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ABSTRACT
N6-methyladenosine (m6A) plays an important role in various biological processes. Identifying m6A site is 
a key step in exploring its biological functions. One of the biggest challenges in identifying m6A sites is how 
to extract features comprising rich categorical information to distinguish m6A and non-m6A sites. To address 
this challenge, we propose bidirectional dinucleotide and trinucleotide position-specific propensities, 
respectively, in this paper. Based on this, we propose two feature-encoding algorithms: Position-Specific 
Propensities and Pointwise Mutual Information (PSP-PMI) and Position-Specific Propensities and Pointwise 
Joint Mutual Information (PSP-PJMI). PSP-PMI is based on the bidirectional dinucleotide propensity and the 
pointwise mutual information, while PSP-PJMI is based on the bidirectional trinucleotide position-specific 
propensity and the proposed pointwise joint mutual information in this paper. We introduce parameters α 
and β in PSP-PMI and PSP-PJMI, respectively, to represent the distance from the nucleotide to its forward or 
backward adjacent nucleotide or dinucleotide, so as to extract features containing local and global 
classification information. Finally, we propose the M6A-BiNP predictor based on PSP-PMI or PSP-PJMI and 
SVM classifier. The 10-fold cross-validation experimental results on the benchmark datasets of non-single- 
base resolution and single-base resolution demonstrate that PSP-PMI and PSP-PJMI can extract features with 
strong capabilities to identify m6A and non-m6A sites. The M6A-BiNP predictor based on our proposed 
feature encoding algorithm PSP-PJMI is better than the state-of-the-art predictors, and it is so far the best 
model to identify m6A and non-m6A sites.
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Introduction

Epigenetics refers to the study of genetic variations in gene 
expression under the condition that the nucleotide sequence 
composition of genes remains unchanged [1]. RNA methyla-
tion is the most important epigenetic modification of ~150 
chemical modifications. It is the process to transfer methyl 
catalytic from an active methyl compound, such as 
S-adenosine methionine, to different positions of an RNA 
molecule and make the chemical modification to form methy-
lated products [2,3]. The common RNA methylation patterns 
include N6-methyladenosine (m6A), N1-methyladenosine 
(m1A) and C5-methylcytidine (m5C) etc., 
where m6A modification exists in Bacteria [4], Homo sapiens 
[5], Arabidopsis thaliana [6], etc. The m6A is a dynamic 
reversible modification regulated by a series of methyltrans-
ferases, such as MettL3/14, WTAP and YTHDF2 [7–9], and 
the demethylases, such as FTO and ALKBH5 [10,11]. It plays 
an important role in many molecular processes, such as pro-
tein translation and localization [12], splicing [13], RNA sta-
bility [14], mRNA longevity control and degradation [12], and 
cell differentiation promotion [15]. It is also associated with 
the occurrence of complex diseases [16], such as Glioblastoma 
formation [17], breast cancer [18] and obesity [11]. Therefore, 

identifying m6A will benefit the diagnosis and treatment of 
complex diseases, even understanding their mechanism. It has 
valuable scientific and applicable value in personal medicine 
and drug development.

With the development of second-generation sequencing 
technology, a number of non-single-base resolution m6A site 
identification protocols, such as m6A-seq [19] and MeRIP-Seq 
[13], and single-base resolution m6A site identification proto-
cols, such as miCLIP [20], m6A-CLIP [21] and m6A-REF-seq 
[22], were proposed based on high-throughput sequencing 
technology. At present, the m6A sites of Saccharomyces cere-
visiae [23], Arabidopsis Thaliana [6], Oryza sativa [24], Mus 
Musculus [5] and Homo sapiens [5] have been identified at the 
full-transcriptome level. The study results show that the dis-
tribution of m6A sites is highly conservative, and most of 
them have a common consensus motif DRACH (A = m6A; 
D = A or G or U; R = A or G; H = A or C or U) [5,13,20]. 
This lays a theoretical base for identifying m6A sites using 
machine learning techniques. However, the high-throughput 
sequencing technology-based m6A site identification methods 
are time-consuming and inaccuracy, such that they cannot be 
used on large-scale genomic data. Therefore, many m6A site 
predictive models have been proposed in recent years based 
on various feature representation methods of sequence and 
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traditional machine learning algorithms or deep learning fra-
mework [25–48]. The latest several predictors, such as 
Gene2Vec [38], DeepPromise [39], WHISTLE [40], im6A-TS- 
CNN [42], iRNA-m6A [43] and HSM6AP [44] etc., were 
developed to identify and predict the m6A sites with the 
golden standard datasets at the single-base resolution level.

Although there are so many computable models to 
identify m6A sites, it is still a challenging task to 
distinguish m6A from non-m6A sites accurately. The most 
key issue is how to extract features containing more catego-
rical information from RNA sequences. Therefore, this paper 
proposes two new feature encoding algorithms named 
Position-Specific Propensities and Pointwise Mutual 
Information (PSP-PMI) and Position-Specific Propensities 
and Pointwise Joint Mutual Information (PSP-PJMI), respec-
tively. The bidirectional dinucleotide and trinucleotide posi-
tion-specific propensities are, respectively, proposed in PSP- 
PMI and PSP-PJMI based on Pointwise Mutual Information 
(PMI) and our Pointwise Joint Mutual Information (PJMI) 
theories, respectively. The parameters α and β are introduced 
to represent the distance between nucleotides in a pair of 
nucleotides in PSP-PMI, and the distance from the nucleotide 
to its forward or backward consecutive dinucleotide in PSP- 
PJMI, respectively, so as to extract more discriminative fea-
tures from RNA sequences. The features corresponding to 
different α and β are, respectively, concatenated to comprise 
a high-dimensional feature vector embodying both local and 
global position-specific information of nucleotides 
between m6A and non-m6A sites. Finally, the novel m6A site 
predictor named as M6A-BiNP is proposed based on afore-
mentioned contributions and Support Vector Machine (SVM) 
classifier. We test our M6A-BiNP models on a number of 
non-single-base resolution and single-base 
resolution m6A benchmark datasets of different species. The 
10-fold cross-validation experimental results demonstrate that 
our PSP-PMI and PSP-PJMI algorithms can extract features 
with much more discriminative capability for 
identifying m6A sites from RNA sequences. The M6A-BiNP 
predictor based on our feature encoding algorithm PSP-PJMI 
is superior to the state-of-the-art predictive models, and it is 
so far the best model for identifying m6A site.

Materials and methods

Datasets

There are two types of benchmark datasets used to test our 
feature encoding algorithms PSP-PMI and PSP-PJMI, and our 
M6A-BiNP predictors. The first type is non-single-base reso-
lution data that across four species of Arabidopsis thaliana 
[27,49], Musculus [5,34], Homo Sapiens [50] and 
Saccharomyces cerevisiae [25] were generated from the low- 
resolution level technique MeRIP-Seq. The detailed informa-
tion of the non-single-base resolution datasets is shown in 
Table 1. The second type is the single-base resolution data 
including three species of human, mouse and rat, which were 
generated from two single-base resolution m6A sequencing 
techniques miCLIP or m6A-REF-seq. The three species data-
sets with different tissues based on m6A-REF-seq technique 
are downloaded from Dao’s study in [42], and the dataset of 
human species based on miCLIP technique is obtained from 
Xing’s study in [31]. The dataset of human species from 
Xing’s study is denoted as Human51. The detailed informa-
tion of the single-base resolution datasets is shown in Table 2. 
These m6A benchmark datasets have been used to test the 
m6A site predictive models [30–32,35,37,41–43,50–52].

PMI and PJMI theory

Mutual information I X; Yð Þ is to measure the correlation 
between two random variables X x1; x2; � � � ; xnð Þand 
Y y1; y2; � � � ; ynð Þ [53–55]. It is calculated in (1) when X, Y 
are discrete random variables.

Table 1. The detailed information of the non-single-base resolution benchmark 
datasets.

Species
# positive 
samples

# negative 
samples

#Total 
samples

Sequence 
length (nt)

Arabidopsis 
thaliana

394 394 788 25

Musculus 725 725 1450 41
Homo sapiens 1130 1130 2260 41
Saccharomyces 

cerevisiae
1307 1307 2614 51

Table 2. The detailed information of the single-base resolution benchmark datasets.

Species Tissues Name Training dataset Independent dataset

# positive # negative # positive # negative Identification method Sequence length (nt)

Rat Brain RB 2352 2352 2351 2351 m6A-REF-seq 41
Kidney RK 3433 3433 3432 3432
Liver RL 1762 1762 1762 1762

Mouse Brain MB 8025 8025 8025 8025
Heart MH 2201 2201 2200 2200

Kidney MK 3953 3953 3952 3952
Liver ML 4133 4133 4133 4133
Testis MT 4707 4707 4706 4706

Human Brain HB 4605 4605 4604 4604
Kidney HK 4574 4574 4573 4573
Liver HL 2634 2634 2634 2634

– Human51 8366 8366 – – miCLIP 51
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I X; Yð Þ ¼
X

xi2X

X

yj2Y
p xi; yj
� �

log
p xi; yj
� �

p xið Þp yj
� � (1) 

where p xið Þ and p yj
� �

are the marginal probability distribu-
tion functions of X and Y, respectively, and p xi; yj

� �
is the 

joint probability distribution function of X and Y.
The mutual information between random variables 

X x1; x2; � � � ; xnð Þ, Y y1; y2; � � � ; ynð Þ and Z z1; z2; � � � ; znð Þ is cal-
culated in (2).

I X; Y;Zð Þ ¼
X

xi2X

X

yj2Y

X

zk2Z
p xi; yj; zk
� �

log
pðxi; yj; zkÞ

pðxiÞpðyj; zkÞ
(2) 

where p xi; yj; zk
� �

is the joint probability distribution function 
of X, Y and Z.

Pointwise mutual information PMI xi; yj
� �

is a special case 
of I X; Yð Þ. It is to record the amount of uncertainty reduction 
in xi when giving yj in information theory. It is also used to 
measure the correlation between xi and yj. It is calculated 
in (3).

PMIðxi; yjÞ ¼ log
pðxi; yjÞ

pðxiÞpðyjÞ
(3) 

The domain of PMI xi; yj
� �

is � 1;þ1ð Þ. PMI xi; yj
� �

¼ 0 
iff xi and yj are independent to each other. In addition, 
PMI xi; yj

� �
is symmetric, that is, PMI xi; yj

� �
¼ PMI yj; xi

� �
. 

Proof S1 proves this symmetry in supplementary material.
Inspired by pointwise mutual information, we propose and 

define the pointwise joint mutual information PJMI xi; yj; zk
� �

in (4) to measure the amount of uncertainty reduction of xi 
when giving yj and zk. It can also measure the correlation 
between xi, yj and zk. The xi, yj and zk are the specific events 
of random variables X, Y and Z.

PJMI xi; yj; zk
� �

¼ log
p xi; yj; zk
� �

p xið Þp yj; zk
� � (4) 

The domain of PJMI xi; yjzk
� �

is also � 1;þ1ð Þ. 
PJMI xi; yjzk

� �
¼ 0 iff xi, yj and zk are independent to each 

other. PJMI xi; yj; zk
� �

is symmetric and is independent to the 
order of yj and zk, that is, PJMI xi; yj; zk

� �
¼ PJMI yj; zk; xi

� �

and PJMI xi; yj; zk
� �

¼ PJMI xi; zk; yj
� �

both hold. The proofs 
of these two properties of PJMI are Proof S2 and Proof S3 in 
supplementary material.

Sequence encoding algorithms

Position-specific propensity has been applied to mine and 
identify the functional sites of biological sequences 
[29,31,36,56–58]. The basic principle is to calculate the 
frequencies of each nucleotide or amino acid of all 
sequences, and convert the input sequences into feature 
vectors using the difference between frequencies of positive 
and negative datasets. To extract features containing rich 
category information from RNA sequences using position- 
specific propensity, we propose bidirectional dinucleotide 
and trinucleotide position-specific propensities, and 

feature-encoding algorithms PSP-PMI and PSP-PJMI by 
combing PMI and PJMI, respectively. To extract both 
local and global position-specific information of nucleotides 
from RNA sequences, we introduce parameters α and β in 
PSP-PMI and PSP-PJMI, respectively, to represent the spa-
cing between nucleotides.

We formalize the m6A benchmark datasets in Table 1 and 
2 as following mathematics. Let D represent the m6A dataset, 
Dþ the positive dataset, that is, the true m6A dataset, and D�
the negative dataset, that is the non-m6A dataset. The rela-
tionship between D, Dþand D� is D ¼ Dþ [D� .

For RNA sequence R ¼ N1N2 � � �Ni � � �Nl in D, where l is 
its length, and Ni 2 A;C;G;Uf g is the nucleotide at position 
i i ¼ 1; � � � ; lð Þ. The position-specific occurrence frequency of 
four nucleotides at position i 1 � i � lð Þ in Dþ is denoted as 

vector fþi ¼ fþA;i; f
þ
C;i;f

þ
G;i;f

þ
U;i

� �T
, where the elements of fþi are 

the occurrence frequencies of nucleotides A, C, G and U at 
position i in Dþ, respectively. We define the nucleotide posi-
tion-specific propensity matrix MþS in (5) to represent the 
statistic information of four nucleotides in Dþ.

Mþs ¼

fþA;1 fþA;2 � � � fþA;i � � � fþA;l
fþC;1 fþC;2 � � � fþC;i � � � fþC;l
fþG;1 fþG;2 � � � fþG;i � � � fþG;l
fþU;1 fþU;2 � � � fþU;i � � � fþU;l

2

6
6
6
4

3

7
7
7
5

(5) 

PSP-PMI algorithm
The bidirectional dinucleotide position-specific propensity 
is proposed in PSP-PMI algorithm in this paper, so as to 
extract more position-specific information of nucleotide 
from forward and backward directions. Furthermore, to 
extract both local and global category information from 
RNA sequences, we introduce parameter α to represent 
the distance between two nucleotides in a pair of nucleo-
tides. The α ¼ 0 means that the two nucleotides are 
adjacent.

We take the RNA sequence with length l ¼ 9 to describe 
the idea of our bidirectional dinucleotide position-specific 
propensity in Figure 1, where Figure 1(a,b) correspond to α ¼
0 and α ¼ 1, respectively.

We first take Dþ into consideration. The frequency of the 
positional-specific propensity of forward dinucleotide at posi-
tion i 1 � i � l � α � 1; 0 � α � l � 3ð Þ=2ð Þ is the vector 

f
!þ

i ¼ f
!þ

AA;i; f
!þ

AC;i; � � � ; f
!þ

UU;i

� �T
of 16 elements. Its ele-

ments are frequencies of the dinucleotides of 

A;C;G;Uf g � A;C;G;Uf g, respectively. Such as f
!þ

AA;i in 

f
!þ

i represents the frequency of the dinucleotide pair AA in 
Dþ, where the nucleotides A and A appear at positions i and 
iþ αþ 1, respectively. Then, we define the positional-specific 

propensity matrix M!
þ

d in (6) for forward dinucleotides to 
represent the statistic information of 16 types of dinucleotides 
in Dþ.
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M!
þ

d ¼

f
!þ

AA;1 f
!þ

AA;2 � � � f
!þ

AA;i � � � f
!þ

AA;l� α� 1

f
!þ

AC;1 f
!þ

AC;2 � � � f
!þ

AC;i � � � f
!þ

AC;l� α� 1

..

. ..
. . .

. ..
. . .

. ..
.

f
!þ

UU;1 f
!þ

UU;2 � � � f
!þ

UU;i � � � f
!þ

UU;l� α� 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

(6) 

Similarly, the frequency of the position-specific propensity of 
the backward dinucleotide at position 
i αþ 2 � i � l; 0 � α � l � 3ð Þ=2ð Þ of Dþ can be represented 

as the vector f
 þ

i ¼ f
 þ

AA;i; f
 þ

AC;i; � � � ; f
 þ

UU;i

� �T 
comprising 

16 elements. The element f
 þ

AA;i of f
 

i
þ

denotes the frequency 
of the dinucleotide pair AA, where these nucleotides A and 
A appear at positions i and i � α � 1 of Dþ, respectively. We 

define M 
þ

d in (7) as the backward dinucleotide position- 
specific propensity matrix for Dþ.

M 
þ

d ¼

f
 þ

AA;αþ2 f
 þ

AA;αþ3 � � � f
 þ

AA;i � � � f
 þ

AA;l

f
 þ

AC;αþ2 f
 þ

AC;αþ3 � � � f
 þ

AC;i � � � f
 þ

AC;l

..

. ..
. . .

. ..
. . .

. ..
.

f
 þ

UU;αþ2 f
 þ

UU;αþ3 � � � f
 þ

UU;i � � � f
 þ

UU;l

2

6
6
6
6
6
4

3

7
7
7
7
7
5

(7) 

Assume that the nucleotides at positions 
i αþ 2 � i � l � α � 1; 0 � α � l � 3ð Þ=2ð Þ, i � α � 1 and 
iþ αþ 1 are A, G and C, respectively, then the forward 
PMI value v!þi for the nucleotide at position i can be 
calculated in (8), and its backward PMI value v þi is calcu-
lated in (9).

v!þi ¼ PMIðA; CÞ ¼ log
pðA;CÞ

pðAÞpðCÞ
¼ log

f
!þ

AC;i

fþA;if
þ
C;iþαþ1

(8)  

v þi ¼ PMIðA; GÞ ¼ log
pðA;GÞ

pðAÞpðGÞ
¼ log

f
 þ

AG;i

fþA;if
þ
G;i� α� 1

(9) 

The f
!þ

AC;i in (8) and f
 þ

AG;i in (9) can be obtained from 

matrixes M!
þ

d and M 
þ

d , respectively. The fþA;i, fþG;i� α� 1 and 
fþC;iþαþ1 come from matrix MþS . They are, respectively, the 
occurrence probabilities of nucleotides A, G and C at posi-
tions i, i � α � 1 and iþ αþ 1 of Dþ.

The PMI encoding value vþi for nucleotide at position i of 
RNA sequences is defined as the average of its forward PMI 
value v!þi and its backward PMI value v þi , that is, 

vþi ¼ v!þi þ v þi
� �

=2. Therefore, the PMI feature encoding 

vector Vþ of the RNA sequence with length l in Dþ is the 
feature vector Vþ ¼ vþαþ2; v

þ
αþ3; � � � ; v

þ
i ; � � � ; v

þ
l� α� 1

� �
contain-

ing l � 2α � 2 elements.
Similarly, we can obtain the nucleotide position-specific 

propensity matrix M�s , position-specific propensity matrix 
M!
�

d of forward dinucleotide and M 
�

d of backward dinucleo-
tide for D� . Then, we calculate its forward PMI value v!�i , 
backward PMI value v �i and PMI encoding value v�i of the 
nucleotide at position 
i αþ2 � i � l � α � 1; 0 � α � l � 3ð Þ=2ð Þ. The PMI feature 
encoding vector V� for the RNA sequence with length l in D�

is the feature vector V� ¼ v�αþ2; v�αþ3; � � � ; v�i ; � � � ; v�l� α� 1
� �

comprising l � 2α � 2 elements.
Finally, we encode the RNA sequence with length l into 

a feature vector V containing l � 2α � 2 elements by feature 
vector Vþ minus V� as follows in (10).

V ¼ Vþ � V� ¼ Vαþ2;Vαþ3; � � � ;Vi; � � � ;Vl� α� 1ð Þ (10) 

where Vi ¼ vþi � v�i and 
i 2 ½αþ 2; l � α � 1�, α 2 0; l � 3ð Þ=2½ �.

Figure 1. The bidirectional dinucleotide position-specific propensity. (a) for α ¼ 0, (b) for α ¼ 1.

RNA BIOLOGY 2501



It should be noted that the PMI in (8) and (9) is not the 
strict PMI in theory due to not satisfying the symmetry 
property of theoretic PMI. As we know that the nucleotides 
in RNA sequences have their own orders such that 
PMIðA; CÞ�PMIðC; AÞ when encoding RNA sequences. The 
Proof S4 in supplementary material addresses this fact.

We summarize our PSP-PMI in Figure S1 in supplemen-
tal material. We first partition dataset D into positive data-
set Dþ and negative dataset D� . Then, the mononucleotide 
position-specific propensity matrix and the bidirectional 
dinucleotide position-specific propensity matrices for Dþ

and D� are calculated, respectively. The PMI values of 
nucleotides are calculated based on above six matrices. 
Finally, the RNA sequence with length l is encoded into 
a feature vector V with l � 2α � 2 variables. We introduce 
parameter α 0 � α � l � 3ð Þ=2ð Þ to represent the distance 
between two nucleotides in a pair of nucleotides, so as to 
get both local and global categorical information from RNA 
sequences. The encoded feature vectors corresponding to 
different α are concatenated to comprise one final feature 
vector containing l � 1ð Þ

2
=4 elements.

PSP-PJMI algorithm
To extract much more meaningful information from RNA 
sequences, we further propose PSP-PJMI feature encoding 
algorithm. PSP-PJMI proposes bidirectional trinucleotide 
position-specific propensity. It calculates the trinucleotide 
position-specific propensity matrices of forward and back-
ward for Dþ and D� , respectively, and utilizes our pro-
posed PJMI in (4) to encode RNA sequences. We introduce 
parameter β 0 � β � l � 5ð Þ=2ð Þ into bidirectional trinucleo-
tide position-specific propensity to represent the distance 
from the nucleotide to its forward or backward successive 
dinucleotide. It is worth noting that β ¼ 0 means that the 
three nucleotides are successive. Here, we adopt the RNA 

sequence of length l ¼ 9 to show our bidirectional trinu-
cleotide position-specific propensity for β ¼ 0 and β ¼ 1 in 
Figure 2(a,b), respectively.

The forward trinucleotide position-specific propensity 
frequency for RNA sequences in Dþ at position 
i 1 � i � l � β � 2; 0 � β � l � 5ð Þ=2ð Þ can be expressed as 

vector f
!þ

i ¼ f
!þ

AAA;i; f
!þ

AAC;i; � � � ; f
!þ

UUU;i

� �T
with 64 ele-

ments. It represents the frequencies of the trinucleotides 
of A;C;G;Uf g � A;C;G;Uf g � A;C;G;Uf g. The element 

f
!þ

AAA;i in f
!þ

i represents the frequency of the trinucleotide 
AAA. These nucleotides A, A and A are at positions i, iþ
βþ 1 and iþ βþ 2 of Dþ, respectively. The trinucleotide 

position-specific propensity matrix M!
þ

t of forward direction 
of Dþ is shown in (11).

M!
þ

t ¼

f
!þ

AAA;1 f
!þ

AAA;2 � � � f
!þ

AAA;i � � � f
!þ

AAA;l� β� 2

f
!þ

AAC;1 f
!þ

AAC;2 � � � f
!þ

AAC;i � � � f
!þ

AAC;l� β� 2

..

. ..
. . .

. ..
. . .

. ..
.

f
!þ

UUU;1 f
!þ

UUU;2 � � � f
!þ

UUU;i � � � f
!þ

UUU;l� β� 2

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(11) 

The frequency of trinucleotide position-specific propensity 
of backward direction at position 
i βþ 3 � i � l; 0 � β � l � 5ð Þ=2ð Þ of Dþ is 

f
 þ

i ¼ f
 þ

AAA;i; f
 þ

AAC;i; � � � ; f
 þ

UUU;i

� �T
. The first element 

f
 þ

AAA;i of f
 

i
þ

represents the frequency of trinucleotide 
AAA, where the nucleotides A, A and A appear at positions 
i, i � β � 1 and i � β � 2 of Dþ, respectively. The backward 

trinucleotide position-specific propensity matrix M 
þ

t of Dþ

is defined in (12).

Figure 2. The bidirectional trinucleotide position-specific propensity. (a) for β ¼ 0, (b) for β ¼ 1.
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M 
þ

t ¼

f
 þ

AAA;βþ3 f
 þ

AAA;βþ4 � � � f
 þ

AAA;i � � � f
 þ

AAA;l

f
 þ

AAC;βþ3 f
 þ

AAC;βþ4 � � � f
 þ

AAC;i � � � f
 þ

AAC;l

..

. ..
. . .

. ..
. . .

. ..
.

f
 þ

UUU;βþ3 f
 þ

UUU;βþ4 � � � f
 þ

UUU;i � � � f
 þ

UUU;l

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

(12) 

Assume that the nucleotide at position 
i βþ 3 � i � l � β � 2; 0 � β � l � 5ð Þ=2ð Þ is A, the nucleo-
tides at positions i � β � 1 and i � β � 2 are both G, and the 
nucleotides at positions iþ βþ 1 and iþ βþ 2 are C and U, 
respectively. The forward PJMI value v!þi and the backward 
PJMI value v þi for the nucleotide at position i are calculated 
in (13) and (14), respectively.

v!þi ¼ PJMIðA; C;UÞ ¼ log
pðA;C;UÞ

pðAÞpðC;UÞ

¼ log
f
!þ

ACU;i

fþA;i f
!þ

CU;iþβþ1

(13)  

v þi ¼ PJMIðA; G;GÞ ¼ log
pðA;G;GÞ

pðAÞpðG;GÞ

¼ log
f
 þ

AGG;i

fþA;i f
 þ

GG;i� β� 1

(14) 

The f
!þ

ACU;i and f
!þ

CU;iþβþ1 in (13) are obtained from M!
þ

t and 

M!
þ

d . The f
 þ

AGG;i and f
 þ

GG;i� β� 1 in (14) come from M 
þ

t and 

M 
þ

d . The fþA;i in (13) and (14) is from MþS .
The PJMI value vþi of the nucleotide at position i of an 

RNA sequence is defined as vþi ¼ v!þi þ v þi
� �

=2, that is, 

the average of the forward and backward PJMI values v!þi 
and v þi . The PJMI feature vector Vþ of the RNA sequence 
with length l in Dþ is as 
Vþ ¼ vþβþ3; v

þ
βþ4; � � � ; v

þ
i ; � � � ; v

þ
l� β� 2

� �
. 

Similarly, we can calculate the forward trinucleotide posi-
tion-specific propensity matrix M!

�

t and the backward trinu-
cleotide position-specific propensity matrix M 

�

t of D� . Then 
the forward and backward PJMI values v!�i and v �i are 
calculated using our PJMI in (4). The average of v!�i and 
v �i is the PJMI encoding value v�i of the nucleotide at posi-

tion i βþ 3 � i � l � β � 2; 0 � β � l � 5ð Þ=2ð Þ. The PJMI 
feature encoding vector V� in D� is as 
V� ¼ v�βþ3; v

�
βþ4; � � � ; v

�
i ; � � � ; v�l� β� 2

� �
. 

Finally, we encode the given RNA sequence with length l of 
D� into a feature vector V containing l � 2β � 4 elements in 
(15) by Vþ minus V� .

V ¼ Vþ � V� ¼ Vβþ3;Vβþ4; � � � ;Vi; � � � ;Vl� β� 2
� �

(15) 

where Vi ¼ vþi � v�i , i 2 ½βþ 3; l � β � 2�, β 2 0; l � 5ð Þ=2½ �.

It should be noted that the PJMI in (13) and (14) is not 
a strict theoretic PJMI because the nucleotides in an RNA 
sequence have their own orders. The PJMI in (13) and (14) 
does not satisfy the symmetry and the order of yj and zk being 
not irrelevant. The detail proof of this is shown in Proof S5 in 
supplementary material.

Figure S2 in supplemental material shows the schematic of 
our PSP-PJMI. It introduces bidirectional trinucleotide posi-
tion-specific propensity matrixes for Dþ and D� . For the 
given RNA sequence with length l, the PJMI values vþi and 
v�i of nucleotide at position 
i βþ 3 � i � l � β � 2; 0 � β � l � 5ð Þ=2ð Þ are calculated 
using our PJMI theory. The RNA sequence is converted into 
a feature vector V comprising l � 2β � 4 elements using PJMI 
feature vectors Vþ minus V� . We introduce parameter β for 
extracting both local and global categorical information from 
RNA sequences. The feature vectors of different β are con-
catenated into a l � 3ð Þ

2
=4-dimensional vector.

Support vector machine

SVM is proposed by Cortes and Vapnik [59]. It maps non-
linear separation samples in low-dimensional input space to 
high-dimensional feature space using kernel functions such 
that samples become linearly separable in it. SVM has got 
excellent learning and generalization capability, and has been 
widely used in complex disease diagnoses, biological function 
site predictions and other bioinformatics fields [60–64].

We adopt the LibSVM toolbox (https://www.csie.ntu.edu. 
tw/~cjlin/libsvm/) developed by Chang et al [65] to train 
our m6A predictive model. The radial basis function (RBF) 
is as the kernel function. The grid search is adopted to find 
the optimal parameter pair (C, γ), so as to get the best pre-
dictive model. The penalty factor C and the parameter γ of 
RBF are, respectively, as log2C 2 � 5; 15½ � and log2γ 2 � 15; 5½ �

with both steps of 1.

Metrics to evaluate m6A predictors

To test the power of our PSP-PMI and PSP-PJMI in extracting 
features with rich categorical information, we evaluate the 
performance of our M6A-BiNP predictor built on features 
extracted by PSP-PMI or PSP-PJMI in terms of very popular 
metrics, such as Accuracy (Acc), Sensitivity (Sn), Specificity 
(Sp) and Mathew’s correlation coefficient (MCC) [31,38– 
44,52,62,66,67] and other two comprehensive indexes Area 
under the receiver operating characteristic curve (AUROC) 
and Area under the precision recall curve (AUPRC). AUROC 
and AUPRC are to value the performance of a binary classifier 
[28,41–43,52,68,69]. AUROC is the area under ROC (Receiver 
operating characteristic). ROC curve [70] is plotted by multi-
ple pairs of false-positive rate (FPR) and true-positive rate 
(TPR) corresponding to different thresholds in a two- 
dimensional space with FPR as x-axis and TPR as y-axis. 
AUPRC is the area under the Precision-Recall (P-R) curve 
[71]. The P-R curve is better than ROC curve when dealing 
with imbalanced binary classification problems [72].
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Framework of M6A-BiNP

Figure 3 shows the framework of our M6A-BiNP predictor. We 
first encode RNA sequence into feature vectors using our PSP- 
PMI and PSP-PJMI algorithms, respectively, and concatenate 
feature vectors of different α and β, respectively, to form the final 
feature vector and normalize it in min–max normalization. The 
10-fold cross-validation experiments are done to train SVM clas-
sifiers to build our M6A-BiNP predictor. The results of 10-fold 
cross-validation experiments are used to evaluate our M6A-BiNP 
predictor.

Results

Since the m6A sequencing data of non-single-base resolution 
were popular in available studies, we first test our PSP-PMI 
and PSP-PJMI on four species non-single-base resolution 
datasets in Table 1. Then, we carry out experiments to test 
them on single-base resolution datasets in Table 2. We com-
pare the performance of our M6A-BiNP predictors with state- 
of-the-art predictive models on non-single-base resolution 
and single-base resolution datasets, respectively.

Performance evaluation on non-single-base 
resolution m6A datasets

Analysis to position-specific propensities of nucleotide
To reveal the nucleotide position-specific propensities of four 
species m6A datasets, we adopt Two Sample Logo [73] tool 

(t-test, p = 0.05) to calculate whether there is a significant 
difference in the distribution of nucleotides at each site 
in m6A dataset between its positive and negative samples 
and to visualize the significant distribution difference of the 
nucleotide at each site using a nucleotide symbol proportional 
to the significant difference. The result is shown in Figure 4.

The results in Figure 4 show that there is the consensus 
motif AC at positions 0 and 1 in Arabidopsis thaliana and 
Musculus sequences, and the consensus motif GAC at posi-
tions −1 to 1 in Saccharomyces cerevisiae sequences, and the 
consensus motif A at position 0 in Homo sapiens sequences. 
The nucleotide position-specific propensity exists in both 
upstream and downstream of the m6A site of the four species 
of m6A datasets, such as the nucleotide A is enriched while 
nucleotide U is depleted at both upstream and downstream 
of m6A site in Saccharomyces cerevisiae. The results in Figure 
4 also show that the closer to the m6A site, the more signifi-
cant difference exists in the nucleotide distribution, such as 
nucleotides A, G and U at positions −4, −2 and 4 are sig-
nificantly enriched while nucleotide A at position −2 is sig-
nificantly depleted in Saccharomyces cerevisiae; nucleotides 
A and C are significantly enriched while nucleotide U is 
significantly depleted at position 2 in Arabidopsis thaliana, 
Musculus and Homo sapiens, and nucleotides U at position −2 
is significantly enriched in Musculus and Homo sapiens.

The above analyses discover that the nucleotide distribu-
tions are various in sequence positions in four specific species. 
This means the nucleotide position-specific propensity is the 

Figure 3. Framework of our M6A-BiNP predictor.

Figure 4. The nucleotide position-specific propensity. (a) Arabidopsis thaliana, (b) Musculus, (c) Homo sapiens and (d) Saccharomyces cerevisiae. The nucleotide A at 
position 0 is m6A site in positive sequence and non-m6A site in negative sequence.  The nucleotide symbols in the upper of a picture indicate that the corresponding 
nucleotide is enriched in positive dataset. The nucleotide symbols in the lower indicate that the corresponding nucleotide is depleted in positive dataset. The 
nucleotide symbols in the middle indicate that the corresponding nucleotide is the consensus motif in both datasets.
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key predictive information to distinguish m6A from non-m-
6A samples. This guarantees the correctness of our PSP-PMI 
and PSP-PJMI, and the capability of features encoded by them 
in recognizing m6A sites.

Effects of parameters α and β
To extract the features with local and global categorical infor-
mation from RNA sequences, the parameters α and β are 
introduced into PSP-PMI and PSP-PJMI, respectively, to 
represent the distance from the nucleotide to its forward or 
backward nucleotides in PSP-PMI, or to its forward or back-
ward dinucleotides in PSP-PJMI. The features encoded by 
PSP-PMI or PSP-PJMI are various when parameters α and β 
are different.

We take Saccharomyces cerevisiae in Table 1 as an example 
to investigate the impact of parameters α and β in PSP-PMI 
and PSP-PJMI, respectively. The features corresponding to 
different α and β are concatenated to train SVM models. 
Figure 5 displays the 10-fold cross-validation experimental 
results. The experimental results on Arabidopsis thaliana, 
Musculus and Homo sapiens are shown in Figure S3 in sup-
plemental materials.

The results in Figure 5 show that the SVM model built on 
features encoded by our PSP-PMI or PSP-PJMI performs 
worse and worse when parameters α and β going up, till the 
worst when α is up to 24 in PSP-PMI and β up to 23 in PSP- 
PJMI. The Acc is 0.5 under the worst condition, which means 
it randomly classifies sequences of m6A and non-m6A in 
Saccharomyces cerevisiae. This is due to the distance between 

two nucleotides in dinucleotides and trinucleotides becoming 
larger and larger as parameters α and β going up, such that 
the number of nucleotides encoded by PSP-PMI and PSP- 
PJMI becomes less and the dimensionality of encoded features 
decrease, even the useful categorical information cannot be 
extracted from RNA sequences.

The results in Figure 5 also show that the performance of 
the SVM model goes up built on the concatenating features 
encoded by PSP-PMI or PSP-PJMI at various α or β, respec-
tively. This fact discloses that the features with local classifica-
tion information are extracted when giving different values to 
parameters α and β, and these features can be concatenated to 
comprise the features with global categorical information to 
maximize the performance of the SVM classifier. This further 
validates the correctness of our introducing parameters α and 
β into PSP-PMI and PSP-PJMI, respectively.

Moreover, it can be seen from the results in Figure 5 that 
the SVM predictor built on the features encoded by PSP-PJMI 
performs better than that built on the features encoded by 
PSP-PMI on Saccharomyces cerevisiae for nearly 11%. This 
fact demonstrates that PSP-PJMI can extract features contain-
ing far more categorical information than PSP-PMI.

Comparison with other feature encoding algorithms
To test the performance of our PSP-PMI and PSP-PJMI, we 
compare them with other seven feature encoding algorithms 
on four species non-single-base resolution datasets from Table 
1, including position-specific nucleotide propensities (PSNP) 
[29], position-specific dinucleotide propensities (PSDP) [29], 

Figure 5. The performance of SVM built on features encoded by (a) PSP-PMI and (b) PSP-PJMI via varying parameters α and β on Saccharomyces cerevisiae. The bar 
chart represents the performance of the SVM built on features corresponding to different α and β. The line chart represents the performance of the SVM built on 
concatenating features.
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K-nucleotide frequencies (KNF) [32], K-spaced nucleotide 
pair frequencies (KSNPF) [32], nucleotide pair position spe-
cificity (NPPS) [31], positional binary encoding (PBE) [74] 
and nucleotide chemical property and nucleotide composition 
(NCPNC) [27]. The parameter � of NPPS belongs to 0; l � 1½ �. 
The performance of each feature encoding algorithm is shown 
in Table 3 in terms of Acc, Sn, Sp and MCC of SVM classifier. 
Figure 6 displays the AUROC and AUPRC of each algorithm. 
The mean value of the optimal parameters of SVM classifier 
obtained by grid search for each feature encoding algorithm 
in 10-fold cross-validation experiments is shown in Table S1 
in supplemental material.

Furthermore, we adopt paired two-tailed t-test method 
(p = 0.05) to carry out the statistical test of PSP-PMI, PSP- 
PJMI and other seven feature encoding algorithms via their 
10-fold cross-validation experimental results on four species 
of m6A datasets, so as to verify whether or not there is 
significant difference between these feature encoding algo-
rithms. We adopt the symbols ‘+’, ‘ = ’ and ‘-’ to denote that 
PSP-PMI has a significant difference and is better than com-
pared algorithm, has no significant difference, and has 

significant difference and is worse than compared algorithm, 
respectively, at the 5% significant level. We count the number 
of symbols ‘+’, ‘ = ‘ and ‘-’ of each algorithm in terms of Acc, 
Sn, Sp and MCC, so as to compare the performance of PSP- 
PMI with that of PSP-PJMI and other seven algorithms on 
four species m6A datasets. The statistic test results are also 
shown in Table 3.

The results in Table 3 show that PSP-PJMI defeats seven 
compared algorithms and PSP-PMI in terms of Acc, Sn and 
MCC, especially on Saccharomyces cerevisiae, it is superior to 
any compared feature encoding algorithms including PSP- 
PMI in terms of Acc, Sn, Sp and MCC. Our PSP-PMI out-
performs seven compared feature encoding algorithms on 
Saccharomyces cerevisiae. It is statistically better than or 
equal to other seven feature encoding algorithms on 
Musculus, and other six feature encoding algorithms except 
for NPPS on Arabidopsis thaliana in terms of Acc, Sn and 
MCC. It performs poor on Homo sapiens with only superior 
to KSNPF in terms of four metrics and to KNF in terms of 
Acc, Sn and MCC, but it can defeat seven compared feature 
encoding algorithms in terms of Sn.

Table 3. Performance comparison between our PSP-PMI, PSP-PJMI and other seven feature representation algorithms on four non-single-base resolution datasets.

Arabidopsis thaliana Musculus

Algorithms Acc Sn Sp MCC Acc Sn Sp MCC

PSP-PMI 0.830 0.825 0.835 0.661 0.901 0.909 0.894 0.804
PSP-PJMI 0.961− 0.960− 0.962− 0.924− 0.994− 0.996− 0.992− 0.988−

PSNP 0.840= 0.683+ 0.998− 0.717= 0.856+ 0.712+ 1.000− 0.745+

PSDP 0.843= 0.685+ 1.000− 0.723= 0.885= 0.771+ 1.000− 0.793=

KNF 0.787+ 0.622+ 0.952− 0.609= 0.732+ 0.657+ 0.808+ 0.472+

KSNPF 0.666+ 0.617+ 0.715+ 0.334+ 0.663+ 0.648+ 0.678+ 0.329+

NPPS 0.925− 0.891− 0.959− 0.854− 0.918= 0.855= 0.981− 0.844=

PBE 0.840= 0.683+ 0.998− 0.717= 0.885= 0.771+ 1.000− 0.793=

NCPNC 0.843= 0.685+ 1.000− 0.723= 0.881= 0.763+ 1.000− 0.786=

+/ = /- 2/4/2 6/0/2 1/0/7 1/5/2 3/4/1 6/1/1 2/0/6 3/4/1

Homo sapiens Saccharomyces cerevisiae

PSP-PMI 0.849 0.858 0.841 0.700 0.905 0.916 0.894 0.810
PSP-PJMI 0.986− 0.982− 0.989− 0.972− 0.995− 0.996− 0.994− 0.990−

PSNP 0.902− 0.804+ 1.000− 0.821− 0.747+ 0.751+ 0.743+ 0.495+

PSDP 0.903− 0.806+ 1.000− 0.822− 0.766+ 0.764+ 0.769+ 0.534+

KNF 0.797+ 0.695+ 0.899− 0.607+ 0.692+ 0.741+ 0.643+ 0.387+

KSNPF 0.680+ 0.612+ 0.749+ 0.365+ 0.651+ 0.712+ 0.591+ 0.307+

NPPS 0.908− 0.817+ 0.999− 0.830− 0.874+ 0.884+ 0.864= 0.749+

PBE 0.908− 0.817+ 1.000− 0.831− 0.727+ 0.727+ 0.728+ 0.456+

NCPNC 0.909− 0.818+ 1.000− 0.832− 0.731+ 0.735+ 0.726+ 0.463+

+/ = /- 2/0/6 7/0/1 1/0/7 2/0/6 7/0/1 7/0/1 6/1/1 7/0/1

Figure 6. ROC and P-R curves of nine feature representation algorithms on four datasets. (a) – (d) AUROC, (e) – (h) AUPRC.
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The paired two-tailed t-test results in Table 3 show us that 
PSP-PMI performs best on Saccharomyces cerevisiae when 
comparing to seven compared feature encoding algorithms, 
and worst on Homo sapiens. Its capability to extract features 
to identify non-m6A sites on Arabidopsis Thaliana and Homo 
Sapiens is inferior to compared feature encoding algorithms 
except for KSNPF, so is on Musculus except for KSNPF 
and KNF.

We are more interested in the capability to identify the 
true m6A sites, that is, the bigger the Sn, the better is the 
algorithm. Therefore, although our PSP-PMI is inferior to our 
PSP-PJMI algorithm, it can extract more useful features from 
RNA sequences compared to other seven algorithms.

The results in Figure 6 show that PSP-PJMI is far better 
than PSP-PMI and other seven compared algorithms. Its 
AUROC and AUPRC obtain the maximal value 1 on 
Musculus and Saccharomyces cerevisiae. Our PSP-PMI defeats 
other seven feature encoding algorithms on Saccharomyces 
cerevisiae in terms of AUROC and AUPRC. However, it is 
inferior to NPPS in terms of AUROC on Arabidopsis thaliana, 

Musculus and Homo sapiens, and also inferior to PSDP on 
Homo sapiens. The results in Figure 6 about each algorithm’s 
AUPRC show that our PSP-PMI is inferior to NPPS, PSNP 
and PSDP on Arabidopsis thaliana, and inferior to NPPS on 
Musculus. Its performance is poor on Homo sapiens in terms 
of AUPRC only superior to KNF and KSNPF.

From all above analyses, we can say that PSP-PJMI is 
definitely superior to PSP-PMI and other seven compared 
feature encoding algorithms. It can extract features with 
strong categorical discernibility from RNA sequences. 
Although PSP-PMI is inferior to PSP-PJMI, it is superior to 
other seven compared algorithms in encoding features to 
identify m6A sites.

Comparison with the state-of-the-art predictors
To comprehensively compare the performance of our M6A- 
BiNP predictors based on the features encoded by proposed 
PSP-PMI or PSP-PJMI, we try our best to collect the state-of- 
the-art predictive models based on traditional machine learn-
ing algorithms and deep learning framework on four species 

Table 4. Performance comparison between our M6A-BiNP and the state-of-the-art predictors on four species m6A benchmark datasets.

Datasets Predictors Classifiers Experiment methods

Evaluation criteria

Acc Sn Sp MCC AUROC AUPRC

Arabidopsis thaliana M6ATH [27] SVM jackknife 0.844 0.688 1.000 0.720 0.846 0.870
RAM-NPPS [31] SVM jackknife 0.895 0.873 0.916 0.790 – –
m6A-word2vec [75] CNN 10-fold cross-validation 0.905 0.950 0.859 0.810 0.928 –
M6A-BiNP SVM (PSP-PMI) 10-fold cross-validation 0.830 0.825 0.835 0.661 0.897 0.904

SVM (PSP-PJMI) 10-fold cross-validation 0.961 0.960 0.962 0.924 0.995 0.994
Musculus iN6-Methyl [37] CNN 10-fold cross-validation 0.895 0.789 1.000 0.808 0.913 –

M6AMRFS [34] XGBoost 10-fold cross-validation 0.793 0.828 0.758 0.588 – –
MethyRNA [50] SVM jackknife 0.884 0.778 1.000 – – –
iMRM [41] XGboost jackknife 0.890 0.783 0.996 0.779 0.820 –
m6A-NeuralTool [76] CNN 10-fold cross-validation 0.958 0.915 1.000 0.912 0.960 –
pm6A-CNN [77] CNN 10-fold cross-validation 0.938 0.904 0.972 0.880 0.970 –
Second order-MM [78] Markov model 10-fold cross-validation 0.883 0.875 0.889 0.775 – –
SRAMP [28] RF 10-fold cross-validation 0.889 0.778 1.000 0.798 – –
M6A-BiNP SVM (PSP-PMI) 10-fold cross-validation 0.901 0.909 0.894 0.804 0.962 0.962

SVM (PSP-PJMI) 10-fold cross-validation 0.994 0.996 0.992 0.988 1.000 1.000
Homo sapiens M6AMRFS [34] XGBoost 10-fold cross-validation 0.910 0.820 1.000 0.834 – –

MethyRNA [50] SVM jackknife 0.904 0.817 0.991 – – –
iRNA-Methyl [25] SVM jackknife 0.672 0.575 0.769 – – –
iN6-Methyl [37] CNN 10-fold cross-validation 0.911 0.821 1.000 0.835 0.903 –
iMRM [41] XGboost jackknife 0.910 0.825 0.996 0.820 0.940 –
m6A-NeuralTool [76] CNN 10-fold cross-validation 0.960 0.920 1.000 0.882 0.950 –
pm6A-CNN [77] CNN 10-fold cross-validation 0.936 0.886 0.986 0.878 0.960 –
m6A-word2vec [75] CNN 10-fold cross-validation 0.927 0.981 0.882 0.850 0.951 –
Second order-MM [78] Markov model 10-fold cross-validation 0.906 0.865 0.947 0.814 – –
SRAMP [28] RF 10-fold cross-validation 0.898 0.797 1.000 0.814 – –
M6A-BiNP SVM (PSP-PMI) 10-fold cross-validation 0.849 0.858 0.841 0.700 0.928 0.928

SVM (PSP-PJMI) 10-fold cross-validation 0.986 0.982 0.989 0.972 0.999 0.999
Saccharomyces cerevisiae M6APredict-EL [35] EL 10-fold cross-validation 0.808 0.807 0.810 0.620 0.902 0.901

RAM-NPPS [31] SVM 10-fold cross-validation 0.799 0.790 0.808 0.598 – –
M6AMRFS [34] XGBoost 10-fold cross-validation 0.743 0.752 0.733 0.485 – –
M6A-HPCS [79] SVM jackknife 0.724 0.774 0.674 0.450 0.782 –
iRNA-Methyl [25] SVM jackknife 0.656 0.706 0.606 0.290 0.705 –
pRNAm-PC [30] SVM jackknife 0.697 0.697 0.698 0.400 0.763 –
RAM-ESVM [80] SVM jackknife 0.748 0.789 0.778 0.570 – –
BERMP [81] DL and RF independent 0.713 0.730 0.696 0.430 0.800 –
iMethyl-STTNC [52] SVM 10-fold cross-validation 0.698 0.703 0.682 0.380 – –
iN6-Methyl [37] CNN 10-fold cross-validation 0.754 0.762 0.746 0.508 0.803 –
M6A-PXGB [51] XGBoost 10-fold cross-validation 0.771 0.764 0.760 0.535 0.839 –
DeepM6APred [36] SVM 10-fold cross-validation 0.805 0.795 0.815 0.610 – –
iMRM [41] XGboost jackknife 0.778 0.770 0.785 0.555 0.85 –
m6A-NeuralTool [76] CNN 10-fold cross-validation 0.790 0.783 0.796 0.614 – –
pm6A-CNN [77] CNN 10-fold cross-validation 0.850 0.846 0.855 0.703 0.920 –
m6A-word2vec [75] CNN 10-fold cross-validation 0.832 0.865 0.799 0.660 0.901 –
iMethyl-deep [82] CNN 10-fold cross-validation 0.892 0.885 0.899 0.780 0.931 –
DNN-m6A [83] DNN 10-fold cross-validation 0.785 0.787 0.783 0.571 – –
M6A-BiNP SVM (PSP-PMI) 10-fold cross-validation 0.905 0.916 0.894 0.810 0.968 0.967

SVM (PSP-PJMI) 10-fold cross-validation 0.995 0.996 0.994 0.990 1.000 1.000
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benchmark m6A datasets, and compare them to our M6A- 
BiNP predictors. The performances of the state-of-the-art 
predictive models and M6A-BiNP predictors on four datasets 
are shown in Table 4. The bold fonts mean the best results. 
The CNN, EL, RF and DNN represent convolutional neural 
networks, ensemble learning, random forest and deep neural 
network, respectively.

The results in Table 4 show that our M6A-BiNP predictor 
built on features encoded by our PSP-PJMI is far superior to 
the state-of-the-art predictors on four species 
of m6A benchmark datasets in terms of Acc, Sn, MCC, 
AUROC and AUPRC, especially on Saccharomyces 
Cerevisiae, it is superior to all available predictors in terms 
of all metrics including Sp. Although it is not the best one on 
Arabidopsis Thaliana, Musculus and Homo Sapiens in terms 
of Sp, it is the best in terms of Acc, Sn, Mcc, AUROC and 
AUPRC. The accuracy of this M6A-BiNP is higher 6.19%, 
3.76%, 2.71% and 11.55% than that of the best m6A- 
word2vec, m6A-NeuralTool, m6A-NeuralTool and iMethyl- 
deep predictors on Arabidopsis Thaliana, Musculus, Homo 
Sapiens and Saccharomyces Cerevisiae, respectively.

The results in Table 4 also show that M6A-BiNP predictor 
built on features encoded by PSP-PMI defeats all the state-of- 
the-art models on Saccharomyces cerevisiae in terms of Acc, 
Sn, MCC, AUROC and AUPRC, except for a little inferior to 
iMethyl-deep in terms of Sp. However, this M6A-BiNP pre-
dictor does not perform well on Arabidopsis Thaliana, 
Musculus and Homo Sapiens. It is just superior to iRNA- 
Methyl and inferior to other predictive models on Homo 
Sapiens in terms of Acc. It is the worst one on Arabidopsis 
thaliana in terms of Acc, Sp and MCC. It can defeat com-
pared models except for m6A-NeuralTool and pm6A-CNN 
on Musculus in terms of Acc. Although PSP-PMI-based M6A- 
BiNP predictor is not as good as the one based on PSP-PJMI, 
it is still a comparatively good predictive model in identifying 
m6A sites.

Performance evaluation on the single-base 
resolution m6A datasets

This section will test the performance of our PSP-PMI and 
PSP-PJMI feature encoding algorithms and M6A-BiNP mod-
els based on PSP-PMI and PSP-PJMI respectively, on the 
single-base resolution datasets in Table 2. We first carry out 
experiments on the Human51 data which is based on miCLIP 
technique, then on the other single-base resolution data based 
on m6A-REF-seq technique in Table 2.

Performance comparison with RAM-NPPS model on 
Human51 dataset
The reference [31] only provided the experimental results in 
terms of AUROC and AUPRC of RAM-NPPS model on 
Human51. To obtain the results of this model in terms of 
other evaluation metrics, we re-implement the RAM-NPPS 
prediction model. The experimental results of M6A-BiNP and 
RAM-NPPS models on Human51 are shown in Table 5. The 
best value of each criterion is displayed in bold fonts.

As can be seen from the experimental results in Table 5 
that our M6A-BiNP model based on PSP-PJMI algorithm 

obtained the best performance on the single-base resolution 
Human51 dataset no matter using any evaluation criterion. 
Although the performance of the M6A-BiNP model based on 
our PSP-PMI algorithm is the worst among three compared 
models in most cases on Human51 dataset, it obtains very 
similar performance as RAM-NPPS model.

Performance comparison with existing models on datasets 
of Human, Mouse and Rat
The base-resolution data based on m6A-REF-seq technique in 
Table 2 contain training and independent data. We trained 
the M6A-BiNP models on the 11 training datasets using 10- 
fold cross-validation experiments, and compared the perfor-
mance of our M6A-BiNP models to that of predictors iRNA- 
m6A [43], im6A-TS-CNN [42] and DNN-m6A [83]. The 
results are shown in Table 6. After that the M6A-BiNP models 
are tested on independent datasets and compared with the 
models of iRNA-m6A, im6A-TS-CNN and DNN-m6A. The 
results are shown in Table 7. The best values of each criterion 
in Tables 6 and 7 are shown in bold fonts.

The results in Table 6 show that our M6A-BiNP model 
based on PSP-PJMI algorithm performs best in most cases 
except for on MB dataset. Its performance is better than that 
of SVM-based predictor iRNA-m6A and deep learning frame-
work-based predictors im6A-TS-CNN and DNN-m6A in 
most cases. However, our M6A-BiNP model based on PSP- 
PMI algorithm is not as good as the one based on PSP-PJMI 
algorithm on these 11 training datasets. It only outperforms 
the iRNA-m6A, im6A-TS-CNN and DNN-m6A predictors in 
MH, RB and RL datasets.

The experimental results in Table 7 show that our M6A- 
BiNP model based on PSP-PJMI algorithm is superior to the 
models of iRNA-m6A, im6A-TS-CNN, DNN- 
m6A and our M6A-BiNP model based on PSP-PMI algorithm 
on 8 among 11 datasets in terms of most criteria. Its perfor-
mance on MB dataset is not good, nor on HK and RK 
datasets.

The above analyses shown that our proposed M6A-BiNP 
model based on the PSP-PJMI algorithm has obtained the best 
performance on the datasets based on two different base- 
resolution techniques. Its performance is better than the 
m6A sites prediction models based on deep learning frame-
work. This not only demonstrates the effectiveness of the PSP- 
PJMI feature encoding algorithm proposed in this paper but 
also proves the correctness of our using SVM classifier to 
build the prediction model.

Although our M6A-BiNP model based on PSP-PMI algo-
rithm does not perform as good as our M6A-BiNP model 
based on our proposed PSP-PJMI algorithm, it is still good 
enough and better than other compared prediction models in 
most cases, which shows that our proposed PSP-PMI is 
a useful feature encoding algorithm. Furthermore, PSP-PMI 

Table 5. Comparison of M6A-BiNP models and RAM-NPPS on Human51 dataset.

Model Acc Sn Sp MCC AUROC AUPRC

M6A-BiNP (PSP-PMI) 0.711 0.733 0.689 0.423 0.782 0.772
M6A-BiNP (PSP-PJMI) 0.851 0.856 0.845 0.702 0.927 0.927
RAM-NPPS 0.722 0.733 0.710 0.443 0.794 0.785
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algorithm can be combined with other encoding algorithms to 
enhance its capability to extract informative features.

Conclusions

Two feature encoding algorithms named PSP-PMI and 
PSP-PJMI are proposed in this paper to extract features 
with more nucleotide position information and strong cate-
gorical information from RNA sequences. The bidirectional 
dinucleotide and trinucleotide position-specific propensities 
are proposed in PSP-PMI and PSP-PJMI based on PMI and 
our PJMI theories, respectively. The parameters α and β are 
introduced to represent the distance between nucleotides in 
a pair of nucleotides in PSP-PMI, and the distance from the 
nucleotide to its forward or backward consecutive 

dinucleotide in PSP-PJMI, respectively. The features corre-
sponding to different α and β are, respectively, concate-
nated to comprise the high-dimensional features containing 
both local and global categorical information in PSP-PMI 
and PSP-PJMI.

The SVM-based M6A-BiNP predictors are built on fea-
tures encoded by PSP-PMI or PSP-PJMI. The 10-fold 
cross-validation experimental results on 
the m6A benchmark datasets including four species non- 
single-base resolution datasets and three species single- 
base resolution datasets using two different m6A sites 
detection techniques demonstrate that parameters α and 
β in PSP-PMI and PSP-PJMI are helpful to extract features 
with much more categorical information from RNA 
sequences. There is few redundant feature existing in 

Table 6. Performance comparison of our M6A-BiNP with iRNA-m6A, im6A-TS-CNN and DNN-m6A models on the training datasets.

Species Tissues Name Methods Acc Sn Sp MCC AUROC

Human Brain HB M6A-BiNP (PSP-PMI) 0.720 0.711 0.729 0.440 0.793
M6A-BiNP (PSP-PJMI) 0.820 0.810 0.831 0.641 0.900
iRNA-m6A 0.713 0.748 0.662 0.410 0.776
im6A-TS-CNN 0.725 0.754 0.697 0.452 0.803
DNN-m6A 0.738 0.785 0.691 0.480 0.817

Kidney HK M6A-BiNP (PSP-PMI) 0.746 0.755 0.738 0.493 0.832
M6A-BiNP (PSP-PJMI) 0.816 0.809 0.823 0.633 0.896
iRNA-m6A 0.790 0.809 0.763 0.570 0.863
im6A-TS-CNN 0.800 0.817 0.783 0.601 0.878
DNN-m6A 0.805 0.836 0.774 0.610 0.884

Liver HL M6A-BiNP (PSP-PMI) 0.775 0.769 0.781 0.550 0.856
M6A-BiNP (PSP-PJMI) 0.874 0.874 0.874 0.748 0.951
iRNA-m6A 0.801 0.813 0.781 0.590 0.874
im6A-TS-CNN 0.802 0.797 0.799 0.599 0.881
DNN-m6A 0.813 0.822 0.804 0.630 0.891

Mouse Brain MB M6A-BiNP (PSP-PMI) 0.732 0.744 0.720 0.464 0.818
M6A-BiNP (PSP-PJMI) 0.772 0.768 0.775 0.544 0.858
iRNA-m6A 0.788 0.793 0.769 0.580 0.870
im6A-TS-CNN 0.787 0.815 0.759 0.575 0.871
DNN-m6A 0.794 0.818 0.770 0.590 0.878

Heart MH M6A-BiNP (PSP-PMI) 0.794 0.807 0.780 0.588 0.880
M6A-BiNP (PSP-PJMI) 0.937 0.937 0.936 0.873 0.984
iRNA-m6A 0.728 0.752 0.690 0.440 0.795
im6A-TS-CNN 0.730 0.784 0.676 0.463 0.812
DNN-m6A 0.762 0.775 0.748 0.520 0.844

Kidney MK M6A-BiNP (PSP-PMI) 0.775 0.795 0.754 0.550 0.859
M6A-BiNP (PSP-PJMI) 0.848 0.842 0.853 0.696 0.929
iRNA-m6A 0.800 0.826 0.773 0.600 0.873
im6A-TS-CNN 0.805 0.799 0.810 0.609 0.884
DNN-m6A 0.820 0.832 0.807 0.640 0.895

Liver ML M6A-BiNP (PSP-PMI) 0.728 0.755 0.701 0.456 0.813
M6A-BiNP (PSP-PJMI) 0.851 0.856 0.845 0.702 0.927
iRNA-m6A 0.706 0.749 0.656 0.410 0.774
im6A-TS-CNN 0.713 0.724 0.702 0.429 0.795
DNN-m6A 0.736 0.776 0.696 0.470 0.814

Testis MT M6A-BiNP (PSP-PMI) 0.743 0.777 0.709 0.487 0.824
M6A-BiNP (PSP-PJMI) 0.850 0.848 0.852 0.701 0.930
iRNA-m6A 0.744 0.781 0.700 0.480 0.816
im6A-TS-CNN 0.754 0.752 0.756 0.509 0.838
DNN-m6A 0.766 0.810 0.723 0.530 0.849

Rat Brain RB M6A-BiNP (PSP-PMI) 0.785 0.784 0.786 0.570 0.869
M6A-BiNP (PSP-PJMI) 0.926 0.918 0.935 0.853 0.980
iRNA-m6A 0.760 0.770 0.735 0.500 0.828
im6A-TS-CNN 0.766 0.790 0.742 0.538 0.847
DNN-m6A 0.783 0.791 0.775 0.570 0.868

Kidney RK M6A-BiNP (PSP-PMI) 0.781 0.792 0.771 0.563 0.868
M6A-BiNP (PSP-PJMI) 0.875 0.867 0.883 0.750 0.946
iRNA-m6A 0.818 0.825 0.801 0.630 0.888
im6A-TS-CNN 0.825 0.842 0.808 0.650 0.902
DNN-m6A 0.834 0.843 0.825 0.670 0.910

Liver RL M6A-BiNP (PSP-PMI) 0.826 0.826 0.826 0.653 0.912
M6A-BiNP (PSP-PJMI) 0.950 0.946 0.954 0.900 0.989
iRNA-m6A 0.809 0.831 0.763 0.600 0.877
im6A-TS-CNN 0.806 0.816 0.796 0.613 0.883
DNN-m6A 0.826 0.842 0.811 0.650 0.899
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final features by concatenating features corresponding to 
different α in PSP-PMI and various β in PSP-PJMI, 
respectively. Our PSP-PMI and PSP-PJMI are superior to 
the state-of-the-art feature encoding algorithms in extract-
ing features with much better capability to 
identify m6A sites from RNA sequences. The PSP-PJMI 
is better than PSP-PMI. The M6A-BiNP predictor based 
on PSP-PJMI feature encoding algorithm outperforms the 
existing predictors for identifying m6A sites.
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Table 7. Performance comparison of our M6A-BiNP with iRNA-m6A, im6A-TS-CNN and DNN-m6A models on the independent datasets.

Species Tissues Name Methods Acc Sn Sp MCC AUROC

Human Brain HB M6A-BiNP (PSP-PMI) 0.708 0.746 0.670 0.417 0.779
M6A-BiNP (PSP-PJMI) 0.767 0.580 0.954 0.576 0.894
iRNA-m6A 0.711 0.695 0.730 0.420 0.785
im6A-TS-CNN 0.727 0.752 0.702 0.454 0.806
DNN-m6A 0.733 0.750 0.715 0.470 0.815

Kidney HK M6A-BiNP (PSP-PMI) 0.694 0.883 0.506 0.419 0.807
M6A-BiNP (PSP-PJMI) 0.682 0.964 0.400 0.441 0.879
iRNA-m6A 0.778 0.771 0.784 0.560 0.857
im6A-TS-CNN 0.792 0.800 0.785 0.585 0.873
DNN-m6A 0.799 0.832 0.766 0.600 0.878

Liver HL M6A-BiNP (PSP-PMI) 0.739 0.650 0.829 0.487 0.824
M6A-BiNP (PSP-PJMI) 0.862 0.920 0.805 0.730 0.948
iRNA-m6A 0.790 0.782 0.799 0.580 0.868
im6A-TS-CNN 0.799 0.848 0.750 0.601 0.881
DNN-m6A 0.810 0.818 0.801 0.620 0.885

Mouse Brain MB M6A-BiNP (PSP-PMI) 0.719 0.596 0.842 0.451 0.815
M6A-BiNP (PSP-PJMI) 0.756 0.838 0.674 0.518 0.849
iRNA-m6A 0.783 0.772 0.794 0.570 0.861
im6A-TS-CNN 0.785 0.862 0.707 0.577 0.872
DNN-m6A 0.786 0.751 0.821 0.570 0.876

Heart MH M6A-BiNP (PSP-PMI) 0.774 0.651 0.898 0.566 0.881
M6A-BiNP (PSP-PJMI) 0.838 0.681 0.996 0.712 0.983
iRNA-m6A 0.713 0.705 0.721 0.430 0.788
im6A-TS-CNN 0.736 0.758 0.714 0.472 0.816
DNN-m6A 0.751 0.773 0.730 0.500 0.834

Kidney MK M6A-BiNP (PSP-PMI) 0.765 0.707 0.822 0.533 0.854
M6A-BiNP (PSP-PJMI) 0.832 0.906 0.758 0.672 0.925
iRNA-m6A 0.793 0.784 0.803 0.590 0.870
im6A-TS-CNN 0.808 0.805 0.810 0.615 0.886
DNN-m6A 0.809 0.812 0.806 0.620 0.889

Liver ML M6A-BiNP (PSP-PMI) 0.735 0.676 0.795 0.474 0.817
M6A-BiNP (PSP-PJMI) 0.828 0.699 0.957 0.680 0.937
iRNA-m6A 0.688 0.678 0.699 0.380 0.762
im6A-TS-CNN 0.716 0.756 0.676 0.433 0.793
DNN-m6A 0.730 0.764 0.695 0.460 0.808

Testis MT M6A-BiNP (PSP-PMI) 0.746 0.836 0.657 0.501 0.832
M6A-BiNP (PSP-PJMI) 0.851 0.857 0.845 0.702 0.928
iRNA-m6A 0.735 0.722 0.751 0.470 0.818
im6A-TS-CNN 0.762 0.835 0.689 0.529 0.847
DNN-m6A 0.771 0.801 0.742 0.540 0.854

Rat Brain RB M6A-BiNP (PSP-PMI) 0.766 0.612 0.920 0.559 0.883
M6A-BiNP (PSP-PJMI) 0.866 0.988 0.744 0.755 0.982
iRNA-m6A 0.751 0.739 0.765 0.500 0.827
im6A-TS-CNN 0.770 0.781 0.758 0.539 0.852
DNN-m6A 0.780 0.777 0.783 0.560 0.862

Kidney RK M6A-BiNP (PSP-PMI) 0.777 0.786 0.767 0.553 0.861
M6A-BiNP (PSP-PJMI) 0.771 0.966 0.575 0.588 0.936
iRNA-m6A 0.814 0.802 0.828 0.630 0.897
im6A-TS-CNN 0.827 0.849 0.806 0.655 0.908
DNN-m6A 0.830 0.853 0.807 0.660 0.911

Liver RL M6A-BiNP (PSP-PMI) 0.829 0.857 0.801 0.659 0.912
M6A-BiNP (PSP-PJMI) 0.887 0.989 0.786 0.791 0.986
iRNA-m6A 0.799 0.777 0.823 0.600 0.876
im6A-TS-CNN 0.802 0.845 0.759 0.607 0.885
DNN-m6A 0.816 0.828 0.805 0.630 0.896
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