risk sub-
group, all 13 immune pathways were shown to be more
active (Figure 6(b)). We observed comparable findings in
the validation set (Figures 6(c) and 6(d)). As shown in
Figures 6(e) and 6(f), we explored the differences in immune
checkpoints expression between the high- and low-risk cate-
gories, and most immune checkpoints were more positive in
the high risk class. All of these reflected that the immune
response was more active in the high-risk group of glioma
patients, and we could select appropriate therapeutic targets
to improve the efficacy of immunotherapy.

3.7. Tumor Microenvironment Investigation. As presented in
Figure 7, patients in the high-risk subgroup had higher stro-
mal and immune scores. This may imply that the higher
potential for patients in the high-risk group to benefit from
immunotherapy. More details can be found in Table S6.

3.8. Validating the Expression Levels of Selected Necroptosis-
Associated lncRNAs. As shown in Figure 8, we found
that these selected necroptosis-associated lncRNAs were
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Figure 5: Functional enrichment analyses between the high-risk group and low-risk group. (a–c) The GO enrichment analysis between the
two-risk subgroups. (d) The KEGG enrichment analysis between the two-risk subgroups.
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differentially expressed in tumor tissues and normal tissues,
and the expression levels were also different between tumor
tissues of different grades. These results further confirmed
our previous conclusions.

4. Discussion

Immunotherapy first originated in the nineteenth century.
In 1893, William Coley first treated cancer by activating

the immune system. However, due to the immune evasion
of tumor cells, which led to unsatisfactory treatment effect,
the cancer immunotherapy did not attract much attention
(22). In contrast, over the past few decades, immunotherapy
has gradually become the first-line treatment option for
many tumors as the tumor microenvironment and immune
checkpoints have been studied in depth. Some studies have
shown that PD-1/PD-L1 blockade has unprecedented effi-
cacy in B cell lymphomas and can be used as an alternative
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Figure 6: Immune-related analyses. (a, b) The boxplots showed the scores of 16 immune cells and 13 immune-related functions between the
high-risk category and low-risk subgroup in the training cohort. (c, d) The results of the validation cohort. (e, f) The different expression
levels of 32 immune checkpoints between the low-risk category and the high-risk category.
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to the failure of conventional treatment regimens (23, 24).
According to Forde et al., PD-1 blockade is remarkably
effective in the preoperative treatment of patients with
early-stage lung cancer and has few side effects, which can
significantly reduce the possibility of tumor recurrence
(25). And some related studies found that CTLA-4 blockade
can dramatically improve overall survival in melanoma (26,
27). Nevertheless, while the promising results of immuno-
therapy have been achieved, not all patients benefit from it,
so we need to explore thoroughly which patients are suitable
for immunotherapy in order to maximize the benefits of
treatment.

Since most tumors are innately resistant to apoptosis,
inducing new types of cell death has become a new strategy
for cancer therapy. Necroptosis has gradually aroused atten-
tion as a form of proinflammatory programmed cell death.
And recent research has shown that immunogenic sub-
stances released by necroptosis can exert powerful antitumor
immune effects in concert with immune checkpoint block-
ade (28). Furthermore, a study by Yatim et al. found that
necroptosis induces strong cross-priming of the immune
system by coupling RIPK1 and NF-κB to activate CD8(+)
T cells (29). Therefore, combining necroptosis and immune
checkpoint blockade seems to be a direction that holds great
promise.

Traditional treatments for glioma include surgery, che-
motherapy, and radiotherapy, but these do not significantly
improve the survival of patients. The presence of the
blood-brain barrier and the unique immune microenviron-
ment of the brain make the treatment of glioma extremely
difficult (30). Despite the remarkable results of many novel
treatment options in other tumors, few drugs have been
approved by the Food and Drug Administration (FDA) for
glioma. However, a growing number of studies suggest that
immunotherapy may become an important tool for the
treatment of glioma in the future. A study by Wainwright
et al. revealed that combined targeted inhibition of IDO,
CTLA-4, and PD-L1 significantly prolonged the survival

of glioma mice (31). In addition, Reardon et al. applied
the combination of anti-CTLA-4 and anti-PD-1 therapy
in glioma mouse models and cured 75% of the mice;
moreover, these mice developed robust immune memory
response (32).

In our study, we developed a prognostic signature based
on necroptosis-associated lncRNAs. With this model, we
assigned a unique risk score to each patient and classified
the patients into the high- and low-risk groups. We found
that the prognosis of patients in the high-risk group was sig-
nificantly worse than that of the low-risk group. Validation
analysis by ROC suggested that the model has strong predic-
tive power and can assess the prognosis of glioma patients
well. In addition, we created a nomogram to improve the
clinical applicability of the model. By performing functional
enrichment analyses of differential genes between the high-
and low-risk categories, we found that these differential
genes were mainly enriched in immune function-related
pathways. Subsequently, we performed immune-related
analysis, and most of the immune cells had higher infiltra-
tion levels in the high-risk group, such as CD8(+) T cells,
macrophages, and Treg cells, suggesting the complexity of
the immune microenvironment and potentially high
response reactivity in high-risk group patients. The analysis
of immune checkpoints revealed that the vast majority of
immune checkpoints were highly expressed in patients of
the high-risk group, especially the obvious targets like PD-
1, IDO1, IDO2, and CTLA-4. And through the exploration
of tumor microenvironment, we found that the immune
score and stromal score of patients in the high-risk group
were significantly higher than those in the low-risk group.
All these implied that modulating the immune microenvi-
ronment of patients by targeting immune checkpoints has
great potential value in the high-risk group patients.

Our model included 7 lncRNAs (FAM13A-AS1,
JMJD1C-AS1, LBX2-AS1, ZBTB20-AS4, HAR1A, SNHG14,
and LINC00900). Among them, LBX2-AS1 was found to be
closely associated with the progression of several cancers.
According to Yang et al., LBX2-AS1 is highly expressed in
gastric cancer tissues and mainly affects the proliferation of
gastric cancer cells (33). According to Cao et al., LBX2-
AS1 is considered to be an oncogenic lncRNA in ovarian
cancer, and targeted knockdown of LBX2-AS1 significantly
reduces the ability of ovarian cancer cells to grow and invade
(34). In addition, it was found that high expression of LBX2-
AS1 in glioma patients was associated with poor prognosis
(35). HAR1A is a tumor suppressor, and in oral cancer
patients, knockdown of HAR1A promotes the expression
of ALPK1 and leads to oral cancer progression (36).
According to Dong et al., SNHG14 plays a critical role
in the mechanism of drug resistance in breast cancer,
and knockdown of SNHG14 significantly improves trastu-
zumab efficacy in breast cancer patients (37). According to
Zhao et al., SNHG14 is highly expressed in diffuse large B
cell lymphoma, and the SNHG14/miR-5590-3p/ZEB1
pathway would enable tumor immune evasion by regulat-
ing the immune checkpoint PD-1; targeted inhibition of
SNHG14 expression is likely to improve the efficacy of
immunotherapy (38).
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At the same time, there are some limitations in this
work. First, most of the data we analyzed were obtained
from publicly available databases, so it is necessary for us
to conduct more profound in vivo and in vitro trials to val-
idate our results. Second, some lncRNAs in our model have
not been studied in depth and await further exploration.
This motivates us to keep exploring further in order to con-
tribute to the treatment of glioma.

5. Conclusions

In conclusion, the necroptosis-associated lncRNA signature
we created can accurately predict patient’s prognosis, and
the combination of necroptosis-related lncRNAs and
immune checkpoints blockade has the potential to be a
promising new therapeutic option. Our study provides new
ideas for individualized treatment of glioma patients.
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