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A B S T R A C T

ESCC presents a significant global health challenge due to its high mortality rates and varying 
responses to treatment. This underscores the critical need for novel diagnostic and predictive 
biomarkers to improve treatment outcomes.

Initially, we conducted single-cell transcriptome sequencing on a total of 128,688 cells ob-
tained from 10 patients as part of our research. Utilizing machine learning and cross-validation 
techniques, we developed a model incorporating 12 genes that distinguish malignant cells from 
non-malignant ones. In vitro, we explored the effects of IGFBP2 knockdown on the proliferation, 
invasion, and migration of ESCC cells. The clinical relevance of IGFBP2 was confirmed through 
IHC and Kaplan-Meier survival analyses. Furthermore, using bioinformatics tools such as GSVA 
and xCell on public databases, we discovered that high expression of IGFBP2 is associated with an 
immunosuppressive tumor microenvironment in ESCC, characterized by reduced CD8+ T cell 
infiltration. This was validated then through IHC.

In summary, our study integrates single-cell sequencing and sophisticated computational 
techniques to highlight IGFBP2 as a promising biomarker and therapeutic target in ESCC.

1. Introduction

Esophageal cancer presents a significant global health challenge, with approximately 510,716 new cases reported in 2022, making 
it the eleventh most prevalent cancer worldwide and accounting for 2.6 % of all cancer diagnoses that year [1]. However, the mortality 
rate is even more alarming. In 2022, around 445,129 individuals died from esophageal cancer, positioning it as the seventh leading 
cause of cancer-related deaths and contributing to 4.6 % of all cancer fatalities. Notably, squamous cell carcinoma (SCC) was the 
predominant subtype, comprising 85 % of all esophageal cancer cases [1,2].

Due to the subtle nature of early-stage esophageal cancer symptoms, a considerable proportion of patients are diagnosed at in-
termediate to advanced stages [3]. For those ineligible for surgical resection, primary treatment modalities include radiotherapy, 
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chemotherapy, and immune checkpoint inhibitors [4–7]. To improve the prognosis of esophageal cancer patients and develop new 
treatment approaches, urgent exploration of novel therapeutic targets and biomarkers is imperative.

In previous decades, most transcriptome analyses of ESCC have relied on conventional bulk RNA sequencing data, significantly 
advancing our understanding of ESCC occurrence and progression [8]. However, ESCC exhibits a complex tumor immune microen-
vironment and considerable heterogeneity. Conventional RNA-seq techniques can only analyze tumors at the aggregate sample level, 
limiting the exploration of cellular diversity and molecular intricacies of tumor cells [9–11]. The emergence of single-cell sequencing 
technology in recent years has offered a transformative approach [12,13]. This methodology enables the characterization of pheno-
typic and biological behaviors of distinct cell types at the individual cell level, providing valuable insights into the intricate landscape 
of ESCC and holding promise for identifying potential therapeutic targets [14,15].

In this study, we identified genes uniquely expressed in cancer cells by analyzing both cancerous and non-cancerous cell types using 
single-cell RNA sequencing (scRNA-seq) data from ESCC. We aimed to pinpoint genes associated with cancer progression that could be 
targeted for therapeutic interventions. Additionally, we developed a gene prediction model with a scoring system to improve the 
accuracy of detecting individual cancerous cells within the scRNA-seq dataset, thereby enhancing our ability to isolate cancer cells for 
in-depth analysis.

2. Methods

2.1. The construction of a predictive model

A total of 10 samples, including 5 ESCC samples and 5 paired non-cancerous samples, were selected for 10x genomics single-cell 
RNA sequencing from the Department of Thoracic Surgery, Zhongshan Hospital, Fudan University. Subsequently, we conducted data 
preprocessing and downstream analysis following the procedures described in previous reports [14]. In brief, the general experimental 
protocol combined mincing tissue samples, enzymatic digestion, and filtration to obtain single-cell suspensions. Library preparation 
was done using the 10x Chromium kit, and sequencing was performed on an Illumina HiSeq platform. Data preprocessing included 
demultiplexing and alignment with Cell Ranger. Analysis in R included cell filtering, doublet detection, batch effect correction, mutual 
nearest neighbors, and application of Seurat for clustering analysis. Dimensional reduction, clustering, and marker identification were 
further analyzed, and the most expressed markers for the annotation of cell types were defined.

Next, differentially expressed genes between cancerous and non-cancerous cells were identified using the “FindAllMarkers” 
function of the Seurat R package, with the following criteria: adjusted P value less than 0.01 and absolute log2 fold change greater than 
or equal to 0.5. Then, the area under the receiver operating characteristic (ROC) curve (AUC) was calculated using the pROC R 
package, and we selected all genes with an AUC >0.6, as previously reported [16].

We employed a random forest model to select genes aberrantly associated with malignancy in ESCC. The random forest algorithm, 
known for its robustness, was selected due to its ability to handle high-dimensional data and its relative resistance to overfitting 
compared to other models [17]. The %IncMSE (percentage increase in mean squared error) metric was used to evaluate variable 
importance, as it provides a robust measure of how each variable contributes to the predictive power of the model. The number of 
variables was selected through five replications of 10-fold cross-validation, which ensures the model’s stability and helps prevent 
overfitting. The final equation used in predicting the malignant score was generated by multiple logistic regression.

2.2. Immunohistochemistry (IHC) cohort

Tumor and adjacent esophageal tissues were collected from 100 ESCC patients who underwent radical surgery from January 1 to 
May 20, 2016. Before surgery, patients were not treated with radiotherapy, chemotherapy, or immunotherapy. The latest follow-up 
occurred in 2022.IHC was performed using antibodies against IGFBP2 (Rabbit, CY8405, Abways) and CD8 (Rabbit, CY5540, 
Abways), respectively. In the staining process, Envision two-step method reagent was used, and GTVisionTM III Detection System/ 
Mo&Rb (Including DAB) (Gene Tech, Shanghai, China) was added, where PBS was used as the negative control. For the observation of 
slides of CD8+ T cells, the mean number of CD8+ cells of three representative fields was counted under the high power of a microscope 
( × 200). The staining intensity of IGFBP2 was categorized as follows: 0 (negative), 1 (weak), 2 (moderate), and 3 (strong).

2.3. Cell culture

Human ESCC cell lines TE-1 and KYSE-150 were obtained from the Chinese National Collection of Authenticated Cell Cultures, 
Shanghai, China. Cells were grown at 37 ◦C in a humidified atmosphere of 95 % air and 5 % CO2. They were cultured in either high- 
glucose DMEM (KeyGEN Biotech, Nanjing, China) or RPMI-1640, supplemented with 10 % fetal bovine serum (Every Green, Hang-
zhou, China), 100 U/mL penicillin, and 0.1 mg/mL streptomycin (Beyotime Biotechnology, Shanghai, China).

2.4. Cell counting Kit-8 assay

Cells were seeded into 96-well microplates and cultured at 37 ◦C with 5 % CO2 for 5 days. Then, cell counting kit-8 (CCK8) from 
TOPSCIENCE (Shanghai, China) with 10 μL of reagent in each well to measure cell activity every day [18]. Cell viability was assessed 
by a SpectraMax iD3 microplate reader (Molecular Devices, USA) with wavelengths at 450 nm.
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2.5. Exogenous stimulation experiment

IGFBP2 stimulation experiments were performed by using recombinant IGFBP2 (ab63223; Abcam, Cambridge, MA, USA) under the 
dose of 10 ng/ml and 100 ng/ml.

2.6. Transwell assay

ESCC cells were seeded into Transwell chambers with 8.0 μm PC membrane at the optimal growth density. The cells were incubated 
for 48 h. In the incubation process, 200 μL of serum-free medium was added to the upper chamber, while 200 μL of complete medium 
with 10 % FBS was added to the lower chamber. To investigate their invasiveness, 60 μL of chilled matrix gel was applied to the upper 
chamber. After incubation, the fix was done using 4 % paraformaldehyde, and then, staining was done using 0.1 % crystal violet.

2.7. qRT-PCR

Quantitative PCR (qPCR) was conducted after RNA was reverse-transcribed into cDNA as previously reported, and specific primers 
were obtained from Sangon Biotech (Shanghai, China) [19]. Primer sequences are available in the supplementary materials. Gene 
expression levels were assessed using the 2− ΔΔCt technique and standardized to the ACTB gene.

2.8. Transfection of small interfering RNAs

SiRNAs targeting IGFBP2 (si-IGFBP2) and CALML5 (si-CALML5) were obtained from RIBOBIO (Guangzhou, China). SiRNA-lipid 
complexes were prepared using Opti-MEM medium and Lipo8000™ Transfection Reagent (Beyotime Biotechnology), then incu-
bated at room temperature for 20 min before being added to the cells at a final concentration of 100 nM siRNAs in each well.

2.9. Western blot assays

Protein concentrations were determined using the BCA Protein Quantification Kit (Yeasen Biotechnology). Equal amounts of 
protein (20–50 μg) were loaded onto SDS-PAGE and transferred to a PDVF membrane (Millipore, Germany). The membranes were 
blocked with 5 % bovine serum albumin (BSA) in Tris-buffered saline (TBS) containing 0.1 % Tween-20 from Servicebio (Wuhan, 
China), followed by incubation with the appropriate primary antibodies against IGFBP2 (1:2000, Rabbit, CY8405, Abways), β-actin 
(1:2000, Mouse, GB15001, Servicebio). Protein bands were processed by incubating with horseradish peroxidase-conjugated sec-
ondary antibodies and BeyoECL Star (Beyotime Biotechnology) and quantified using ImageJ.

2.10. Bioinformatics tools and data analysis

We obtained publicly available RNA sequencing data from the Cancer Genome Atlas (TCGA) database [20]. Utilizing the R 
packages immunedeconv and GSVA, we evaluated the immune microenvironment, leveraging signatures of various immune cells from 
previous studies [21–23]. The estimate R package was used for estimating tumor purity, ESTIMATE score, and immune score. The Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were conducted using the R package cluster profile. 
The variables were compared between groups using two-way ANOVA and Student’s t-test, and survival analysis was carried out 
through the Kaplan-Meier and log-rank tests. All the statistics were analyzed using GraphPad and the R-4.3.1 program, where p values 
were two-tailed with p < 0.05 considered significant [24].

3. Results

3.1. Construction of the model for malignant cell discrimination with twelve genes

As in our previous study, a total of 10 samples were obtained including 5 samples of the tumor and adjacent normal esophagus 
samples for the downstream analysis. Following quality control, a sum of 128,688 cells meeting the inclusion criteria were chosen for 
further analysis [14].

Drawing upon the CellMarker dataset, SingleR package, and previous studies, we employed t-SNE dimensionality reduction 
clustering to identify 8 distinct cell clusters (Fig. 1A). Fig. 1B illustrates the marker genes for each cell cluster [14]. Two well-known 
genes that are elevated in ESCC are also correspondingly overexpressed in our clustering results (Fig. S2) [25].

We then found 860 differentially expressed genes (DEGs) among cancer cells and seven other cell types following the criterion of 
gene expression FC less than 0.70 or more than 1.41 (|log2FC| ≥ 0.5), with 687 of which upregulated markedly in tumor cells.

Furthermore, we conducted a ROC curve analysis to evaluate the discriminatory power of each DEG at the single-cell level. Notably, 
97 DEGs demonstrated significant efficacy (AUC >0.60) in distinguishing between malignant and non-malignant cells (Supplementary 
Table 1). Among these, 80 genes were upregulated and 17 downregulated in tumor cells. Functional enrichment analysis revealed that 
the upregulated genes are primarily associated with processes such as cell adhesion, tight junction formation, and regulation of 
lymphocyte proliferation. Additionally, these genes were found to be enriched in cancer-promoting signaling pathways including 
PI3K-AKT and TGF-β (Fig. 1C) [26,27]. These 97 genes were then compiled into a novel predictive gene set.
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We subsequently constructed a regression model based on the expression levels of the 97 genes to predict the cell type of each cell 
using the random forest method. The number of trees was set to 500, and 70 % of the cells were randomly drawn as the training set, 
while the rest were used as the test set. The results indicated that the model composed of the expression levels of the 97 genes could 
explain 89.45 % of the total variance, suggesting a close relationship between the expression levels of these genes and the cell type. 
Fig. 1D displays the top 30 genes contributing the most to the model.

Additionally, the distribution of 5 trials of 10-fold cross-validation error in a random forest classifier shows that the model could 
maintain a relatively low error rate while ensuring high simplicity when 13 genes were retained (Fig. 1E). We utilized multivariate 
logistic regression modeling on these 13 genes to further simplify the model. After excluding the only non-significant gene, S100A8, we 
ultimately retained 12 genes (EPCAM, FXYD3, IGFBP3, AQP3, ODC1, CD9, GAPDH, S100A9, IGFBP2, IL1R1N, SPINK5, S100A8, and 
CALML5) to calculate the malignant score for predicting the cell type as followed: Malignant score = − 8.1419516 + 1.2387290 ×
EPCAM+1.2096745 × FXYD3+0.7818696 × IGFBP3− 1.4175991 × AQP3+0.9339426 × ODC1+0.8148934 × CD9+0.4946624 ×
GAPDH+0.1004238 × S100A9+0.3371714 × IGFBP2− 0.2899093 × IL1RN− 0.8508509 × SPINK5+1.0425721 × CALML5. Fig. S1
showed the flow chart of the mode construction. Fig. 1G highlights the distribution of malignant scores, with a notable overlap 
observed in the high-score region corresponding to the cancer cell population, as further corroborated by the violin plot in Fig. 1H. 
Notably, the AUC of the ROC curve reached a remarkable value of 0.986 in the test set, demonstrating the excellent sensitivity and 
specificity of the model (Fig. 1F).

Fig. 1. Construction of the model for malignant cell discrimination with twelve genes. (A) The t-SNE plot to visualize cell-type clusters based 
on the expression of known marker genes. (B) Dotplot illustrating marker gene expression across different cell types. (C) GO and KEGG analysis for 
upregulated genes. (D) The lollipop plot displaying the top 30 genes contributing the most to the %IncMSE in the random forest model. (E) The line 
graph depicting the trend in cross-validation error with varying numbers of genes. (F) The ROC curve to illustrate the predictive performance of the 
final model on the test set. (G) Feature plot of malignant score across different types of cells. (H) Violin plot of malignant score across different types 
of cells.

Fig. 2. In vitro validation of IGFBP2. (A) Feature plot for mRNA expression of secretory and membrane-bind protein. (B) Violin plot for mRNA 
expression of the secretory and membrane-bind protein in different cell clusters. (C) The histogram displaying the suppression of IGFBP2 expression 
24 h after siRNA transfection. The presented data (mean ± SD) originate from two separate experiments (one-way ANOVA, n = 3). **p < 0.01, 
****p < 0.0001. (D) IGFBP2 expression from replicates (n = 2) in KYSE-150 and TE-1 after transfection with the number below showing IGFBP2/ 
β-actin.The uncropped version can be found in supplementary materials. (E)The line graph depicting the proliferative ability of KYSE-150 and TE-1 
cell lines after the knockdown of CALML5 (two-way ANOVA). n.s non-significant. (F) The line graph depicting the proliferative ability of KYSE-150 
and TE-1 cell lines after knockdown or exogenous stimulation of IGFBP2 (two-way ANOVA). *p < 0.05, **p < 0.01, ***p < 0.001. (G) Repre-
sentative images and boxplots illustrating the impact of IGFBP2 knockdown on the migratory and invasive abilities of KYSE-150 and TE-1 cell lines. 
(one-way ANOVA, n = 2). *p < 0.05, **p < 0.01.
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3.2. In vitro validation of IGFBP2

Among 12 genes in the model, six are membrane or secretory proteins, namely CALML5, EPCAM, IGFBP2, AQP3, FXYD3, and CD9 
(Fig. 2A–B). Notably, IGFBP2 and CALML5 were significantly upregulated in cancer cells, which were selected consequently for further 
validation of their roles in ESCC. We performed transient transfections of TE-1 and KYSE-150 cell lines using two distinct siRNAs 
targeting IGFBP2 and CALML5 (Fig. 2C and D). The CCK-8 assay indicated that inhibition of IGFBP2 led to an attenuated proliferative 
capacity of both cell lines, rather than CALML5 (Fig. 2E–F). Conversely, the addition of recombinant human IGFBP2 significantly 
enhanced the proliferation of both cell lines in a dose-dependent manner (Fig. 2F). Furthermore, the Transwell assay revealed a 
significant decrease in the invasive and migratory abilities of cancer cells with reduced IGFBP2 expression (Fig. 2G). The above 
findings suggest that IGFBP2 acts as an oncogene in ESCC.

3.3. Clinical significance of IGFBP2

Next, we analyzed the IGFBP2 expression in a group of 100 paired samples using IHC, obtained from ESCC patients who underwent 
surgery and were pathologically diagnosed at Zhongshan Hospital (ZSHS) (Supplementary Table 2). As shown in Fig. 3A, IGFBP2 was 
significantly overexpressed in tumor samples compared with adjacent esophageal tissues, which was consistent with our results of 
scRNA-seq. To determine the clinical significance of IGFBP2, we conducted a Kaplan-Meier survival analysis. The results revealed that 
patients exhibiting high IGFBP2 staining intensity are correlated with poorer prognosis compared to those with low expression levels. 
(Fig. 3B). Moreover, multivariate Cox analysis revealed that the expression of IGFBP2 remained an independent prognostic factor for 
OS after considering age, gender, and stage (Fig. 3C).

3.4. Immune characteristics associated with IGFBP2

We then analyzed the role of IGFBP2 in shaping the tumor immune microenvironment of ESCC by exploring the interplay between 
IGFBP2 expression and the infiltration of immune cells, as well as the presence of immune modulators within the TCGA-ESCC dataset. 
Leveraging computational algorithms such as xCell, ConsensusTME, and GSVA, we uncovered a significant negative correlation be-
tween IGFBP2 expression and the infiltration of numerous tumor-associated immune cells, particularly CD8+ T cells (Fig. 4A–C). This 
finding was further validated in the ZSHS cohort through IHC, which revealed a substantial negative correlation between IGFBP2 
expression and the abundance of CD8+ T cells (Fig. 4D).

Furthermore, we observed that elevated IGFBP2 expression is associated with the downregulation of a broad range of immune 
modulators, encompassing antigen presentation, co-stimulation, T cell effector function, and immune checkpoints (Fig. S3A), which 

Fig. 3. Clinical significance of IGFBP2. (A) Representative images of IGFBP2 IHC staining in ESCC and adjacent esophageal tissues; Likert plot of 
IGFBP2 IHC staining results in normal esophageal tissues and ESCC. (B) Kaplan-Meier survival curves of the ZSHS cohort stratified by IGFBP2 
staining intensity, assessed using the log-rank test. (C) The forest plot of multivariable Cox regression results in the ZSHS cohort. ZSHS, Zhong-
shan Hospital.
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suggests a potentially immunosuppressive role of IGFBP2 in ESCC. To further support this observation, we conducted the ESTIMATE 
algorithm to assess the immune score and ESTIMATE score in the TCGA-ESCC dataset, revealing a negative correlation with IGFBP2 
expression (Fig. S3B).

4. Discussion

ESCC is reported to be one of the most aggressive and lethal cancers in adults. Despite advancements in therapeutic approaches, the 
overall prognosis for ESCC remains poor. The high degree of heterogeneity within ESCC further complicates treatment strategies and 
often leads to therapeutic failure in patients. In this study, we collected 10 paired samples from 5 patients and employed scRNA-seq to 
characterize the unique transcriptomic landscape of ESCC. Utilizing the “FindAllMarkers” function, ROC analysis, and machine 
learning, we established the malignant score comprising the expression levels of 12 to delineate the cancer cell-specific transcriptomic 
features in ESCC. We further selected IGFBP2 as a potential therapeutic target and validated its oncogenic role through cellular ex-
periments as well as bioinformatics tools.

A noteworthy aspect of our research is the discovery of several tumor-related genes that are infrequently detected in traditional 
bulk data analyses. This achievement is largely attributable to the utilization of scRNA-seq technology. Given that cancer cells typically 
represent a minor fraction of this mix, tumor-specific markers can be overshadowed by their low abundance when using bulk RNA 
sequencing. In contrast, single-cell sequencing technologies offer a powerful tool to delve into the expression patterns of individual cell 
types, which enables us to unravel the intricate cellular heterogeneity and novel therapeutic targets that would otherwise be inac-
cessible through bulk analysis. Targeting these genes with specific drugs could offer safer and more effective treatment strategies by 
minimizing cytotoxic effects on non-malignant cells. This underscores the importance of understanding the molecular landscape of 
ESCC for developing targeted therapies and improving patient outcomes.

The association between IGFBP2 and various cancers remains controversial. It is well known that elevated expression of IGFBP2 is 
associated with poor prognosis in various cancer types, including pancreatic ductal adenocarcinoma (PDAC), gastric cancer, ovarian 
cancer, hepatocellular carcinoma, and colorectal cancer [28–30]. When serving as a hub gene of an oncogenic signaling pathway, 
IGFBP2 primarily mediates downstream cancer-driving signals by promoting IGF-I/II signals and binding to integrins, thus enhancing 
tumor dissemination and progression [31,32]. In contrast, IGFBP2 seems to play an opposing role in breast cancer. James et al. 
discovered that IGFBP2 is a potent adipokine secreted by healthy breast adipocytes, which binds and sequesters IGF-II [31]. This 
finding is consistent with the inhibition of breast cancer xenograft growth by suppressing IGF-II [32]. The results of our study indicate 
that high IGFBP2 expression in ESCC is implicated in poor prognosis. Exogenous application of recombinant human IGFBP2 further 
promotes ESCC proliferation, while knockdown of this gene inhibits proliferation, invasion, and migration. These findings, along with 
previous studies, underscore the importance of investigating the crosstalk between IGFBP2 and the IGF-I/II signaling pathway and 
distinguishing between intracellular and extracellular pools of IGFBP2 [28,29,31].

IGFBP2 exerts immunosuppressive effects within tumor microenvironment (TME) through multiple mechanisms [33,34]. Zhang 
et al. reported that the cancer-associated fibroblast (CAF) gene IGFBP2 promotes glioma progression by inducing M2 macrophage 
polarization [33]. Another study suggests that IGFBP2-mediated upregulation of indoleamine 2,3-dioxygenase (IDO) leads to the 
accumulation of IDO-derived catabolites, which contribute to regulatory T cell (Treg) differentiation and the establishment of an 
immunosuppressive TME in PDAC [34]. Given the previous reports on IGFBP2’s role in reshaping the TME, we analyzed the RNA 
sequencing data from the TCGA-ESCA database and found that the expression levels of IGFBP2 were negatively correlated with various 
immune cells and immune modulators, particularly CD8+ T cells. This conclusion was further validated by the results of IHC staining. 
These findings suggest that the enrichment of IGFBP2 in ESCC may primarily mediate immune suppression in the TME by influencing 
the infiltration and function of CD8+ T cells, thereby facilitating immune escape by tumor cells. Additionally, high IGFBP2 expression 
was associated with low PDCD1 expression, ESTIMATE score, and immune score, indicating that blocking IGFBP2 may potentially 
transform “cold tumors” into “hot tumors,” thereby improving the responsiveness of ESCC patients to immunotherapy [35,36].

However, this study also has the following limitations. Firstly, the potential sources of statistical bias and variability in this study 
are noteworthy. The sample size of 10 patients is relatively small which restricts the generalizability of our findings. Future studies 
with larger cohorts are necessary to validate our findings. Additionally, the choice of models and parameters (e.g., the number of trees) 
can influence the model’s performance and its susceptibility to overfitting, although cross-validation and replication were employed to 
mitigate these effects. Furthermore, selection criteria (such as fold change and AUC) and inherent biological variability among patients 
are also potential sources of bias. Secondly, while IGFBP2 overexpression is implicated in the growth and invasion of ESCC, it is 
insufficient on its own to sustain these processes. Inhibition of IGFBP2 function may suppress cancer cell proliferation and invasion, but 
it is not capable of eradicating the cancer cells. To develop a more comprehensive understanding, it is crucial to conduct functional 
validation and characterization of other genes upregulated in ESCC, elucidating their synergistic roles in tumor initiation and pro-
gression. This approach will enable the design of personalized combination therapy regimens tailored to individual patient profiles. 
Thirdly, this study employs random forest, which may exhibit potential limitations including susceptibility to overfitting when 

Fig. 4. Immune-related characteristics of IGFBP2. (A) Heatmap displaying the correlation between the IGFBP2 and immune infiltrating cells. (B) 
The scatter plot illustrating the correlation between IGFBP2 and CD8+ T cells from different algorithms. (C) Box plot displaying the CD8 + T cells 
levels between two IGFBP2 groups from different algorithms (Student’s t-test). (D) Representative images of CD8+ T cell immunohistochemical 
(IHC) staining and box plot comparing the distribution of CD8+ T cell IHC scores across different IGFBP2 staining intensities (Student’s t-test). **p <
0.01, ***p < 0.001.
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parameters are not finely tuned, and a tendency to assign higher importance to variables with greater categorical diversity or broader 
value range. Additionally, the molecular biological mechanisms underlying the impact of IGFBP2 on ESCC were not deeply investi-
gated in this study. Furthermore, in vivo experiments were not conducted to validate the effects of IGFBP2 inhibitors alone or in 
combination on prognosis and immune therapy. Nevertheless, we believe that this study has made a certain contribution to exploring 
potential biomarkers and therapeutic targets for ESCC, as well as revealing tumor heterogeneity and complexity.
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