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Non-equilibrium 8p Josephson effect in atomic
Kitaev wires
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The identification of fractionalized excitations, such as Majorana quasi-particles, would be a

striking signal of the realization of exotic quantum states of matter. While the paramount

demonstration of such excitations would be a probe of their non-Abelian statistics via

controlled braiding operations, alternative proposals exist that may be easier to access

experimentally. Here we identify a signature of Majorana quasi-particles, qualitatively

different from the behaviour of a conventional superconductor, which can be detected in cold

atom systems using alkaline-earth-like atoms. The system studied is a Kitaev wire interrupted

by an extra site, which gives rise to super-exchange coupling between two Majorana-bound

states. We show that this system hosts a tunable, non-equilibrium Josephson effect with a

characteristic 8p periodicity of the Josephson current. The visibility of the 8p periodicity of

the Josephson current is then studied including the effects of dephasing and particle losses.
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T
he search for observable signatures that identify exotic
states of quantum matter and their fractionalized
excitations has become a main focus of research in

quantum physics. A paradigmatic example is the hunt for
Majorana quasi-particles (MQPs) that exist at the ends of
topological superconductors1. First experimental evidence2–7

consistent with the presence of MQPs has recently been
reported in various superconducting hybrid systems8–10. While
the ultimate goal is to probe the existence of non-Abelian anyons
such as MQPs by performing controlled braiding operations,
several possible fingerprints have been proposed that may be
easier to access experimentally.

A prominent example hallmarking MQPs is the fraction-
alization of the Josephson effect, which can exhibit a 4p
(half frequency) period due to a non-equilibrium population of
excited states that is protected by fermion parity conservation1,4.
However, a similar, though non-protected, fractionalization is
also known to occur in conventional S-wave superconductors,
due to the presence of accidental mid-gap states11,12. As a
new signature for MQPs, here we show how a dissipationless,
non-equilibrium 8p periodic Josephson effect occurs when two
MQPs are subject to a super-exchange coupling via a controllable
energy level interrupting a Kitaev chain, an effect that is not
found in S-wave superconductors. In addition, we show how our
model can be realized in systems of cold atoms in optical lattices,
where isolation from the environment creates an ideal platform
for the study of such non-equilibrium phenomena.

Our proposal is motivated by remarkable recent experimental
progress with cold atom systems, including the observation of
the non-equilibrium Josephson effect13, initially demonstrated
with Bose–Einstein condensates14,15, and later observed over the
Bose-Einstein Condensate (BEC)–Bardeen-Cooper-Schrieffer
(BCS) crossover16,17. These results demonstrate not only the
ability to measure non-equilibrium signals, but in addition, this
realization of the 2p Josephson effect17 will provide a crucial piece
of our implementation. More concretely, in our proposal, the
starting point is an atomic realization of the Kitaev wire18–21, here
using a system of alkaline earth atoms (AEAs) coupled to a BEC
reservoir (Fig. 1b). AEAs allow the creation of a controllable extra
site by means of species-dependent potentials22, while the
reservoir allows both the implementation of the Kitaev wire
and the modification of the Josephson phase via an underlying
Josephson effect of the reservoir itself. In addition, we investigate
the visibility of this effect by studying the transient dynamics of
the Josephson current in the presence of imperfections, including
various dissipation mechanisms (single-particle losses and
dephasing) captured by a quantum master equation. Our

simulations support not only the observability of the 8p effect,
but further underline how this signature is characteristic of
MQPs: while 4p peaks in the Fourier signal cannot be
distinguished from those arising from mid-gap states in an
ordinary S-wave SC, and peaks at 4p, 2p and zero frequency
can be enhanced from dissipation, the 8p signal visible in our
set-up provides a signature that cannot be confused with these
undesired effects.

Results
Model Hamiltonian. We consider spinless fermions with field
operators cj, where j¼ 0, y N� 1 labels the sites of a
one-dimensional (1D) lattice in ring geometry. The model
Hamiltonian reads as

H Fð Þ ¼
XN � 1

j¼1

� tcyj cjþ 1þDcjcjþ 1�
m
2

cyj cj�
1
2

� �� �

þ tLc
y
N � 1c0þ tRc

y
0c1eiF=2þ m0

2
cy0c0þ h:c:;

ð1Þ

which describes a proximity-induced P-wave superconductor1

with pairing D, interrupted by an extra site at j¼ 0, which is
assumed to be not affected by the pairing (Fig. 1a). The hopping
strength is denoted by t and the chemical potential relative to
half-filling by m. The site at j¼ 0 is connected to its neighbours by
the hoppings tL and tR, respectively, and has an energy offset m0.
The phase factor eiF/2 on the hopping between j¼ 0 and j¼ 1
models a flux that advances the phase of a Cooper pair by F when
moving around the ring.

For |m|o2t, |D|40 and tL¼ tR¼ 0, in the limit of large N the
system hosts a single pair of zero-energy MQPs1, gL and gR, which
are localized exponentially around j¼N� 1 and j¼ 1, respectively.
All other quasi-particles of the superconductor are gapped, such
that c0 along with gL and gR form a subspace that is energetically
detached from the bulk spectrum. To understand the qualitative F
dependence of equation (1) in the physically relevant regime
tL, tRooD, t, we hence consider a minimal model encompassing
the dynamics within this low-energy sector. Decomposing c0 into
the Majorana operators gx¼c0þcy0; gy¼

c0 �cy0
i , and setting

m0¼ 0, the effective Hamiltonian then reads as

HJ Fð Þ ¼ 1
2i

tLgLgx� tRgR gx sin F=2ð Þþ gy cos F=2ð Þ
� �h i

: ð2Þ

In Fig. 2, we compare the energy spectra of HJ(F) and H(F).
The full qualitative agreement confirms that the effective
Hamiltonian HJ(F) captures the basic Josephson physics of the
full model H(F). To understand the various level (avoided)
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Figure 1 | System Hamiltonian and cold atom setting. (a) Schematics of the model Hamiltonian equation (1): the central part of the system is magnified in

the box at the bottom, where the Majorana degrees of freedom included in the simplified model (equation (2)) are highlighted. (b) Implementation

in a cold atom system. A 1D optical lattice is coupled to a BEC reservoir that gives rise to the Kitaev Hamiltonian in the chain. An optical barrier acts both to

create the impurity site (red) and triggers the Josephson effect in the reservoir itself. The phase difference across the barrier in the reservoir then

acts as the phase F for the optical lattice.
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crossings in Fig. 2, we first focus on the symmetric case tL¼ tR. At
F¼ 0, we have HJ 0ð Þ¼ tL

2i ðgLgx � gRgyÞ, that is, the four Majorana
operators form two disjoint pairs giving rise to two single-particle
(hole) excitations with energy tL

2 � tL
2

� 	
. The four possible many-

body states then have the energies (� tL, 0, 0, tL), which explains
the twofold degeneracy at E¼ 0. At F¼p, we have
HJ pð Þ¼ tL

2i gLgx � gRgxð Þ, that is, gL and gR are coupled to the
same Majorana operator gx. This gives rise to a zero mode in the
single-particle spectrum and the many-body energies are
� tL=

ffiffiffi
2
p

; � tL=
ffiffiffi
2
p

; tL=
ffiffiffi
2
p

; tL=
ffiffiffi
2
p� 	

as reflected in the crossings
at F¼p in Fig. 2. At F¼ 2p, we have HJ 2pð Þ¼ tL

2i ðgLgx þ gRgyÞ,
that is, the analogous situation to F¼ 0, but with a sign change of
a single-particle excitation energy, reflecting the change of the
fermion parity in the ground state1. At F¼ 3p, the situation is
analogous to F¼p with gR-� gR. As for F¼ 4p, we note
HJ(4p)¼HJ(0). However, despite the 4p periodicity of HJ,
adiabatically following the ground state in Fig. 2 through the
various crossings leads to an 8p periodic pattern. This is a
phenomenon of spectral flow, where the system is pumped to an
excited state during one 4p cycle of the Hamiltonian, and only
returns to the initial state after a second cycle.

We emphasize that the level crossings in Fig. 2 are of quite
different physical nature. The crossings between states with
different fermion parity at odd multiples of p are robust as long as
the fermion parity is conserved. By contrast, the crossings at even
multiples of p require left/right symmetry and a mid-gap state on
the additional site: this is realized by tuning the junction
parameters, namely, m0¼ 0 and symmetric tunnelling tL¼ tR.
However, tuning of the bulk parameters within the topological
superconductor (TSC) phase supporting the MQPs gL and gR is
not required as long as the bulk gap is much larger than tL and tR.
In a solid-state setting, the decoherence due to the coupling to
phonons implies that observing the non-equilibrium population
of the unprotected excited state presents a serious challenge. In
contrast, in the cold atom setting proposed here, such
decoherence channels are not present, thus stabilizing these
effects.

Below we describe how the model given in equation (1) can be
realized in systems of AEAs trapped in optical lattices, before
discussing in more detail the visibility of the 8p Josephson effect
in the presence of various imperfections.

Experimental realization. There are three points required for the
realization of our set-up: the implementation of a 1D Kiteav
chain, the addition of the single site separating the two ends

of the wire, and the time control of the phase F. To address these
points in a concrete set-up, we consider a system of fermionic
AEAs23–33, trapped in their 1S0 ground state in a 1D lattice. The
choice of AEAs allows us to independently trap the 1S0 ground
state |gi and the 3P0 metastable excited state atoms |ei. While our
model is for spinless (single species) fermions, the ability to trap
two species independently will be, as discussed in more detail
below, of crucial use to implement the junction architecture of
equation (1). We also note that while AEAs are well known in the
experiments for their additional SU(N) symmetry34, here, the
choice of AEAs rests on the above reason, and the SU(N)
symmetry plays no role.

We first address the implementation of a 1D Kiteav chain.
While the hopping terms (t) arise naturally in the lattice,
pairing terms (D) can be induced by coupling the fermions in the
lattice to a BEC reservoir, where a radio-frequency (RF) field is
used to break up Cooper pairs directly into neighbouring sites in
the lattice, as described in ref. 18.

Second, we address how we can interrupt the chain with a
single site. First, at the position j¼ 0, a barrier is engineered to
inhibit |gi atoms from being at this site, which splits the Kitaev
wire into two. This can be done using a highly focused beam at
the so-called anti-magic wavelength, which acts as a sink for |ei,
and oppositely on |gi22, resulting in the |ei atoms only being
trapped at this site. Thus, the |ei atom at site j¼ 0 acts as the
additional site coupling the two ends of the wire. While natural
hopping into and out of this site is deterred by this barrier, the
tunnelling (tL and tR) are then reintroduced with Raman
processes involving a clock transition35–37.

Last, we address the time control of the phase F. In fact, the
barrier which inhibits |gi atoms to be trapped at j¼ 0 also acts as
the mechanism that controls the phase F. This can be seen as
follows. The barrier is turned on via a laser which is highly
localized at the j¼ 0 position in the optical lattice, but
homogenous in the remaining directions and impacts the BEC
reservoir, bisecting it into two regions. For a barrier that is only a
few times larger than the coherence length of the system, it will
act as a thin tunnelling barrier between the two regions. If the two
regions have a different Cooper pair density, an ordinary a.c.
Josephson effect will occur, giving rise to a relative phase F across
the junction that oscillates in time17. The Josephson frequency oJ

of this oscillation is proportional to the population imbalance,
which constitutes the analogue of a bias voltage in the solid-state
context. Due to the proximity effect, this time-dependent phase is
inherited by the 1D lattice system, giving rise to the model
described in equation (1). Here oJ is on the order of the bare trap
frequency and can be controlled via the barrier and reservoir
parameters.

Within this set-up, there are two main ways to demonstrate the
8p periodicity of the Josephson effect by current measurements.
First, it is possible to use local interferometric probes, as realized, for
example, in ref. 38, or to infer the current behaviour from density
measurements16,17. Second, one can observe clear signatures of the
8p periodicity using the relation between the time-dependent
momentum distribution and the current operator39,40. For the
model defined in equation (1), the relevant current at the junction is
defined by:

J tð Þ ¼ i cyL� 1 tð Þc0 tð Þ� h:c:
� �D E

; ð3Þ

where t denotes the real time on which the Hamiltonian is
dependent via the modulation of the phase F tð Þ¼oJt, with the
Josephson frequency oJ, such that F(0)¼ 0. Since the system we
investigate does not display translational invariance, the global
current operators cannot be described solely in terms of
momentum distribution (momentum is not a good quantum
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Figure 2 | Energy spectrum of the model. The energy spectrum of the

minimal model in equation (2) with different parameters, with the width of

the lines indicating the deviation from the energy spectrum of the full

microscopic model (shifted by an energy constant to lie at the same scale)

in equation (1) with (N¼ 10, D¼ t¼ 10tL, m¼0). Left panel: tR¼ tL, m0¼0

(black, solid), tR¼ 1.2tL, m0¼0 (blue, dash). Right panel: tR¼ tL, m0¼0

(black, solid), tR¼ tL, m0¼0.2tL (orange, dot dash). Despite the 4p
periodicity of the Hamiltonian, adiabatically following the ground state of

the spectrum results in an 8p periodic pattern. The degeneracies at F¼p
are protected by the global Z2 parity symmetry, while the degeneracies at

F¼0 are present for tL� tR¼m0¼0.
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number). Indeed, the total current reads:

J ¼ t� tL� tRð Þ
X

k

aykak

D E
sin kð Þ

2
þ

þ
X
k 6¼ q

� tL aykaq

D E
e� iqþ h:c:

� �
þ

h

þ � tR aykaq

D E
ei k� 2qð Þ þ h:c:

� �i
ð4Þ

where the presence of the last two terms reflects the fact that
momentum is not a conserved quantity. While these terms are not
directly accessible in cold atom experiments, it is possible to
identify signatures of the 8p periodicity via the first term.

In Fig. 3, we show the time-dependent behaviour of the
current (Fig. 3a) and the various components of the momentum
distribution (Fig. 3c–d) as a function of time in different parameter
regimes, for a system of N¼ 10 sites. For system parameters where
the current has a dominant 8p periodicity (the orange line in
Fig. 3a), the momentum components n(k) individually mirror this.
This is shown in the orange (triangle) line of Fig. 3c and d, where
the identical parameters have been taken. However, when system
parameters are such that the current has a dominant 4p periodicity
(the blue dashed line in Fig. 3a), the momentum components
reflect this. This is shown with the blue (circles) lines of Fig. 3c and
d, again with the identical parameters.

We now address the question of the integrity of this 8p
Josephson effect in our proposed set-up subject to imperfections.
First, we address the influence of Hamiltonian imperfections
tLatR as well as m0a0 leading to avoided crossings in the
level spectrum at integer multiples of 2p (Fig. 2). We find that
Landau–Zener processes restore the 8p periodicity of the current
at finite bias voltage. Thereafter, we investigate the effect of
single-particle losses, induced three-body collisions between
particles in the wire and pairs in the reservoir, and dephasing
in the framework of a Markovian quantum master equation41,42.

Transport dynamics and 8p Josephson effect. We study the
current through the junction region at site j¼ 0, as defined in

equation (3). In the limit of perfect adiabatic evolution oJ-0, at
the symmetric parameter point tL¼ tR, m0¼ 0, the current will be
8p periodic, as indicated in the dispersion relation (Fig. 2); any
deviation from this fine-tuned parameter point will cause a gap to
open and the adiabatic current will be 4p periodic. However, the
8p effect is restored at finite oJ due to the Landau–Zener effect.
This tradeoff between finite oJ and finite imperfections is
analysed within the coherent time evolution governed by
equation (1) in Fig. 3, where we numerically calculate the current
J(t) as a function of time (Fig. 3a). For small oJ and weak
imperfections (orange, solid line), the current displays a clear 8p
periodicity, while increasing imperfections at fixed oJ is detri-
mental (blue, dashed line). However, larger oJ allows the system
to follow the avoided crossings due to Landau–Zener tunnelling,
thus restoring the 8p periodicity (black, dot-dashed line).

To provide a quantitative picture of the interplay between
imperfections and oJ, we extract the height of the 8p peak
(A 8p½ �) and the 4p peak A 4p½ �ð Þ from the Fourier transform of
the current over a total phase change of FT¼ 8p. The ratio of
these two peaks is shown in Fig. 3b) as a function of oJ and
(tL� tR). At intermediate oJ, the 8p peak dominates over a wide
range of parameters: remarkably, even for imperfections of a few
per cent, the 8p signal is still an order of magnitude stronger than
that at 4p. This behaviour has been verified with FT¼ 32p.
Figure 3 shows the data with FT¼ 8p to minimize the compound
effect of several Landu–Zener crossings (a finite particle loss
stabilizes this effect and data at FT¼ 32p is shown in these cases,
as discussed in the next section).

Dissipation and open-system dynamics. In addition to
imperfections that cause the system to move away from the
symmetric point tL¼ tR, m0¼ 0, an experimentally relevant
imperfection is due to the coupling of the system to its
environment. To account for this, we consider two dissipative
channels. The first is a single-particle loss at the site j with the rate
kj: in cold atom settings, this represents losses due to inelastic
collisions with the background BEC reservoir. The second source
of dissipation is dephasing due an effective measurement at rate gj

of the local occupation number nj¼cyj cj by the environment.
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Figure 3 | Signatures of 8p periodicity. (a) Current as a function of F for a system with N¼ 10, with parameters 8p � o� 1
J ¼103t� 1

L ; tL� tR¼10�4tL

(orange, solid), 8p � o� 1
J ¼10t� 1

L ; tL� tR¼10� 2tL (black, dot dash) and 8p � o� 1
J ¼103t� 1

L ; tL� tR¼10� 1tL (blue, dash). (b) Logarithm of the ratio of the

height of the 8p A 8p½ �ð Þ and 4p A 4p½ �ð Þ peak of the FFT of the current profile over a range of model parameters. (c) Time evolution of the some of

the k-components of the momentum distribution as a function of F for a system with N¼ 10, with parameters t¼10tL; D¼10:1tL; 8p � o� 1
J ¼103t� 1

L and

tR� tL¼ 10�4tL (orange/triangles) and tR� tL¼ 10� 1tL (blue/circles). (d) Same as in c with the time window F[0, 8p] magnified.
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This typically represents the effect of spontaneous emission in
optical lattice settings. Assuming a weak coupling to a Markovian
quantum bath, the time evolution of the system is then governed
by the master equation

@tr ¼ �
i
‘

H; r½ � þ
XL� 1

j¼0

kjDcj r½ � þ gjDnj r½ �
h i

; ð5Þ

where r is the density matrix of the system and the superoperator
DO r½ �¼OrOy � 1

2 OyO; r
� �

is the Lindblad dissipator for an
arbitrary Lindblad jump operator O. As long as gj¼ 0,
equation (5) is still quadratic in the field operators cj and can be
solved numerically efficiently. By contrast, gj leads to quartic
terms in the master equation (5), which we treat in an exact
diagonalization analysis. In what follows, we present results for
the full master equation in systems of N¼ 10 sites.

To study the impact of a finite kj�k on the integrity of the 8p
effect, we numerically solve the master equation (5) and calculate
the current J tð Þ in the presence of finite loss. In such open
settings, the system dynamics is now determined by the
competition of three energy scales, corresponding to oJ, the
energy scale related to Hamiltonian imperfections and k. At fixed
k, one expects a stronger 8p signal for intermediate oJ, since both
Landau–Zener tunnelling works at its best even in the presence of
imperfections and dissipation becomes detrimental only after
many oscillations periods.

A few examples of the current evolution as a function of time
are depicted in Fig. 4a): the main effect of dissipation is to damp
the current signal in the system, thus inhibiting transport.
However, even for relatively large decay rates (black line,
corresponding to decay collision rates of order kC1 Hz
(ref. 18) to be compared with tLC200 Hz), the signal stays
8p periodic for intermediate timescales (combined with a
exponentially decaying envelope).

Following the above analysis, again we quantify the 8p effect by
extracting the ratio of the 8p and the 4p peaks from the Fourier
spectrum. This ratio is shown for various system parameters and
loss rates in Fig. 4b–d, and illustrates the regimes in which the 8p
signal can be seen. In Fig. 4b), we plot the ratio at fixed k: the best
attainable regime is for intermediate values of the velocity, where
imperfections are relatively harmless up to values on the order of

a few per cent. In Fig. 4c, tL� tR is fixed: here again intermediate
speeds work at best, and values of the dissipation of the order of
10� 2 can be tolerated. Finally, in Fig. 4d, the speed of the ramp is
fixed: the signal is solid in the regime of low losses, and, for
intermediate values of imperfections, larger values of the losses, k,
can be tolerated. The strong signal at these intermediate values of
tL� tR is consistent with what is expected from Landau–Zener
theory, which predicts an optimal tunnelling rate at intermediate
gap values in case of finite dissipation and finite speed.

We have repeated these calculations in the presence of a finite
dephasing rate g. In this case, the system dynamics is not
quadratic in the fermions, so our study was limited to system sizes
up to N¼ 10 sites. A sample of the results is presented in Fig. 5a).
Overall, we found that it has qualitatively the same effect as k,
which can be understood in terms of the protection of the
non-equilibrium excited states. While the decay channel k mixes
states with different parity the decay channel g mixes states within
the same patrity, both contributing equally through the evolution
from 0 to 8p. Finally, we have checked how the main effects
discussed here are affected by finite-size effects. In the regimes of
interest, those effects are negligible at N¼ 10. For the g¼ 0 case,
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Figure 4 | Effect of dissipation on the signatures of 8p periodicity. (a) Current as a function of F for a system with N¼ 10, with parameters

8p � o� 1
J ¼10t� 1

L and k¼ 10�4tL, and tL� tR¼ 10� 2tL (orange, solid), k¼ 5 � 10� 3tL, tL� tR¼ 10� 2tL (black, dot dash), k¼ 10�4tL and tL� tR¼ tL

(blue, dash). (b–d) Ratio of the strength of the 8p peak of the FFT of the current profile A 8p½ �ð Þ and the 4p peak A 4p½ �ð Þ with k¼ 10� 3tL fixed

(b) tL� tR¼ 10� 2tL fixed (c) and 8p � o� 1
J ¼10t� 1

L fixed (d).
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of k¼ g¼ [0.02, 0.008, 0.005, 0.002, 0.0008] (diamonds, squares,

crosses, circles and pluses; ordered top to bottom for short times).

(b) Fixing k¼0.01 and g¼0.05, and including the presence of a nearest-

neighbour interaction (equation 6), for U/tL¼ [0.01, 0.1, 1] (orange/

crosses/dash, black/squares/solid and blue/circles/dot dash).
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we have checked this explicitly for some sample points up to
N¼ 30, while for the ga0 case, we have systematically checked
consistency with the N¼ 8 case.

In summary, the 8p periodicity of the current profile is robust
to both the Hamiltonian imperfections and the dissipation
considered here. Monitoring the evolution for shorter time
(for example, for a single 8p cycle) can also substantially improve
the signal, as in that case the role of particle losses is less
detrimental.

Many-body effects. Finally, we consider the effect of a finite
interaction on the energy spectrum of the model. At a qualitative
level, these interactions have a similar effect as the direct tunnelling
between the two superconducting islands: in the presence of
interactions, the MQPs are less localized, and the overlap of their
wave-functions can lead to a direct interaction between them. To
quantitatively study the effect of interactions on our model, we
consider a nearest-neighbour interaction of the form

Hint ¼ U
XN � 1

j¼1

njnjþ 1þUnN � 1n0þUn0n1; ð6Þ

where nj¼ayj aj. We show the impact of the interaction on both the
current pattern (Fig. 5b) and the low-lying spectrum (Fig. 6) for
various values of the interaction U/t. When the interaction strength
remains the lowest-energy scale UotLot (Fig. 6a), a gap will open
in the spectrum at even multiples of p, and effects the current
measurement similar to the case of other Hamiltonian
imperfections tLatR. As the interaction strength increases, the size
of this gap increases, until values of UBt the assumption of four
low-lying states separated by an energy gap is no longer valid
(Fig. 5c). Moreover, we numerically verified that distinct
interactions in the bulk and at the junction have similar
consequences on the Josephson effect, in agreement with the
discussion above (both interactions lead to a delocalization of the
MQP wave-functions). Typically, in systems of AEAs for lattice
spacings on the order of 250–500 nm the ratio U/tB10� 3 (ref. 32),
well within the regime where the 8p behaviour can be seen.

Discussion
The periodicity of the Josephson effect is closely related to the
charge of the particles involved in the tunnelling processes.
Intuitively, an 8p periodicity then corresponds to a fractional
charge of e

2, which is the physical picture behind the time-reversal
protected fractional Majorana fermions discussed in ref. 43. In
contrast, our model does not involve fractional charges, and our
effective Hamiltonian HJ(F) (equation (1)) is hence 4p periodic
in F, in agreement with the Byers–Yang theorem44. The 8p
Josephson effect in our set-up is a phenomenon of spectral flow:
the system is pumped to an excited state after slowly increasing F
by 4p, and returns to the ground state after a second 4p cycle.
Our work thus shows that an 8p periodic signal can also emerge
due to non-protected crossings, analogue to what has been shown

to occur for the 4p effect. However, in the latter case, the
accidental 4p periodicity occurs when the underlying system is a
conventional superconductor; here this 8p effect arises when the
underlying system hosts ‘normal’ Z2ð Þ Majorana fermions.

We note that while a 12p periodic Josephson effect has been
put forward in the context of two connected quantum wires45, we
emphasize that these effects are dissipationfull, as there is no
controllable gap separating the crossing branches of the
Josephson junction from the bulk states.

Data availability. The data that support the findings of this study
are available from the corresponding author upon request.
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