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Abstract. Tensin, an actin filament capping protein 
first purified from chicken gizzard, is localized to var- 
ious types of adherens junctions in muscle and non- 
muscle cells. In this paper, we describe the isolation 
and sequencing of tensin eDNA from a chicken 
cardiac library. The 6.3-kb chicken cardiac tensin 
eDNA encodes an open reading frame of 1,792 amino 
acids. Mammalian cells transfected with the chicken 
tensin cDNA expressed a polypeptide of ,,,, 200 kD 
recognizable by antibodies to chicken gizzard tensin. 
The expressed protein was incorporated into focal 
adhesions and other actin-containing structures in the 
transfected ceils. To map the domain associated with 
tensin's high affinity, barbed-end F-actin-capping activ- 
ity, bacterially expressed recombinant fusion proteins 
containing various segments of tensin were prepared 
and assayed for activity. The results of these experi- 
ments show that the high affinity capping domain (kD 
= 1-3 riM) lies within amino acid residues R1037- 
Vl169. Additional studies on a shorter construct, 
S1061-Hl145, showed that these 85 residues were 

sufficient for producing complete inhibition of actin 
polymerization and depolymerization. While this ac- 
tive domain is located within that of the "insertin" se- 
quence (Weigt, C., A. Gaertner, A. Wegner, H. 
Korte, and H. E. Meyer. 1992. J. Mol. Biol. 
227:593-595), our data showing complete inhibition 
of polymerization and shift in critical concentration 
are consistent with a simple barbed-end capping 
mechanism rather than the "insertin model" Our 
results also differ from those of a recent report (Lo, 
S. H . ,  P. A .  J a n m e y ,  J. H .  Hartwig, and L. B. Chen. 
1994. J. Cell Biol. 125:1067-1075), which concluded 
that their recombinant tensin has an "insertin-like" in- 
hibitory effect on barbed-end actin polymerization, 
and that this activity is attributed to residues I"936- 
R1037 (residues 888-989 in their numbering system). 
In our study, a fusion construct (N790-K1060) encom- 
passing T936-R1037 had no significant effect on actin 
polymerization and depolymerization, even at high 
concentrations. 

HESION plaques (also referred to as focal adhesions), 
which are found at locations of cell-substrate con- 
tacts in various types of cells, are of great interest to 

cell biologists because of their roles in actin-membrane as- 
sociation, cell-substrate adhesion, and signal transduction 
(Burridge et al., 1988; Geiger, 1989; Luna and Hitt, 1992). 
One of the proteins found in these structures is tensin, a pro- 
tein originally identified in chicken gizzard extracts (Wilkins 
and Lin, 1986; Wilkins, J. A., M. A. Risinger and S. Lin. 
1987. J. Cell Biol. 105:130 [Abstr.]) and shown to interact 
with high affinity with the barbed ends of actin filaments in 
vitro (for brief reviews of early work on this protein, see Lin 
et al., 1989, and Lin, 1993). In addition to adhesion plaques, 
antibodies to tensin have also been shown to label other types 
of adherens junctions (Bockholt et al., 1992). These proper- 
ties of tensin suggest that the protein plays a general role in 
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maintaining tension (hence its name) in actin filaments by 
connecting them to other cellular structures (Lin et al., 
1989; Lin, 1993). 

The polyclonal antibody preparation to gizzard tensin 
used in the original localization studies (Lin et al., 1989) was 
also used to isolate a partial tensin cDNA clone from a 
chicken embryo fibroblast cDNA library (Davis et al., 
1991). Sequence analysis of the clone indicated that fibro- 
blast tensin contains an "src homology 2" (SH2) l domain 
(Davis et ai., 1991), a functional motif found in many pro- 
teins involved in signal transduction (Koch et al., 1991; Shen 
et al., 1991; Pawson and Gish, 1992). In this paper, we de- 
scribe the isolation and sequencing of 6.3 kb of cDNA en- 
coding a functional tensin from a chicken cardiac cDNA li- 
brary, the expression of the tensin cDNA in mammalian cells 
and in bacteria, and the identification of a short sequence 
containing high affinity F-actin capping activity. 

1. Abbreviations used in this paper: AH1 and AH2, actin homology do- 
mains-1 and -2, respectively; CEF, chicken embryo fibroblast; ORE open 
reading frame; SH2, src homology 2. 
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Materials and Methods 

Cell Culture 
Human 293 embryonic kidney ceils (Gorman et al., 1990), kindly provided 
by Dr. Jeremy Nathans (Department of Molecular Biology and Genetics, 
Johns Hopkins School of Medicine), were cultured in a 1:1 mixture of DME 
and Ham's F12 medium supplemented with 10% fetal calf serum. NIH 3T3 
mouse fibroblasts were cultured in DME supplemented with 10% calf se- 
rum. Chicken embryo fibroblasts (CEFs) were grown as described by Vogt 
(1969). Cells were grown on glass coverslips for immunofluorescence 
studies. 

Antibody Preparations 
Affinity-purified polyclonal antibodies, designated as T(D), raised in a rab- 
bit to a preparation enriched in chicken gizzard 165-kD tensin was used in 
the screening of the cDNA library. A mouse rnAb, TL-I, was also prepared 
by using chicken gizzard tensin as antigen. This antibody is chicken 
specific, and it does not cross-react with anything in human or mouse cells. 
A preparation of polyclonal antibodies to actin homology domain-I (anti- 
AH1), was raised in a New Zealand rabbit against a synthetic peptide (Pep- 
tide Synthesis Facility, Biology Department, Johns Hopkins University) 
containing the deduced amino acid sequence of M49-TT8 of tensin, a region 
with 50% sequence identity to amino acid residues 221-249 of aodn (see 
Results and Discussion for details). The anti-AHl antibody preparation for 
immunoblotting was purified by affinity chromatography on a column of 
tensin fusion protein G52-$887 linked to Sepharose CL-4B. For localization 
of vinculin, mAb vin 11.5 (Sigma Chemical Co., St. Louis, MO) was used. 
FITC-conjugated sheep anti-mouse IgG was from Cappel Laboratories 
(West Chester, PA). Biotinylated donkey anti-rabbit IgG and streptavidin 
Texas red were from Amersham Corp. (Arlington Heights, IL). FITC- 
phalloidin was from Molecular Probes, Inc. (Eugene, OR). 

cDNA Cloning and Sequencing 
A eDNA library made in the lambda ZAP H vector (Stratagene, La Jolla, 
CA) from the mRNA of a single adult chicken heart was a gift from Dr. 
Douglas M. Famhrongh (Department of Biology, Johns Hopkins Univer- 
sity). The library was first screened with antit~nsin antibody preparation, 
T(D), using the picoBlue immunostaining kit (Stratagene) according to the 
manufacturer's instructions. Additional clones were isolated by screening 
with a 32p-labeled short restriction fragment or combination of two restric- 
tion fragments as probes according to Benton and Davis (1977). Probes 
were labeled by the use of hexamer primers and Klenow enzyme (Feinberg 
and Vogelstein, 1983). DNA sequencing was performed with the dideoxy 
method of Sanger et ai. (1977) using the Sequenase DNA sequencing kit 
from U.S. Biochemical Corp. (Cleveland, OH). eDNA clones and sub- 
cloned restriction fragments in pBluescript were sequenced from both ends. 
To facilitate sequencing, unidirectional nested deletions were made using 
the ExoIIFMung Bean nuclease from Stratagene according to the method 
of Henikoff (1984). In addition to the M13 reverse and MI3 (-20) sequenc- 
ing primers, oligonucleotide primers (synthesized by the Oligonucleotide 
Synthesis Service, Johns Hopkins University) were used for the determina- 
tion of tensin DNA sequence. Both double-stranded and single-stranded 
templates were used. The entire length of eDNA has been sequenced at least 
twice. 

Northern Blots 
Total RNA from various chicken tissues and cultured CEF was obtained by 
extracting in RNAxol according to the manufacturer's directions (Biotecx 
B Laboratories, Friendswood, TX). 30/~g of each RNA sample was sepa- 
rated by electrophoresis in formaldehyde-agarose gels in MOPS buffer 
(Lehrach et ai., 1977) and transferred to an Immohiion-N membrane (Milli- 
pore Corp., Bedford, MA). Hybridization probes used for Northern blot- 
ting were labeled with 32p by using the random primed DNA labeling kit 
(Boehringer Mannbeim Biochemicals, Indianapolis, IN). 

Eukaryotic Expression Constructs 
Two eukaryotic tensin expression constructs were prepared with the pCIS 
vector (Gorman et al., 1990; kindly provided by Dr. Gorman, Genetech, 
South San Francisco, CA). The 3' Sphl-Xbol of JC43 was replaced by the 
3' Sphl-Xhol fragment of JC42 to obtain JC97. The eDNA insert of JC97 

was then released by double digestion with Xbal and Xhol, ligated with the 
Xbal- and Xhol-digested pCIS vector to yield JCl01, which contains the 
full-length eDNA except nucleotides 1-154. The 5' Xbal-Bsml region of 
JC97 was replaced with that of JC91 to yield JC98. The full-length eDNA 
was released from JC98 by digestion with Xbal-Xhol, and it was ligated into 
Xbal- and Xhol-digested pCIS to obtain JCl00. 

Expression of Cardiac Tensin in Mammalian Cells 
Transient transfection of mammalian cells was performed essentially as de- 
scribed by Gorman et al., (1990). Briefly, cells were seeded on culture 
plates or glass coverslips and cultured overnight. 3 h before transfection, 
the growth medium was changed. The cells were cotransfected with 5 #g 
of tensin expression plasmid and 0.5 #g of pRSVT s, using a calcium phos- 
phate method, followed by a 15 % glycerol shock step 3 h after transfection. 
The human 293 cells were shocked for 15 s, and the mouse 3T3 cells were 
shocked for 90 s. Transfected cells were incubated for 18 h before they were 
used for immunofluorescence studies. 

Tensin Fusion Constructs 
All fusion constructs encoding tensin deletion derivatives were cloned into 
pMAL (New England Biolabs, Beverly, MA) or pGEX (Pharmacia Fine 
Chemicals, Piscataway, N J). In addition to pMAL-c2 and pMAL-cRI, a 
modified vector, pMAL-cRI* prepared by ligating EcoRI-digested, 
Klenow-polished pMAL-cRI, was used to generate in-frame fusion of cer- 
tain constructs. 

The fusion constructs are prepared as follows: The BglH- HindIH frag- 
ment from JC42 was ligated into BamHl- and HindRI-digested pMAL-cRI* 
to produce the NH2-terminal-truncated construct JC111 (I311-R1792). The 
BamHI-SalI fragment from JC43 was ligated into BamHI- and SalI-digested 
pMAL-cRI* to produce JCl12 (G52-$887). KpnI digestion of JClll  
produces JC131, which encodes the COOH-terminal fragment, VlI91- 
R1792. The SacI-KpnI region from Tn3.2 was inserted into SacI- and KpnI- 
digested pMAL-cRI to produce JC130 (S1061-P1192). A 2.4-kb ApaI-MscI 
fragment obtained by limited digestion of ApaI-linearized JC130 with MscI 
was ligated into ApaI- and XmnI-digested pMAL-c2 producing JC137, the 
109-amino acid construct ($106bVl169) that was used in detailed studies 
on capping activity. The 2.45-kb NcoI-SacI fragment obtained by limited 
digestion of NcoI-linearized JCll l  with SacI was inserted into Ncol- and 
SacI-digested JC137, producing JC140, the long construct (I311-V1169) used 
in detailed capping studies (see Fig. 8). The 2.26-kb ApaI-MscI fragment 
from JC130 was ligated into ApaI- and XmnI-digested pMAL-c2, produc- 
ing JC138 (S1061-Ll1124). JC124, encoding $1061-R1792, was generated 
by inserting the SacI-HindIII fragment of JC97 into SacI- and I-IindIII- 
digested pMAL-cRI vector. JC125, encoding $1061-T1642, was generated 
by inserting the SacI-SalI fragment of JC97 into a SacI- and SalI-digested 
pMAL-cRI vector. JC126, encoding $1061-Y1521, was generated by insert- 
ing the SacI-SalI fragment of Tn3.2 into a SacI- and SalI-digested pMAL- 
cRI vector. JC128, encoding S1061-G1289, was made by deleting the 
NgoMI-XmaI region of JC125 and then ligating the compatible cohesive 
ends. JC142, encoding P1086-V1169, was prepared by inserting BglII- 
HindIII-digested eDNA fragment generated using the PCR product with 
oligonucleotides (aacgacggccggtgccaagc and gaagatctcctggagggaggcc) as 
primers and JC137 as template into BamHI- and HindIII-digested pMAL- 
c2. JC146, encoding R1037-V1169, was prepared by replacing the ApaI- 
XmaI region of JC140 with the ApaI-XmaI fragment of JCl12. JC150, 
encoding R1037-EI149^Pl162-V1169, is a deletion derivative of JC146 de- 
signed to remove the 12-amino acid residues absent in both the CEF tensin 
(accession No. M74165) and gizzard insertin (Weigt et al., 1992). It was 
prepared by PCR-amplified JC146 using male primer and oligonucleotide 
sequence gctctagactgactcaacatagctcctgggctctccactg-ggtgcagcagg as primers, 
and the product was digested with KpnI and XbaI and inserted into the 
KpnI-XbaI region of JC140. Sequence encoding $1061-Hl145 (JC151) was 
PCR amplified from JC150 with oligonucleotides tgtctagaattcagctcaccggag- 
cccggt and gctctagatcagtgcagcaggatgtcagctgg, and was digested with EcoRI 
and XbaI, and ligated with EcoRI-XbaI digested pMAL-cRI. The 2.2-kb 
EcoRI fragment from Tn3.2 encoding N790-Y1521 was cloned into EcoRI- 
digested pGEX-3X and designated as Tn2.2. The EcoRI-EcL136II fragment 
of Tn2.2 was cloned into EcoRI-digested pGEX-3X,producing a construct 
that encodes N790-K1060. Sequences of all of the DNA constructs prepared 
by PCR amplification, as well as the construct encoding N790-K1060, have 
been confirmed by direct sequencing. 
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Immunoprecipitation and Immunoblotting 
CEFs were grown on 100-ram plates, and the lysate was made by extraction 
with RIPA buffer (Davis et al., 1991). The 293 cells, also grown on 100-mm 
plates, were extracted with buffer containing 10 mM phosphate, pH 7.2, 
0.25% Tween 20, 0.1 M NaCI, 10 mM dithiothreitol, 10 mM of EDTA and 
EGTA, 1 /~M leupeptin, 20 /~M E-64, and 1 /~M pepstatin A. After 
clarification, the NaCI concentration in 293 cell lysate was brought up to 
0.5 M. Tensin in CEF and tensin expressed in transiently transfected human 
293 cells were immunoprecipitated from cell lysates with mAb TL-I con- 
jugated to Sepharose CL-4B beads. Immunoprecipitated proteins were 
separated by SDS-PAGE (10% gel), transferred to Immobilon-P (Millipore 
Corp.), and probed with anti-AHl antibody. 

Immunofluorescence Staining 
Cells were fixed and stained 18 h after transfection. Concentration of anti- 
bodies used were: TL-1, 1:500 dilution of ascites fluid; anti-AHl, 1:200 di- 
lution of antiserum; IgG from T(D), 5/~g/mi; and vin 11.5, 1:200 dilution 
of ascites fluid. FITC-conjugated anti-mouse and biotinylated donkey 
anti-rabbit were used at 20/~g/mi. Samples stained with biotinylated anti- 
bodies were washed in phosphate-buffered saline and further incubated with 
Texas red-streptavidin at 20/zg/mi. For actin staining, FITC-phailoidin was 
added along with the Texas red-streptavidin. Fluorescence microscopy was 
performed on an IM35 microscope (Carl Zeiss, Inc., Thoruwood, NY) 
equipped with 40x and 100x objectives. Photographs were taken with 
TMAX 400 film (ASA 800-1600) (Eastman Kodak Co., Rochester, NY). 

Preparation of Tensin Fusion Proteins 
MBP-tensin fusion proteins and GSTotensin fusion proteins were prepared 
and purified according to suppliers' instructions (New England Biolabs and 
Pharmacia, respectively). A protease inhibitor mixture (1/xM leupeptin, 0.3 
#M aprotinin, 1 t~M pepstatin, 20 I~M E-64, and 0.1/~M pefabloc SC) was 
included in all buffers used during purification. Protein concentrations were 
determined with the method of Bradford (1976), with the following excep- 
tion. The concentration of fusion protein 131 l-V1169 was estimated from the 
intensity of stained bands on immunoblots probed with mAb TL-1. In the 
case of fusion proteins R1037-El149^PlI62-VlI69 and S1061-Hl145, pro- 
teins eluted from affinity columns were further purified by ammonium sul- 
fate precipitation and gel filtration chromatography (Superdex-70; Pharma- 
cia LKB Biotechnology, Uppsala, Sweden, in 20 mM Tris-HC1, pH 8, 
0.1 M KC1, 1 mM EGTA, 1 mM EDTA, 10 mM dithiothreitol, 1 #M 
leupeptin, 0.3/zM aprotinin, 1/~M pepstatin, 20/.~M E-64, 0.1/~M pefabloc 
SC, and 0.2 mM PMSF) to remove the major degradative fragments. Quan- 
titation of the final products was based on UV absorbance at 280 nm, using 
extinction coefficients of 6.856 x 104 M-~-cm -I for R1037-El149APl162 - 
Vl169 and 6.6 × 104 M-l.cm - 1 for S1061-H1145, as calculated from the 
amino acid sequence of the fusion proteins according to the method of Gill 
and Von Hippel (1989). 

Actin Polymerization Assays 
Actin was isolated from chicken breast muscle using established methods 
(Spudich and Watt, 1971), followed by chromatography on a Sephacryl 

S-200 column in buffer A. Labeling of the actin with pyrene was carried 
out as described (Kouyama and Mihashi, 1981). Samples of labeled or unla- 
beled G-actin were flash frozen in liquid nitrogen after column purification 
and stored at -80  ° The frozen actin samples were quickly defrosted and 
spun at 100,000 g for 30 min immediately before use (Young et al., 1990). 

In the actin polymerization assays, the concentration of G-actin (10% 
pyrene-labeled) was 0.5 or 2.0 t~M in buffer A. F-actin, used as nuclei in 
the assays, was prepared by polymerizing 20-30/~M G-actin in buffer A 
containing 0.1 M KCI, 2 mM MgCI2 (buffer F) for 30 rain at room temper- 
ature or overnight at 4°C, and then diluting to 3 #M with buffer F and 
equilibrating for 2 h at room temperature before use. 1 rain before the addi- 
tion of F-actin nuclei, a 20× concentrated salt mixture was added to the 
G-actin to bring the salt concentration to 100 mM KCI, 2 mM MgCI2 and 
1 mM EGTA. Aliquots of F-actin were first mixed in a vortex mixer for 30 s, 
and then mixed with tensin fusion protein or an equivalent amount of buffer 
before adding to the G-actin to start polymerization. The initial rate of poly- 
merization was measured by following the increase of fluorescence of the 
pyrene label at room temperature using a fluorescence spectrophotometer 
(650-10S; Perkin-Elmer Corp., Norwalk, CT). 

In the actin depolymerization assay, 20-30 ~tM of G-actin (20 % pyrene- 
labeled) was polymerized and further diluted to 3/~M and equilibrated as 
above. Samples of this pyrene-labeled F-actin were mixed in a vortex mixer 
for 30 s, and then mixed with tensin fusion protein for 10 s before adding 
to buffer F to initiate depolymerization. 

To estimate the critical monomer concentration in the presence of tensin 
fusion proteins, 2 tzM G- or F-actin was mixed with various concentrations 
of protein in buffer E The amounts of G- and F-actins were calculated from 
pyrene fluorescence measured after 24 h. 

Amino Acid Sequence Analysis 
The amino acid composition, molecular weight, isoelectric point (pl), and 
the properties of tensin were analyzed with the use of the MacVector soft- 
ware package. For nucleotide and amino acid sequence searches and com- 
parisons, the software program GENmenu was run on a VAX 8530 com- 
puter at The Johns Hopkins Medical School. 

Results 

Isolation and Sequencing of Chicken Cardiac 
Tensin c D NA 
A l . a m b d a Z a p  II ch i cken  c D N A  l ib ra ry  m a d e  f rom m R N A  
f rom a s ingle  adul t  ch i cken  hea r t  was  ini t ia l ly  s c reened  wi th  
an  aff ini ty-purif ied po lyc lona l  an t ibody  p repa ra t i on ,  T ( D ) ,  
ra i sed  to ch i cken  g izzard  165-kD tens in .  A s ingle  c lone,  
Tn3.2,  was  i so la ted  and  s h o w n  to  con t a in  a 3 .2-kb  e D N A  in-  
ser t  tha t  p roduced  a fus ion  pro te in  r ecogn izab le  by bo th  
T(D)  and  an  m A b  to ch i cken  g izzard  t ens in  (TL-1). E igh t  
m o r e  c lones  were  isola ted f rom the  s ame  l ib ra ry  wi th  the  use  
o f  th ree  nuc leo t ide  p r o b e s  der ived  f rom Tn3.2 (Fig. 1). 
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Figure 1. Tensin cDNA clones 
isolated from a chicken car- 
diac lambda ZaplI library. A 
schematic diagram of tensin 
eDNA (nucleotides 1-6347) is 
shown at the top of the figure. 
The thick line marks the area 
of the open reading frame of 
tensin. Nucleotide 1 is the 
first nucleotide from the 5' end 
of clone JC91, which is the 
clone that extends furthest at 
the 5' end. Clone Tn3.2 was 

the first and only clone isolated with the use of atlinlty-purified polyclonal anti tensin T(D). 32p-labeled 5' ApaI-ApaI fragment of Tn3.2 
(probe 1) was used to isolate clones JC9, JC10, JC13, JC14, and JC16 from the same eDNA library. A mixture of 32p-labeled 5' EcoRI- 
HaelI fragment of JC13 (probe 2) and 3' Hinfl-Hinfl fragment of Tn3.2 (probe 3) were used for the isolation of clones JC42,  JC43, and 
JC91. Alignment of the sequences of these overlapping clones resulted in the 6,347-nucleotide tensin eDNA as shown at the top of the figure. 
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1 gC CGCC TC TCGC TCGGCAGCAGAGAGGAGGAGAGCAC CAACC GGCCACGTGC TGCTC TC TGGC TGGCAGTGAGG 

1 R L S L G S R E E E S T N R P R A A L W L A V R 

75 C C TGGCATC TGCAGGATGAGGAACAGGC AC C GC GC TGC CGGCC CC TTC GGATGTAGGCAC GAGAGACC C C GGA ~GGAT TTC GGAAGC GTC 

25 P G I C R~M~R N R H a A A U P F G C a H E R P R (M~ ~ F G S V 
165 ATGAACCAGGCTGCCACCCCGTGCTCCCCTGCTGTCAACTATGAC-CTGCCATC CCCAGGGCAGAGCATCACCAAGCAGGTGGACACCC CG 

55 ~ N Q A A T P C S P A V N Y E L P S P G Q S I T K Q V D T P AHI 

255 G~C GC CAC GAGGTC C C C CAGAGG TGGGC AGGCACACCGCAAAGCATC CAGGAGCATGAGTGTGACAGCAGC CAC GGAGAGCAGC TGCGAG 

85 D A T R S P R G G Q A H R K A S R S M S V T A A T E S S C E 

345 CTGGACC TGGTGTACATCACGGAGCGCATCATC GCCGTC TCCTACCCCAGCACAGCCGAGGAGCAGAGC TTCCGCAGCAACCTCCGTGAG 

115 L D L V Y 7 T E R I I A V S Y P S T A E E Q S P R S N L R E 

435 GTGGCC CACATGC TGAAGTC CAAGCACGGGGAC AAC TAC GTGC TTTTC AATC TGTCGGAAC GGAGACATGATATCAGCAAAC T TCACC C C 

145 V A H M L K S K H G D N Y V L F N L S E R R H D I S K L H P 

525 AAGGTGC TGGATT TTGGGTGGC C TGACC TGCATACAC C GGCAC TGGAGAAGATC TGCAGCATT TGCAAAGC GATGGAC AC GTGGC TGAAC 

175 K V L D F G W P D L H T P A L E K I C S I C K A M D T W L N 

625 GCGGCGGC TCACAACGTGGTGGTGC TGCACAACAAGGGGAACC GTGGC CGCCTGGGGGTAGTCGTGGC TGCC TACATGCACTACAGCAAT 

205 A A A H N V V V L H N K G N R G R L G V V V A A Y M H Y S N 

705 ATC TCAGC CAGTGC TGAC CAGGC TCTGGACAGGTTTGCCATGAAGCGC TTC TATGAGGACAAAGTGGTGCCGGTGGGACAGCC C TCCCAG 

235 I S A S A D Q A L D R F A M K R F Y E D K V V P V G Q P S Q 

795 AAGAGGTACATCCACTAC TTCAGCGGGC TCC TGTCCGGCAGCATCAAGATGAACAACAAGCCCC TC TTTCTGCACCACGTCATCATGCAC 

265 K R Y I H Y F S G L L S G S I K M N N K P L F L H H V I M H 

885 GGC ATCCC CAAC T TTGAATC GAAAGGC GGTTGTCGGCC C TTCC TGAAGATC TATCAGGCCATGCAGCC CGTC TACACATC GGGGATC TAC 

295 G I P N F E S K G G C R P F L K I Y Q A M Q P V Y T S G I Y 

975 AAC GTGCAGGGGGACAGC CAGAC GGGCATC TGCATCAC CATCGAGCC C GGGC TGC TGC TCAAAGGCGATATC TTGC TC AAGTGC TACCAC 

325 N V Q G D S Q T G I C I T I E P G L L L K G D I L L K C Y H 

1065 AAGAAGTTCCGCAGCCCGACCCGTGATGTGATTTTC CG TGTGCAGTTC CACAC TTGCGC TGTGCACGAC TTGGACATC GTC TT TGGCAAG 

355 K K F R S P T R D V I F R V Q F H T C A V H D L D I V F G K 

1155 GAGGAC C TGGATGAGGCATTCAGAGATGAAC GC TTCCC TGAATATGGAAAGGT GGAGT TC GTGTTC TC C TATGGC C C T GAGAAGATC C AA 

385 E D L D E A F R D E R F P E Y G K V E F V F S Y G P E K I Q 

1245 GGCATGGAGCACC TGGAGAACGGCCCCAGCGTC TCAGTGGAC TACAACACATCCGACC CGC TCATCCGC TGGGACTCC TACGAGAAC TTC 

415 G M E H L E N G P S V S V D Y N T S D P L I R W D S Y E N F ABPH 

1335 AACATC CAGC GTGAGGAC AGCAC C GAGGGGAC C T ~  TGAGC CAGCAC TGC C ~AAGCAC C TGGAAAAAGAGGTTGGGCACACGC AA 

445 N I Q R E D S T E G T W A E P A L P G K H L E K E V G H T Q 

1425 GGGCCCCTGGACGGGAGCCTCTACGCTAAAGTGAAGAAGAAAGACTCCCTGCACGGCAGCATC GGCGC TGTCAACGCCGCCCGCC TCCCC 

475 G P L D G S L Y A K V K K K D S L H G S I G A V N A A R L P 

1515 CTC TCGGCAGCCCCCAAC CACGTGGAGCACACACTGTC GGTGAGCAGC GAC TC GGGCAAC TCCACCGCCTCCACCAAGACCGACCGGACG 

505 L S A A P N H V E H T L S V S S D S G N S T A S T K T D R T 

1605 GATGAGC C GGGGGC TC C C GGAGCACCCAC TGGC CACGC GGTGC TGAGC CCCGAGGAGAAGCGGGAGC TGGACC GTC TC C TGGTC GGC T TC 

535 D E P G A P G A P T G H A V L S P E E K R E L D R L L V G F 

1695 GGC TTGGAGAGCGCGCCGCCCATGCACAACCACGCGCC ~CCCGCACC TGC CCGCC TGCCCGCCGGGCCGGGCCGCCACGTGGTGCCG 

565 G L E S A P P M H N H A P G P A P A R L P A G P G R H V V P 

1785 GCACAGGTGCACGTCAATGGTGC TGGCACCCCAC TGC TGGC TGAGCGGGAGAC GGACATC TTGGATGATGAAC TGCCCAAC CAGGATGGG 

595 A Q V H V N G A G T P L L A E R E T D I L D D E L P N Q D G 

1875 CACAGCGT~AGCCTGGGCACGCTCTCGTCC TTGGATGGCACCACCACTGC CAGTGAGGC TGGC TTCCACGAGGCGCCACGGGTGGGC 

625 H S V G S L G T L S S L D G T T T A S E A G F H E A P R V G 

1965 AGC CTCTCCTCGC TGCCCAACGGCCCGGCTAGC TACAACGGGGCTGAGAAGATGCTGAAGGAAGGGCTTTATGAGGCTGAGCC TC TCTCC 

655 S L S S L P N G P A S Y N G A E K M L K E G L Y E A E P L S 

2055 AAC GGTGC CTACC CC TACAGCAACCAGAATACC CTGATGGGCCACCACC TCCGCGACC CGC TGGCTCACTTACGGCCC TCGGCATCCACA 

685 N G A Y P Y S N ~ N T L M G H H L R D P L A H L R P S A S T AH2 

2145 CAGGAGCACC TGGCCGGATACCC GCAGC GGCAGCCAGC TTCAGCTTCACCGGCC TGGC TCCAGCCCCC GGTGCCACAGCCCTACC TGTAC 

715 Q E H L A G Y P Q R Q P A S A S P A W L Q P P V P Q P Y L Y 

2235 GGTTATGAC C TAC CCAGTGCCCACCGC TCACAGTCC TTCCCGGCCGTGGGGAC GGCCAAGTAC GAAGCAAACC TGGCATTACC GCAGGC T 

745 G Y D L P S A H R S Q S F P A V G T A K Y E A N L A L P Q A 

2325 CCGGC TCGCAGCACCAGCAGCCGCGAGGCCGTGCAGCGGGGCC TGAATTCCTGGCAGCAGCAGGGCGGCAGCC GACCGCCATC CCAGC TG 

775 P A R S T S S R E A V Q R G L N S W Q Q Q G G S R P P S Q L 

2415 CATGATGGCGGCTTGGAGAGCCACAGCCCCAGC TTGTC CAGC TGCAGCCCCCAGCCCAGCCCGC TGCAGCCCATGCCCCCGCACAGCCAC 

805 H D G G L E S H S P S L S S C S P Q P S P L Q P M P P H S H 

2505 AGCATGCC CGAGTTCCCCAGGGC TCCATCGCGCCGGGAGATCGAGCAGTCCATTGAAGCAC TTGATGTCC TCATGC TGGACC TTGCAC CC 

835 S M P E F P R A P S R R E I E Q S I E A L D V L M L D L A P 

2595 TCCGTCCATAAGTC TCAGAGTGTCCCCTC TGCAGCCACCCGCCAGGACAAGCCGGCTGCCATGC TC TC C TCGC TGTCGGCACAGCGCC TC 

865 S V H K S Q S V P S A A T R Q D K P A A M L S S L S A Q R L 

2685 AGCGGTCACTATGC TCAGCCAAC CCCACAAGTGGTCCAGCCCAGGTCC TTTGGCACCTCTGTGGGCAC TGATCCCTTGGCCAAAGCCTAC 

895 S G H Y A Q P T P Q V V Q P R S F G T S V G T D P L A K A Y 

2775 TC TCCTGGTCCAC TGGTTCCTGC GGCTCGAAGTACTGCAGAGCCAGAC TACAC CGTGCATGAGTACCGGGAAACCTATAC TCCC TATAGC 

925 S P G P L V P A A R S T A E P D Y T V H E Y R E T Y T P Y S 

2865 TAC CAGACAGTGC CAGAGCCTCGGAGCTATGGCAGTGCACCAGCGAGCATCC TCCCCC TCAGCGCCTC GTACAGCCCC GCAGGGTC TCAG 

955 Y Q T V P E P R S Y G S A P A S I L P L S A S Y S P A G S Q 

Figure 2. cDNA and deduced amino acid sequences of chicken cardiac tensin. The nucleotide (1-6347) and deduced amino acid sequences 
of the open reading frame (1,792 amino acid residues) of chicken cardiac cDNA are shown. The coding sequence is indicated by uppercase 
letters and the 5' and 3' noncoding sequences represented by lowercase letters. Actin homology domains (AH/ and A/-/2), actin-binding 
protein homology domain (ABPH), as well as the src homology domain (SH2), are underlined. The area in which the high affinity actin 
filament capping domain is located (cap) is highlighted by dark shading. 
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2995 CAGCTTC TCGTC TCCTC CCCGC CATCC CCCAC TGCGCCAGCACAAAGCCAGCTGCC CCACAAGGGACTGGAGAGCTATGAAGACC TGTCG 

985 Q L L V S B P P S P T A P A Q S Q L P H K G L E S Y E D L B 

3045 AGATC GGGAGAAGAGCC "L~-'GAATCTG GAAGGGCTGGTGGC C CACAGGGTGGCAGGGGTGCAGTC CC GGGAGAAGTCCCCA~~ 

1015 R S G E E P L N L E G L V A H R V A G V Q S I B : ~ : ~ ~ ~  

3135 ACCGTCCCTGCCCGAAGGC~2AACCCCCAGCGACAGC CACTATGAGAAGAGCTCACCGGAGC CCGGTTCTC CCCGCAGCCC CACCG~CTC 

1045 l ~ l t l [ - ' l ~ l ~ l ~ l  [ S t  | S t  -" I ' l l  " $ $ t  " l l [ $ t  " l  Z S t  " i l t l l  

3225 TCGCCCGAGGTGGTCAGCACCATCGC GGCCAACCCTGG~J~QGAGGC CCA2%A{2AGCC TCAC C TCCACAGCTACAAGGAAGC CTTC ~ 

1075 S t l l t l t i l l l : l : t 0 1 [ ~ t : i l : t l t - ' l t / $ ~ ' l ~ t l : t l l l  

3315  A ~ ~ C ~ C C C ~ C T ~ C C T C C ~ ~ C ~ C C ~ C C T ~ ~ C C ~ C T C T ~ T ~  

3405 AAACCCCATAAC CCAGC TGACATCCTGCTGCACCCAGT~ TAGAAGGGGAGGC GGGAGC TGACT CTGAAGAAGAGCCCA~ 

1135 m "t ~ l ~ l ~ i t  ' ~ I t  : l ~ ' ~ t  ~ t  ~ t  ~ : ~ : t  D ~ t  ~ ~ ~ I  

3495 TATGTTGAGT~AGTGGcCAGGA~AGCCACGACTGGCAGGG~AGGGAACCTTCcA~CTGCCCAGCCTGTGGGCCTG~TACCTG~ 
1165 ~ A R T A T T G R A G N L P A A Q P V G L E V P A R 

3585 AATGGTGCCTTTGGCAACTCCTTCACTGTGCCCAGCCCCGTCTCTACCAGCAGCC•CATCCACAGCGTGGACGGTGCCTCGCTCCGCAGC 
1195 N G A F G N S F T V P S P V S T B S P I H S V D G A S L R S 

3675 TACCCATCGGAGGGCAGCCCCCACGGCACGGTTACACCTCC CCACGCTGTAGCTGAGACAGCTTACCGGT~CCCATGGTCTCACAGACG 

1225 Y P 8 E G S P H G T V T P P H A V A E T A Y R B P M V B Q T 

3765 CCCTCTGCTCACAGCAGCTACCA•ACCTCGTCTCCATCATCCTTCCAAGCGG•AACACTGGGCTCTCCCTATGCCAGCCCTGACTACCCT 
1255 P S A H B S Y Q T S B P S S F Q A G T L G B P Y A S P D Y P 

3855 GACGGCCGAGCCGGCTTCCAGCCGGACCCCCAGGCTCGG~AGCAGCCACAGGT~AGTGTGGTGGGTGTCCACGCGCT~CA~CCC 
1285 D G R A G F Q P D P Q A R Q Q P Q V S V V G V H A L P G B P 

3945 CGCACCC TGCACCGGACAGTGGCGJkCCAACACGCCGCCCAGCCCTGGCTTTGGGCGAAGAGCTGC CAACC CCGCTGTTGC CAGCGTGCCT 

1315 R T L ~r R T V A T N T P P S P G F G R R A A N P A V A S V P 

4035 GGCAGCC CTGGC CTGGGCCGGCACACC GTGTCCCCC CACGCGCCAC CGGGGAGCCC CAGCC TTGC CCGGCATCAGATGGCAGCCGT~CT 

1345 G S P G L G X% H T V S P H A P P G B P S L A R H Q M A A V P 

4125 CCCGGCAGcCCCATGTACGGCTACTCCAGCCCG•AAGAGAGGCGCCCGACGCTGTCCCGGCAGAGCAGCGCGTCCGGCTACCAGCCTCCC 

1375 P G S P M Y G Y S S P E E R I% P T L S R Q s S A S G Y Q P P 

4215 TCCACGCCGTCCTTCCC CGTCTCACCGGCGTACTATCCCGGCACCAGCACGCCGCACTCCTCCTCCCCGGACTCCGCCGC CTACC GCCAG 

1405 B T P S F P V B P A Y Y P G T B T P H 8 S S P D S A A Y R Q 

4305 GGCAGCC CCACTCCGCAGCCCGCGCTGCCTGAGAAGAGGCGGATGTCAGCC GGTGAGCGCTCCAACAGCCTGCCC~CTAT~C~TC 

1435 G S P T P Q P A L P E K R R M B A G E R S N S L P N Y A T V 

4395 AACGGCAAGGCC TCCTCGCCCCTCTCCAGTGGCATGTCCAGCCCCAGCAGCGGCAGCG~CTGTGGC TTT CTCCCACAC CCT GCCGGA'~-F~-C 

1465 N G K A S S P L S B G M S S P S S G B A V A F B H T L P D F 

4485 ATCAGCC CC GAGACTC GC GC CAACGTGAAGTTTGTGCAGGACACTT CCATC CAAGT TTTC CAT GC CAGACAGTAC TGGTACAAGC CAGAC 

1495 B K F B M P D I B P E T R A N V K F V Q D T S K Y W Y K P D 

4575 ATCTCCC GGGACCAAGCCATCGCGCTGCTGAAGGACAGG42AGCCAGGGGCTTTCATCATCC GGGACAGCCACTCCTTCCGGGGAGCCTAT 

1525 I S R D Q A I A L L K D R E P O A F X 7 R D S H S F R G A Y 

4665 GGC CTTGC CATGAAAGT C GCTT C CCCAC CTCC CAC C GTCAT GCAGCAGAACAAGAAAGGAGACAT TAC CAATGAAC TGGT GAGGCACTTC 

1555 G L A M K V A S P P P T V M 0 Q N ~ K G ~) I T N E L V ~ ~ F SH2 

4755 CTCATCQAGACCAGCCCACGGGGTGTGAAACTAAAAGGATGCCCcAATGLAGCCTAATTTTGGCTGCTTGT~GGCTCTGGT~TACCAGCAC 

1585 L I E T S P R G V K L K G C ~ N E P N F G C L S A L V Y O H 

4845 TCCATCATGCCTCTGGC CCTGCCCTGCAAGCTGGTCATTCCTQACC GAGATCCCATGGAGGAGAAGAAAGATGCTGCGTC QAC~C~C 

1615 S I M P L A L P C K L ~ I P ~ R D P M E E K K D A A S T T N 

4935 TCAGCCACAGACCTTCTCAAACAGGGTGCGGCCTGCAATGTCCTTTTCATCAATTCAGTGGAGATGGAATCGCTCA~CCC~A~C 

1645 S A T D L L K Q G A A C N V L F I N S V E M E S L T G P Q A 

5025 ATCTCCAAGGCTGTGGCAGAGACATTGGTGGC TQATCCCACGCCGACCGCTACGATCGTCCACTT CAAAGTCTCTGCACAGGGCAT~CC 

1675 I S K A V A E T L V A D P T P T A T I V H F K V B A Q G I T 

5115 TTAACAGACAACCAGAGGAAACTGTTCTTCCGACGACACTATCCTCTCAATACTGTCACCTTCTGTGATTTGGAC CCCCAGGAACGAAAG 

1705 L T D N Q R K L F F R R H Y P L N T V T F C D L D P Q E R K 

5205 TGGACTAA~ACT~ACGGcAGTGGCCcAG~CAAGCTCTTCGGCTTCGTGGCCAGG~AGCAAGGGAGCAC~C~G~CGTCT~CACCTC 
1735 W T K T D G B G P A K L F G F V A R K Q G S T T E N V C H L 

5295 ~z-z-~G~AGAGCTG~ACCCTQACCAGCCGGCTGCGGCCATCGTCAACTTTGTCTCCAGGGTCATGCTTG~ATCCG~CCAGAA~T~c 

1765 F A E L D P D Q P A A A I V N F V S R V M L G B G Q K R * 

5385 ~gtgcttgc~gtgattctt~aattttggagaag~acttgga~ctg~t~c~g&aggagtgtgaggaagtgcattgtggga~a~g~gt 
5475 gaattt~g~ggg~g~aagggttg~aatt~cg~aggaaaacagcaaacaacaac~aaaaaccaaaacaaaaccctaagaactc~acaca 
5565 agcttaacaca~caGaag&&t~aaa~&~&~a~tat~t&a~agag~&tgaa~c&acgcc&aac~ggga~&gg&t~c~at~c&t~ 
5655 cccaccgca~ggaaggtgaccaaagt~aaggtggcagcg&g~ggagttcccagctttc~cat~gcag~cct~aggcctcgccaa~g~ 
5745 gatg~tg~tcccggc~gaa~ac~ggg~c~c~atttggagggggaaaaaaaa~gatg~aacagcaaaagccatga~a~aagccttcatcg 
5835  gtgaacg~:~gctgcg~g~ttga~&c~tacagg~gataaagc~c~gccgc~gc~gggctc&g~ctgcaggat~c~ggaggag~tg 
5925  ccg~gg~aaactccc~tt:gctgtgc~gcagcagagggtcc~gccagcttacaccaaaacc~gctg&ccaccc~gc~ggggta~gcaacg 
6015 gc~ggtccca&a~cctc~tgtc~tgggt~ttggctt~gg~a~cct~ag~:gctgg~agagcccagcacacgttgagacatca 
6105 cga~rtc~a~c&cagagggg~aatg~ag~at~t~a~tcctggg~gg~tcct~t~c&tg~tggaggaggaggatgctcctgggct 
6195 gctc~ccca~tttCccct~t~cctccf:gccacc&~tcctcttt~aca~rttttc~cct~rtg~cct~rtcacacgttctcttaac&ggaaaa 
6285 aaaaaaacctg&ggattaccgaggtac~gaggaagt~ctgcatg~caaaatccgcatagagaag 6347 

Figure 2. 
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Alignment of the sequences of the nine overlapping clones 
resulted in a composite tensin cDNA sequence of 6,347 
nucleotides (Fig. 2). This sequence contains a single open 
reading frame (ORF) of 5,379 nucleotides, starting from 
nucleotide 3 and ending with the termination codon at 
nucleotide 5,381. Because cardiac tensin had not yet been 
isolated, and attempts to determine the NH2-terminal of 
purified gizzard 215-kD tensin did not yield any useful infor- 
mation (presumably because of a blocked NH2 terminus), 
the NH2-terminal amino acid of cardiac tensin cannot be 
assigned at this time. To establish a point of reference, the 
arginine at the very beginning of the ORF is tentatively 
designated as amino acid residue I for cardiac tensin. The 
complete sequence of chicken cardiac tensin has been depos- 
ited in GenBank (accession No. L06662), 

Examination of the amino acid composition deduced from 
tensin cDNA sequence indicated higher contents of proline 
(10.7 %) and serine (11.9 %) as compared to those of average 
vertebrate proteins (Doolittle, 1986). These high values are 
consistent with the results of amino acid composition analy- 
sis performed on 215- and 165-kD tensin isolated from 
chicken gizzard (Buffer, J. A., and S. Lin, unpublished 
results). These two amino acids are unevenly distributed in 
the cardiac tensin sequence. Short stretches of high concen- 
trations of proline or serine (20-30 % of each) are found be- 
tween amino acid residues 800 and 1,500. Of the 17 cysteine 
residues in the tensin sequence, all but one (C819) are dis- 
tributed near the NH2 or the COOH terminus of the mole- 
cule. The significance of these observations is not clear at 
this time. 

The calculated overall pI of the entire ORF of cardiac ten- 
sin sequence was 7.94, whereas that of the sequence starting 
from M55 is 7.22. Analysis ofpI by small sections (50 amino 
acids) of tensin sequence showed that the molecule can be 
divided into three domains on the basis of acidity. Both the 
NH2-terminal and COOH-terminal portions of the mole- 
cule are highly basic (pI > 9), while the middle portion of 
the molecule (from amino acid residues 350-1,300) is highly 
acidic (pI of ,,05). 41% of the amino acids in tensin are non- 
polar, which falls in the range normal for nonmembrane pro- 
teins. 

Unlike other large proteins such as dystrophin and spec- 
trin, the amino acid sequence of tensin does not appear to 
be composed of repeated domains, except for four short 
stretches between residues 1,305 and 1,383 (Fig. 3). 

Size and Distribution of  Tensin raRNA 
in Chicken Tissues 

Previous studies involving immunoblotting and immunofluo- 
rescence staining indicated that tensin is present at relatively 
high levels in fibroblasts, gizzard, intestine, and heart, and 
at lower levels in skeletal muscles, brain, and liver (Risinger, 
M. A., and S. Lin, unpublished results). For comparison at 
a different level, Northern blot analyses were performed on 
total RNA from various chicken cells and tissues, using a 
3.2-kb probe corresponding to the cDNA insert of Tn3.2. As 
shown in Fig. 4, the probe hybridized to a 10-kb RNA spe- 
cies in samples from gizzard, heart, and CEE In addition, 
an 8-kb RNA species was detected in the gizzard sample. All 
other tissues tested showed only a faint 10-kb band, suggest- 
ing lower levels of expression of tensin in these tissues. It is 
interesting that in all cases, the size of tensin RNA was much 

.305 v. A o, o s ,I T 

Figure 3. Repeated motifs in tensin sequence. The numbers at the 
left indicate the numbering of the first amino acid residues of each 
repeat in the tensin sequence. Homologous residues are outlined by 
the boxes. 

larger than needed to encode a protein of 215 kD. Since the 
total length of cardiac tensin cDNA we have isolated so far 
is 6.3 kb, much of the noncoding sequences have apparently 
not been obtained. 

Expression of Chicken Cardiac Tensin in Transiently 
Transfected Mammalian Cells 

The 5,379 nucleotides of the ORF of chicken cardiac tensin 
cDNA can encode a polypeptide with a calculated molecular 
weight of 193,000. This value is somewhat less than the mo- 
lecular weight of 215,000 estimated from the electrophoretic 
mobility of tensin from various tissues on SDS-polyacryl- 
amide gels (Buffer, J. A., and S. Lin, unpublished results). 

Figure 4. Detection of tensin transcripts in chicken tissues. On the 
Northern blot, samples of total RNA (30 #g) from chicken embryo 
fibroblasts (CEF) and chicken tissues as indicated were hybridized 
with a 32P-labeled tensin probe (clone Tn3.2). The blot was 
washed under high stringency conditions and autoradiographed. 
The gizzard sample shows two bands of ,,o10 and 8 kb, while the 
heart and CEF samples show only the 10-kb band. Molecular sizes 
were estimated according to the migration of RNA ladder size 
markers, shown on the right (from top to bottom: 9.50, 7.50, 4.40, 
2.40, and 1.35 kb). 
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For a more direct comparison of the size of the polypeptide 
encoded by the cardiac tensin cDNA with that ofCEF tensin, 
human embryonic kidney cells (293 cells) were transfected 
with tensin eDNA. Protein expressed in the transiently 
transfected cells and in CEFs (serving as a control) was im- 
munoprecipitated with mAb TL-1 and analyzed by SDS- 
PAGE followed by immunoblotting with polyclonal antibod- 
ies raised to a synthetic peptide with the deduced sequence 
of the AH1 domain (see Discussion for detailed description) 
of cardiac tensin. The immunoblots show that reactive poly- 
peptides with similar electrophoretic mobility as CEF tensin 
(Mr "~215,000) were present in the 293 cell lysates pre- 
pared from both a full-length and a truncated (initiated from 
M55) tensin constructs, but not in the null-transfected 293 
cell lysate (Fig. 5). This result shows that the coding region 
of the cardiac tensin cDNA we have obtained is probably 
complete, and that the AH1 region encoded by the nucleotide 
sequence near the beginning of the ORF was translated. 

To test for biological activity of the cardiac tensin ex- 
pressed in the human 293 kidney cells, immunolocalization 
experiments were performed. Over a background of non- 
specific nuclear staining, filamentous structures in trans- 
fected 293 cells were brightly stained by the chicken-specific 
antitensin mAb TL-1 (an example is shown in Fig. 6 a). Fur- 
thermore, under conditions where the nontransfected cells 
showed only low levels of F-actin staining, the filamentous 
structures stained by TL-1 in transfected 293 cells were also 
brightly stained by phalloidin (compare Fig. 6, a vs b), sug- 
gesting that the expressed tensin promotes the formation of 
these actin filament bundles. Similarly, anti-AH1 antibodies 
also stained the structures stained by TL-1 in the expressed 
chicken tensin in the cells (Fig. 6, c and d). 

Because human 293 kidney cells do not have well-defined 

Figure 5. Determination of molecu- 
lar weight of the cardiac tensin ex- 
pressed in cells transfected with ten- 
sin eukaryotic expression constructs. 
Two constructs were made: one con- 
tains the entire tensin sequence and 
the other has a 154-nucleotide dele- 
tion at the 5' end. The 3' SphI-XhoI 
region of JC43 was replaced by the 3' 
SphI-Xhol region of JC42. The 
eDNA insert of the resulting con- 
struct, JC97, was ligated into Xbal- 
XhoI-digested eukaryotic expression 
vector pCIS, and it was designated 
JC101. JC101 does not contain 
nucleotides 1-154, and it is initiated 
from M55, which is the third in- 
frame methionine. The full-length 
construct, JCIO0, was prepared by 
replacing the 5' XbaI-BsmI region of 
JC97 with that of JC91, and ligating 
into XbaI-XhoI-digested pCIS. Hu- 
man 293 cells were transiently trans- 
fected with the two expression con- 
structs as described in Materials and 
Methods. Lane 1, CEF; lane 2, 

JC100-transfected 293 cells; lane 3, JC101-transfected 293 cells; 
lane 4, null-transfected 293 cells. Relative molecular mass markers 
are (from top to bottom) 200, 55, and 22 kd. 

focal adhesions, structures that have been shown in fibro- 
blasts to be enriched in tensin (Lin et al., 1989; Lin, 1993) 
we extended the immunolocalization study on expressed 
cardiac tensin to mouse 3T3 fibroblasts. As shown in Fig. 7, 
a and b, while all cells in the field showed typical phalloidin- 
stained actin stress fibers, only the transfected cell in the cen- 
ter showed intense staining at the ends of stress fibers with 
mAb TL-1. Colocalization of tcnsin and vinculin in another 
double hnmunofluorescence staining experiment confirmed 
that the expressed chicken cardiac tensin was incorporated 
into the focal adhesions of the transfected cells (Fig. 7, c and 
d). These results indicate that certain functional domain(s) 
in tensin required for this type of cellular distribution is con- 
served across the different species and cell types studied 
here. 

Studies on the High Affinity F-Actin Capping Domain 
in Tensin 

Tensin isolated from chicken gizzard has previously been 
shown to have high affinity actin capping.activity, reflecting 
a dissociation constant (Kd) for the barbed end of F-actin in 
the nanomolar range (Butler, J. A., and S. Lin, unpublished 
results). To locate the tensin domain responsible for this ac- 
tivity, a large number of fusion proteins from constructs con- 
taining different regions of tensin sequence were produced 
in bacteria and assayed for ability to inhibit barbed-end poly- 
merization of pyrene-labeled actin (Fig. 8 A). In this survey 
part of the study, the fusion proteins scored "+" were able 
to reduce the initial rate of actin polymerization at the barbed 
end by >95 % as compared to the control, while those scored 
" - "  inhibited polymerization by <5 %. As indicated in Fig. 
8 A, fusion proteins containing the NH2-terminal half of 
tensin up to residue K1060, which included regions of ho- 
mology to actin and actin-binding protein sequences (see 
Discussion for details), had no significant activity. In con- 
wast, all fusion proteins containing the COOH-terminal half 
(I311-R1792 and S1061-R1792) or the middle portion of ten- 
sin (I31 l-V1169 and N790-Y1521) were effective in inhibiting 
actin polymerization. Experiments on fusion proteins with 
further deletions showed that the high affinity actin capping 
domain definitely lies within the region of R1037-V1169. Fur- 
thermore, those from shorter constructs including S1061- 
V1169 and S1061-H1145 were also capable of complete inhi- 
bition of actin polymerization and depolymerization (see 
also Fig. 10 for additional data on the latter construct). In 
contrast, the region immediately adjacent to the NH2- 
terminal side of the actin capping domain, N790-K1060, did 
not exhibit any significant activity (see also Fig. 10). 
Coomassie blue-stained gels of some of the fusion protein 
preparations purified by affinity chromatography or a combi- 
nation of affinity and gel filtration chromatography were 
shown in Fig. 8, B and C. Most of the fusion proteins ap- 
peared to be proteolytically degraded, notably S1061-H1145, 
the shortest active fusion protein, while the inactive N790- 
K1060 appeared to be intact (Fig. 8 C). 

Two of the fusion proteins from constructs that inhibited 
actin polymerization in the above experiments were studied 
in greater detail (Fig. 9). The first is from a long construct 
(I311-Vl169), which also covers a region (L419-M443) ho- 
mologous to the actin-bindlng domain found in a number of 
actin cross-linking proteins (see Fig. 2 and Discussion for 
details). The other fusion protein is from a short construct 
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Figure 7. Colocalization of tensin with vinculin in transiently transfected mouse 3T3 cells. Cells transiently transfected with JC101 were 
double stained with TL-I for the expressed chicken tensin (a) and phalloidin for F-aetin (b), or they were double stained with polyelonal 
antibodies to tensin T(D) (c), and antivinculin (d). The micrographs showed that both polyclonal antibodies to tensin and mAb to vineulin- 
stained adhesion plaques in the transfected cells. Bar, 20/zm. 

(R1037-El149APl162-VlI69), which lacks the 12-amino 
acid stretch absent in the insertin sequence previously 
reported by Weigt et al. (1992) (see Discussion for details). 
In both cases, nanomolar concentrations of the proteins 
effectively inhibited actin polymerization under conditions 
where monomer addition was limited to the barbed end (at 
0.5/zM G-actin); inhibition was essentially complete at the 
higher concentrations of fusion proteins used (Fig. 9, A and 
D). Analysis of the kinetic data from these polymerization 
experiments gave Kds of '~1 and 3 nM for the long and 
short fusion proteins, respectively. Similarly, nanomolar 
concentrations of the two fusion proteins inhibited depoly- 
merization ofactin (Fig. 9, B and E). Furthermore, both pro- 
teins were capable of shifting the critical actin concentration 
from 0.1 #M to 0.5-0.6 #M (Fig. 9, C and F). All of these 
results are quite comparable to the Kd of 2-5 nM obtained 
with tensin isolated from chicken gizzard (Buffer, J. A., and 
S. Lin, unpublished results), and with another actin capping 
protein isolated from chicken skeletal muscle (Casella et al., 
1986). 

After the completion of the above experiments and while 
this manuscript was in preparation, Lo et al. (1994a) reported 
the identification of T936-R1037 (888-989 in their number- 

ing system) as the domain responsible for tensin's ability to 
inhibit actin polymerization. This apparent discrepancy be- 
tween their conclusion and ours prompted us to carry out a 
side-by-side comparison of fusion proteins from three of our 
constructs: RI037-El149APl162-Vl169, which had high af- 
finity actin capping activity in the previous experiments (Fig. 
9); a shorter construct, S1061-Hl145; and N790-K1060, 
which encompasses the region of interest (T936-R1037) de- 
scribed by Lo et al. (1994a). In this set of experiments, activ- 
ities were measured both by following polymerization of 
G-actin at concentrations below (0.5 #M) and above (2 #M) 
the critical concentration at the pointed end (0.8/zM under 
the salt conditions used in these experiments), as well as by 
following depolymerization ofactin. As shown in Fig. 10 A, 
at 0.5 /zM G-actin, R1037-El149APl162-Vl169 and S1061- 
Hl145 completely inhibited actin polymerization, whereas 
N790-K1060 did not have any appreciable effect. Similar re- 
suits were obtained with the three fusion proteins in poly- 
merization assays at 2/zM G-actin (Fig. 10 B). The residual 
level of actin polymerization observed in the presence of 
the two active fusion proteins under these conditions was 
presumably from monomer addition at the pointed ends 
of filaments. The lack of significant inhibitory effect by 
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Figure 8. Schematic diagram of bacterial fusion proteins and their F-actin 
capping activity. The preparation of all of the constructs and the methods 
of  purification of the fusion proteins are described in Materials and 
Methods. (A) Summary of fusion constructs tested for actin capping activ- 
ity. All fusion proteins were tested for barbed-end actin capping activity 
using 0.5 #M G-actin in the presence of 0.1 #M of F-actin nuclei, as de- 
scribed in Materials and Methods. The fusion constructs that were able 
to inhibit actin polymerization by >95% were scored as ,+7  whereas 
those that did not produce >5 % of inhibition at >1 #M were scored as 
" -  Y The box with the dotted line is drawn around the minimal sequence 
required for activity. (B) Coomassie blue-stained 4-12 % SDS-PAGE gels 
containing fusion proteins purified by affinity chromatography. The mo- 
lecular mass markers from top to bottom are: 200, 116.3, 97.4, 66.3, and 
55.4 kD. (C) Coomassie blue-stained 10% SDS-PAGE gels containing fu- 
sion proteins purified by affinity chromatography or by gel filtration in ad- 
dition to affinity chromatography (see Materials and Methods). The mo- 
lecular mass markers (from top to bottom) are 200, 116.3, 97.4, 66.3, and 
45 kD. 

N790-K1060 was again demonstrated in an experiment 
in which R1037-El149^Pl162-Vl169 and S1061-Hl145 ef- 
fectively blocked depolymerization of actin (Fig. 10 C). In 
conclusion, the high affinity actin capping domain of tensin 
is clearly within amino acid residues R1037-Vl169 and not 
T936-R1037. Furthermore, although the presence of degra- 
dative products in S1061-Hl145 (Fig. 8 C) precluded an ac- 
curate comparison of its specific activity with that of R1037- 
El149APl162-Vl169, these experiments further narrow down 
the location of the essential sequence for capping activity to 
the 85 amino acid residues in tensin. 

Discussion 

Several lines of evidence strongly support the authenticity of 
the cardiac tensin cDNA described here. First, the amino 

acid composition deduced from the cDNA is in good agree- 
merit with that of the 215-kD tensin purified from chicken 
gizzard (Butler, J. A., and S. Lin, unpublished results). Sec- 
ond, the cDNA was able to initiate translation of a polypep- 
tide (M55-R1792) with similar electrophoretic mobility as 
that of CEF tensin on SDS-PAGE. Third, M55-R1792 and 
CEF tensin both reacted with polyclonal and monoclonal an- 
tibodies to gizzard tensin, as well as antibodies to the AH1 
region (M49-T78) of the deduced sequence of cardiac tensin. 
Fourth, M55-R1792 was colocalized with vinculin to adhe- 
sion plaques of 3T3 cells. Finally, tensin fusion proteins ex- 
hibit all of the high affinity actin capping characteristics of 
purified gizzard tensin. 

We do not yet know whether the total length of tensin 
cDNA we have isolated covers the complete sequence of the 
cardiac tensin molecule because the NH: terminus of the 

Figure 9, Effects of tensin fusion proteins on actin polymerization and depolymerization. Conditions used for assays are described in 
Materials and Methods. For the polymerization assays, 0.5 t~M of G-actin was used. (A) Inhibition of the rate of barbed-end actin polymer- 
ization in the presence of I311-Vl169 at the indicated concentrations, expressed as the percem of inhibition as compared to the control 
sample where no tensin fusion protein was added. (B) Depolymerization of F-actin in the presence (a) or absence (b) of 10 nM of I31 l-V1169. 
(C) Effect of I31 l-V1169 on the critical monomer concentration of actin. (D) Inhibition of the initial rate of polymerization in the presence 
of R1037- El149APl162-Vl169 at the indicated concentrations. Insert shows the graphical determination of dissociation constant for the 
interaction of the protein with the barbed ends of F-actin. (E) Depolymerization of F-actin in the presence of 100 nM (a), 10 raM (b), 
or absence (c) of R1037-E1149API162-Vl169. (F) Effect of R1037-El149^PlI62-V1169 on the critical monomer concentration of actin. 
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Figure 10. Direct comparison of the effects of three tensin fusion proteins on actin polymerization and depolymerization. The samples 
contained N790-KI060 (filled circles), R1037-El149^Pl162-VlI69 (open square), S1061-H1145 (filled square), and the control (open cir- 
cle). (.4) Actin polymerization was measured at 0.5 #~M of G-actin in the absence or presence of 0.5 #M N790-K1060, 90 nM R1037- 
El149APl162-Vl169, or 1.8 #M S1061-Hl145. (B) Actin polymerization was measured at 2 #M of G-actin in the absence or presence of 
2.5 #M N790-KI060, 0.2 #M R1037-El149APl162-VlI69, or 2.5 #M S1061-Hl145. (C) Actin depolymerization in the absence or pres- 
ence of the same concentrations of fusion proteins as in (B). Note that in these experiments, the concentrations given for SI060-HI145 
are overestimates caused by the presence of substantial amounts of degradative products (see Fig. 8 C). 

protein is unknown. However, the electrophoretic mobility 
of the immunoreactive polypeptide expressed in transfected 
cells indicates that the coding region of tensin eDNA should 
be close to full length. Since the size of chicken cardiac 
mRNA on Northern blots (10 kb) is larger than the 6.3 kb 
of tensin eDNA obtained in the present study, much of the 
noncoding sequence has clearly not been obtained. Recently, 
a 4.8-kb eDNA clone with sequences that overlap chicken 
cardiac tensin from nucleotides 4,550 to 6,347 was isolated 
from a chicken chondrocyte library (Van de Werken et al., 
1993). The extraordinarily long 3' noncoding sequence (4 
kb) would make the total length of tensin mRNA *10 kb. 

The sequence of chicken cardiac tensin (GenBank acces- 
sion No. I.,06662) has been compared to all other entries de- 
posited in GenBank and in a report published after our se- 
quencing work has been completed (Lo et al., 1994b). In 
general, our sequence is in good agreement with all other 
available tensin sequences, except for some minor discrepan- 
cies that might be artifacts of eDNA synthesis. However, two 
significant sequence variations were also detected. The more 
notable one is a stretch of 12 amino acids (Ll150-El161) in 
cardiac tensin that is not found in the CEF tensin (M74165) 
or gizzard insertin (Weigt et al., 1992; see below for details), 
a presumptive degradation product of tensin. This short seg- 
ment in the cardiac tensin sequence is unlikely to be a clon- 
ing artifact because it was present in two independent eDNA 
clones (Tn3.2 and JC42), and it is present in the latest en- 
try for chicken cardiac tensin from another laboratory 
(M96625; Lo et al., 1994b). The other notable variation is 
that the other tensin sequences (M96625 and M74165) lack 
the first 35 amino acids, including the first methionine, M30, 

in our ORE This variation led Lo et al. (1994b) to designate 
M49 as the NH2-terminal of their sequence. According to 
Kozak (1989), the requirement for a strong initiation site is 
having either A or G at position -3 ,  and less importantly, 
G at position +4. M49 has G at the +4 position but C at 
the - 3  position, making it less likely an initiation site. In 
contrast, both M30 and M55 have A or G at position - 3  and 
A at position +4, making them more likely to be initiation 
sites. A 5'-deleted construct, in which the coding sequence 
for M30 and M49 was missing, expressed a polypeptide rec- 
ognized by tensin antibodies in transfected 293 cells, sug- 
gesting that M55 can serve as an initiation site. 

A most significant advance stemming from the molecular 
cloning work is our finding that a short sequence of ~120 
amino acids (R1037-El149^Pl162-Vl169) can produce all of 
the typical effects of a high affinity F-actin capping protein-  
complete inhibition of barbed-end polymerization with a Ks 
in the nanomolar range, inhibition of depolymerization, and 
shifting of critical monomer concentration. To our knowl- 
edge, this is the first time a single, short domain with com- 
parable F-actin-capping activity as the native protein has 
ever been identified. Furthermore, experiments with the fu- 
sion protein containing S1061-Hl145 showed that the se- 
quence essential for capping activity can be reduced to 85 
residues, although the presence of degradative products 
precluded an accurate comparison of its specific activity 
with that of fusion proteins with longer sequences. 

Wegner and co-workers (Ruhnau et al., 1989) described 
a polypeptide designated as "insertin, with properties simi- 
lar to a group of proteolytic fragments of gizzard tensin 
(HA1 peptides) previously reported by our laboratory (Wil- 
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kins and Lin, 1986). To explain why their preparation in- 
hibited barbed-end actin elongation at a maximal level of 
80%, they proposed a model in which insertin binds to one 
of the actin subunits at the end of a filament, inhibiting 
monomer addition to this subunit while allowing monomer 
insertion between this protein and the other actin subunit. 
The amino acid sequence of insertin has since been deter- 
mined (Weigt et al., 1992). It is almost identical to the amino 
acid sequence of the CEF tensin sequence in the GenBank 
(accession No. M74165), and it is also missing the 12-amino 
acid stretch present in the region containing the high affinity 
capping domain of our cardiac tensin sequence. To test 
whether the absence of these 12 amino acids causes a change 
in mechanism from capping to "inserting; we made a con- 
struct (R1037-El149AP1162-V1169) that lacks these residues. 
As stated above, we found that the fusion protein from this 
construct has all of the properties of a typical actin filament 
capping factor, completely inhibiting barbed end elongation 
and shifting critical concentration at substoichiometric con- 
centrations. Our data, therefore, do not support the insertin 
model. It is possible that previous experiments on insertin 
were affected by such limiting factors as the extreme instabil- 
ity of the samples used (Ruhnau et al., 1989). 

In the recent study of Lo et al. (1994a), fusion proteins 
from two short constructs (p27 and pll) containing se- 
quences within the "insertin " sequence of Weigt et al. (1992) 
were prepared, and their effects on actin polymerization 
were studied. They concluded that the retardation of actin 
polymerization at the barbed-end, or "insertin, ~ activity of 
tensin was associated with residues T936-R1037 (888-989 in 
their numbering system). In direct contrast to their conclu- 
sion, we found that a fusion protein (N790-K1060) that en- 
compasses that particular region of the tensin molecule has 
no significant inhibitory activity on actin polymerization or 
depolymerization, even at high concentrations, while all fu- 
sion proteins containing the region S1061-Hl145 had high 
levels of activity (Figs. 8-10). Since Lo et al. (1994a) showed 
only a single time course demonstrating partial retardation 

of polymerization rate by their fusion protein containing 
I936-R1037, their result probably reflects some effect un- 
related to the high affinity actin capping activity described 
in this paper. Moreover, their study did not include any fu- 
sion protein that would allow them to test whether the se- 
quence of R1037-V1169 has any effect on actin polymeriza- 
tion. It is also important to note that in their study, even the 
full-length recombinant tensin apparently had a Kd for in- 
teraction with the barbed ends of F-actin about an order of 
magnitude higher than the/~'s of 1 and 3 nM we obtained 
for I31 l-V1169 and R1037-E1149AP1162-V1169, respectively. 
Their model of tensin-actin interaction involving an "inser- 
tin-like" mechanism for explaining their results (incomplete 
inhibition of polymerization and no shift in critical monomer 
concentration) with their tensin preparations is also contra- 
dicted by the data presented in this paper. 

Sequence analysis of the deduced amino acid sequence of 
the high affinity capping domain of cardiac tensin revealed 
a number of interesting features (Fig. 11). First, there is a 
tandem repeat (12 identical and 4 homologous residues out 
of 36) spanning S1061 to H1096 and S l l l l  to Hl145. While 
the significance of this repeat remains to be determined, one 
possibility is that each of the repeat segments could bind one 
of the two actin subunits at the barbed end of an actin fila- 
ment, thereby inhibiting monomer association and dissocia- 
tion in a manner similar to that proposed for gelsolin 
(McLaughlin et al., 1993). Second, the overall cardiac ten- 
sin sequence is unusual in having nine PEST regions (Table 
I), conditional signals for rapid intraceUular proteolysis 
found in many proteins involved in signal transduction 
(Rechsteiner, 1990). Of these nine regions, three are in the 
vicinity of the capping domain: one near the beginning, an- 
other at the middle between the repeats, and a third at the 
end of the capping domain. The third region, with 50% 
acidic residues, is of particular interest because it has the 
highest score of all of PEST regions in tensin, and it covers 
the 12 residues missing in CEF tensin and gizzard insertin. 
Third, within or close to the capping domain are several con- 

Figure 11. Structural features and sequence homology in the vicinity of the tensin F-actin capping domain. Indicated in the diagram are 
the PEST regions (dotted bars), as well as the 12 residues missing in CEF tensin and gizzard insertin (striped bars). Also indicated are 
annotation of some of the amino acid residues (1,050, 1,075, etc.) and consensus phosphorylation sites for cdc-28 (KSP and KTP; Langan, 
1978), tyrosine kinase (l~psDshY; Cooper et al., 1984), and protein kinase C (SpR and HSyK; Kishimoto et al., 1985). The lower half 
of the figure shows sequence alignment of the repeated sequence in the tensin capping domain. Identical residues in the repeated sequence 
are connected by bars and conservative substitutions are connected by double dots. A Gap (-)  was inserted for best alignment. 
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Table L PEST Sequences of Cardiac Tensin 

PEST 
Residues PEST sequence score 

448-464 REDSTEGTWAEPALPGK 6.9 
533-546 RTDEPGAPGAPTGH 5.0 
610-625 RETDI LDDELPNQDGH 5.6 
947-962 RETYTPYSYQTVPEPR 4.9 

1039-1049 KSPEESTVPAR 7.0 
1099-1119 KEAFEEMESASPSSLTSGGVR 3.3 
1145-1163 HPVGELEGEAGADSEEEPR 12.2 
1258-1287 HSSYQTSSPSSFQAGTLGSPYASPDYPDGR 5.4 
1433-1446 RQGSPTPQPALPEK 1.4 

PEST sequences are identified by using the PEST-FIND computer program de- 
veloped by Rogers, and PEST scores are calculated as described (Rogers et al., 
1986). To qualify as a PEST sequence, the PEST score value has to be -5 .0 ,  
and a PEST score >0 indicates a strong PEST region. 

sensus phosphorylation sites, including two for cell cycle- 
dependent kinase (cdc-28), two for protein kinase C, and one 
for tyrosine kinase. These sites may be relevant to the reports 
that the dynamic assembly of the actin cytoskeleton at junc- 
tional complexes are associated with the cell cycle and the 
activities of protein kinase C and tyrosine kinase (Luna and 
Hitt, 1992). Finally, within the capping domain are se- 
quences that show some similarity to those found in a num- 
ber of proteins that interact with actin (viUin, gelsolin, dys- 
trophin, radixin, CapZ, yeast capping protein, and 25-kD 
inhibitor of actin polymerization) (Vandekerchhove and Van- 
compernoUe, 1992). It will be interesting to see whether fu- 
ture research will show that all of these homologous regions 
represent motifs involved in binding to actin. 

In addition to the ones within the capping domain, cardiac 
tensin also contains sequences in other parts of the molecule 
that are homologous with those found in other cytoskeletal 
proteins. The first is a SH2 domain (Fig. 2, W1520-P1628), 
which is identical to the one previously found in the se- 
quence of chicken embryo fibroblast tensin (Davis et al., 
1991). The second domain (M49-T78), designated here as 
~,tctin homology 1" (Fig. 2, AH/), shows ,~50% identity to 
the amino acid residues 221-249 in the sequence of actin. 
This region of actin is located at the "pointed end" of the mol- 
ecule (Holmes et al., 1990). Evidence supporting the in- 
volvement of this region in aetin polymerization came from 
a study showing that a mutant actin produced by point muta- 
tion changing the glycine 245 to aspartic acid polymerized 
poorly (Taniguchi et al., 1988). This glycine residue is con- 
served in the AH1 domain of the tensin sequence. A third do- 
main (L673-H707), designated as "actin homology 2" (AH2 
in Fig. 2), shows significant homology to residues 291-321 
of the actin sequence. Residues G302, T303, M305, and 
Y306 in this region of actin apparently participate in the 
binding of ADP and ATP (Holmes et al., 1990). Moreover, 
recent studies with cytochalasin B-resistant mutant KB cells 
showed that A295 and V139, located at the "barbed end" of 
the actin molecule, are involved in cytochalasin binding 
(Ohrnori et al., 1992). All of the above-mentioned amino 
acid residues in actin are conserved in the AH2 domain of 
tensin. A fourth domain (L419-N443), designated as "actin- 
binding protein homology" (Fig. 2, ABPH), showed similar- 
ity to the actin-binding domain found in a class of dimeric 
actin filament cross-linking proteins, which includes spec- 

trin, dystrophin, ~actinin, ABP120, as well as fimbrin, 
plastin, and ABP-280 (Bmsnick et al., 1990, 1991). The re- 
cent report of Lo et al. (1994a) shows that fusion proteins 
containing this region of tensin has F-actin-binding activity 
in a cosedimentation assay. These observations are consis- 
tent with our finding that proteolytic fragments of chicken 
gizzard tensin promotes formation of actin filament bundles 
in in vitro (Wilkins and Lin, 1986) and that transfection of 
mammaliam cells with cardiac tensin eDNA causes an in- 
crease in such structures (Fig. 6). 

In conclusion, the results reported here provide a basis for 
the understanding of how tensin binds with high affinity to 
the barbed ends of actin filaments. By acting as a direct link 
between filament ends and other cellular components, tensin 
could play an important role in force transmission at various 
types of cell-substrate and cell-cell junctions. These find- 
ings, together with previous findings that tensin has an SH2 
domain and undergoes phosphorylation during changes of 
physiological states (Davis et al., 1991; Bockholt and Bur- 
ridge, 1993), suggest that the protein plays an important role 
both in the association of actin filaments with other cellular 
structures and in signal transduction. 
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