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Abstract

The mechanisms underlying the emergence of seizures are one of the most important unre-

solved issues in epilepsy research. In this paper, we study how perturbations, exogenous or

endogenous, may promote or delay seizure emergence. To this aim, due to the increasingly

adopted view of epileptic dynamics in terms of slow-fast systems, we perform a theoretical

analysis of the phase response of a generic relaxation oscillator. As relaxation oscillators

are effectively bistable systems at the fast time scale, it is intuitive that perturbations of the

non-seizing state with a suitable direction and amplitude may cause an immediate transition

to seizure. By contrast, and perhaps less intuitively, smaller amplitude perturbations have

been found to delay the spontaneous seizure initiation. By studying the isochrons of relaxa-

tion oscillators, we show that this is a generic phenomenon, with the size of such delay

depending on the slow flow component. Therefore, depending on perturbation amplitudes,

frequency and timing, a train of perturbations causes an occurrence increase, decrease or

complete suppression of seizures. This dependence lends itself to analysis and mechanistic

understanding through methods outlined in this paper. We illustrate this methodology by

computing the isochrons, phase response curves and the response to perturbations in sev-

eral epileptic models possessing different slow vector fields. While our theoretical results

are applicable to any planar relaxation oscillator, in the motivating context of epilepsy they

elucidate mechanisms of triggering and abating seizures, thus suggesting stimulation strate-

gies with effects ranging from mere delaying to full suppression of seizures.

Author summary

Despite its simplicity, the modelling of epileptic dynamics as a slow-fast transition

between low and high activity states mediated by some slow feedback variable is a rela-

tively novel albeit fruitful approach. This study is the first, to our knowledge, characteriz-

ing the response of such slow-fast models of epileptic brain to perturbations by

computing its isochrons. Besides its numerical computation, we theoretically determine
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which factors shape the geometry of isochrons for planar slow-fast oscillators. As a conse-

quence, we introduce a theoretical approach providing a clear understanding of the

response of perturbations of slow-fast oscillators. Within the epilepsy context, this eluci-

dates the origin of the contradictory role of interictal epileptiform discharges in the transi-

tion to seizure, manifested by both pro-convulsive and anti-convulsive effect depending

on the amplitude, frequency and timing. More generally, this paper provides theoretical

framework highlighting the role of the slow flow component on the response to perturba-

tions in relaxation oscillators, pointing to the general phenomena in such slow-fast oscilla-

tors ubiquitous in biological systems.

Introduction

The dynamics underlying complex processes usually involve many different time scales due to

multiple constituents and their diverse interactions. When modelling such systems, the general

distinction of at least two time-scales (fast and slow) is a useful and common conceptualiza-

tion. Many examples of slow-fast dynamics can be found in cell modelling, ecosystems, climate

or chemical reactions [1–4] and more recently in epilepsy [5], of particular interest for this

paper.

Epilepsy is a chronic neurological disorder characterized by a marked shift in brain dynam-

ics caused by an excessively active and synchronized neuronal population [6, 7]. Although sev-

eral dynamical pathways have been proposed to explain the transition to seizure [8–12], in

general, epileptic tissue is modelled as a system having two stable states: one corresponding to

the low activity state and the other corresponding to high activity (that is to seizure) [13].

Besides external perturbations or noise, transitions between these two stable states can also be

modelled considering the existence of a parameter evolving on some slow time scale. Whereas

on the fast time scale the system can be seen as a bistable system, the variations of the slow

parameter lead to bifurcations providing transitions between states [14].

During the last decade, there has been an increasing number of models approaching epi-

lepsy through slow-fast time scales [15–21]. Recently, the slow-fast dynamics has been pro-

posed to explain the role of the interictal epileptiform discharges (IEDs) in the generation of

seizures [22]. The IEDs can be thought of as endogenous inputs affecting the target tissue.

However, the effect of IEDs on the tissue activity is quite controversial: where some studies

show that IEDs can prevent seizures [23, 24], other studies claim their seizure facilitating role

[25, 26]. In the above mentioned work [22], the amplitude and frequency dependence of the

effect of perturbations in a simple epilepsy model switching between seizure and non-seizure

states due to a slow feedback variable, provided a conceptual reconciliation of the pro-convul-

sive and anti-convulsive effect of IEDs.

In this paper we elucidate this phenomenon in detail and provide theoretical foundations of

this apparent perturbation effect paradox by studying the phase response of a generic relaxa-

tion oscillator. We perform this theoretical approach by means of the phase reduction [27]. In

addition to simplifying the dynamics, the usage of phase reduction techniques allows the com-

putation of its isochrons and phase response curves (PRCs), which clarify the dependence of the

effect of perturbations of the oscillator on the perturbation timing, and also allows the study of

possible synchronization regimes [28]. By studying a generic slow-fast system displaying relax-

ation oscillations we show, analytically, how the slow component of the vector field shapes

their isochrons and PRCs, thus ultimately determining its response to perturbations. There-

fore, our results, clarify the multifaceted effect of IEDs in epilepsy, and can be
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straightforwardly applied to understand the temporal dependency of perturbations over any

model belonging to the wide family of models relying on slow-fast dynamics.

The paper is structured as follows. First, we present a general introduction to relaxation

oscillators introducing the basic notation which will be used throughout the paper. Then, we

describe the phenomenological epilepsy model and show how, through its phase analysis, we

can unveil the mechanism integrating the contradictory role of IEDs in epilepsy. Next, we

show, via a complete theoretical analysis, which factors determine the geometry of isochrons

of planar relaxation oscillators and study the response of perturbations of relaxation oscillators.

We support our theoretical findings studying the response of perturbations for a different

reduced epileptor model and discuss our results in the context of epilepsy. We conclude the

paper by explaining the computational techniques in the Materials and Methods section.

Results

Basic introduction to relaxation oscillations

The main aim of this Section is to introduce the reader to the basics of slow-fast systems and in

particular to relaxation oscillations. For further details we refer the reader to [29–32]. We will

consider systems in this form

_x ¼ f ðx; yÞ;

_y ¼ �gðx; yÞ; 0 � �� 1
ð1Þ

the flow of which will be denoted as ϕt(x, y). Notice that _ indicates the derivative with respect to

the time, t. As 0� �� 1, the variables x and y evolve on different time-scales, namely the fast

time, t, and the slow time τ = �t. Next, we use this distinction between time-scales to illustrate

how a system in the form (1) with the extra assumption of f(x, y) = 0 being a cubic manifold,

generates a limit cycle (denoted as Γ�) showing relaxation oscillations [33] (see also Fig 1).

Fig 1. Phase space for relaxation oscillators. The slow manifold, S, is a S-shaped curve having two stable branches Sa
�

(solid red line) and one repelling Sr

(dashed red line) (see Eq (4)). Stable and unstable branches of S are separated by the fold points Sf
�

. A given point, p, (see A) will quickly converge to the

attracting branch of the slow manifold Sa
�

(see B). Then, it evolves along Sa
�

following (6) until reaching the fold point Sf
�

(see C) where it traverses fast to

the other branch Sa
þ

(see D). Then, following again the slow dynamics, the trajectory approaches Sf
þ

(see E) where it goes back to Sa
�

(see F). Therefore, the

system (1) in the singular limit (�! 0) admits a singular periodic orbit Γ� (in blue) generating relaxation oscillations.

https://doi.org/10.1371/journal.pcbi.1008521.g001
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Consider a point p = (x, y). First, since �� 1, we can take the limit �! 0 and approximate the

dynamics of system (1) by the layer dynamics

_x ¼ f ðx; yÞ;

_y ¼ 0:
ð2Þ

The trajectory of p will initially (approximately) follow the layer dynamics in (2) so it will

quickly converge to its set of equilibrium points, defined as the slow manifold S

S ¼ fðx; yÞ 2 R2 j f ðx; yÞ ¼ 0g; ð3Þ

which in the limit �! 0 corresponds to the nullcline ( _x ¼ 0) of the fast variable. As we consid-

ered the slow manifold S in (3) to be cubic, that is S-shaped, it will have two fold points (given

by @x f(x, y) = 0), which we denote as Sf
þ
;Sf
�

respectively, separating the repelling and attract-

ing branches, denoted as Sr
and Sa

, respectively

Sr
¼ fðx; yÞ 2 S j @xf ðx; yÞ > 0g;

Sa
¼ fðx; yÞ 2 S j @xf ðx; yÞ < 0g:

ð4Þ

Note that the attracting part of the slow manifold Sa
in fact consists of a top and bottom branch

Sa
�

. Once the system has approached the slow manifold, its dynamics are given by the slow vari-

able

0 ¼ f ðx; yÞ;

y0 ¼ gðx; yÞ;
ð5Þ

where 0 denotes the derivative with respect to the slow time τ = �t. Furthermore, for points in S
satisfying @x f(x, y) 6¼ 0 we know from the implicit function theorem that we can write a func-

tion x = m(y) from f(x, y) = 0, so we can express (5) as

y0 ¼ gðmðyÞ; yÞ: ð6Þ

Therefore, once the trajectory has converged to the slow manifold, S, the y variable evolves fol-

lowing the dynamics in (6), while the x variable is given by x = m(y). So trajectories slowly

move along S until reaching the fold points Sf
�

. There, they become governed by the fast

dynamics, leading to an almost instantaneous transition to the other stable branch. Indeed, as

Fig 1 shows, this is the mechanism underlying the generation of a stable periodic orbit Γ� show-

ing relaxation oscillations, that is, the motion over Γ� consists of the alternation of long inter-

vals of quasi-static behaviour (corresponding to the stable branches Sa
�

of S) and almost

instantaneous transitions between the branches [31].

Phenomenological epilepsy model

As we discussed in the introduction, the mechanism of relaxation oscillations (see Fig 1) has

been recently used in [22] to explain the apparent contradictory role of IEDs in epilepsy. In

this work, the authors propose the following simple phenomenological epilepsy model, further

referred to simply as the phenomenor:

_v ¼ � txðv3 þ v2 � aÞ;

_a ¼ taf ðh � vÞ;
ð7Þ

where v and a represent the firing rate and the excitability of a neuronal population,
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respectively. The dynamical changes in the excitability depend on the difference between v and

h through the function f(x) = (tanh(cx) − a0), that is, an hyperbolic tangent whose slope is

given by c. When v values are below h, the excitability increases, whereas when v values

exceed h, the excitability decreases. Hence, h can be thought of as a threshold. For this study,

h = hm a − hn. We keep fixed the particular set of parameters

Ppheno ¼ ftx ¼ 1; ta ¼ 0:001; c ¼ 1000; hn ¼ 0:86; hm ¼ 1:6; a0 ¼ 0:5g; ð8Þ

for which the system (7) displays a limit cycle denoted as Γpheno with a period of T� 508.42;

although the qualitative behaviour of the model stays the same for a wide range of parameters.

Indeed, as τa� τx and the fast nullcline _v ¼ 0—which corresponds with the slow manifold S
in (3)—describes a cubic curve, dynamics over Γpheno consists of a periodic switching between

the states of low and high activity within relaxation oscillations.

The following Fig 2 illustrates the mechanism proposed in [22] by which the phenomenor

(7) reconciles the antagonistic role of IEDs. Consider the IEDs as a random train of pulses

whose inter pulse interval distribution, ts, follows a normal distribution with mean value, Ts,
and standard deviation, σ: ts � N ðTs; s

2Þ. Whether or not a given perturbation causes an

immediate transition to seizure depends on whether the perturbation manages to make the

trajectory cross from the lower branch above the middle branch of the v-nullcline. If this hap-

pens, the trajectory rapidly converges to the upper branch, i.e. transitioning to the seizure

regime. However, the response of the system dramatically changes depending on the ampli-

tude, A, and mean inter pulse interval, Ts, of IEDs (see Fig 2A and 2B).

The effect of a single pulse applied to the system, while on the lower branch, is either to

keep the trajectory on the lower branch or to cause a transition to the upper branch. Therefore,

the total effect of a train of pulses depends on the proportion of pulses causing transitions.

Fig 2. The antagonistic effect of IEDs on the transition to seizure. Panels A and B show, in red, the v-nullcline whose stable branches correspond to the

stable low and high activity states of the system. The unstable part of the v-nullcline (dashed red line) separates the basin of attraction of both branches. As

was illustrated in [22], Figure 5, whether the pulses make the system cross the unstable part of the v-nullcline determines the opposite nature of IEDs. For a

random train with amplitude A = 0.25 and ts � N ð50; 32Þ the system goes to seizure (panel A). By contrast, for a random train with amplitude A = 0.5 and

ts � N ð30; 22Þ the system avoids the seizure state (panel B). By plotting the change in seizure rate Δ as a function of both the amplitude, A, and the mean

inter-perturbation interval, Ts (panel C), we can distinguish between pro-convulsive regimes (yellow and white areas) in which the transition is potentiated,

and preventive regimes (red and black areas) in which the transition is delayed or completely suppressed. We refer the reader to Materials and Methods

section for the specific details about the computation of panel C.

https://doi.org/10.1371/journal.pcbi.1008521.g002
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Indeed, this dependence can be seen by plotting the change in the seizure rate Δ as a function

of both the amplitude, A, and the mean inter-perturbation interval, Ts (Panel C).

Phase dynamics

Oscillations correspond to attracting limit cycles whose dynamics can be described by a single

variable: the phase. As we now expose, the study of the dynamics on a limit cycle by means of

the phase variable provides a more intuitive and simplified view of its synchronization proper-

ties. Consider an autonomous system of ODEs

_z ¼ ZðzÞ; z 2 Rd
; d � 2; ð9Þ

whose flow is denoted by ϕt(z). Assume that Z is an analytic vector field and that system (9)

has a T-periodic hyperbolic attracting limit cycle, Γ. This T-periodic limit cycle, Γ, can be

parametrized by the phase variable θ = t/T as

g : T≔R=Z! Rd

y7!gðyÞ;

ð10Þ

so that it has period 1, that is, γ(θ) = γ(θ + 1). While originally defined only on the limit cycle,

the phase can be extended to the whole basin of attraction of Γ (which we will denote by W).

Indeed, as we consider attracting limit cycles, any point in W converges towards Γ as time

tends to infinity. Therefore, we will say that two points p; q 2W have the same asymptotic

phase if

lim
t!1
j�tðqÞ � �tðpÞj ¼ 0: ð11Þ

We further define the isochron I y as the set of points having the same asymptotic phase θ [34],

that is,

I y ¼ z 2W j j�tðzÞ � �tðgðyÞÞj ¼ �tðzÞ � g yþ
t
T

� ��
�
�
�

�
�
�
�! 0 as t !1

� �

: ð12Þ

Let us now consider the effect of an instantaneous delta-like pulse over the T-periodic limit

cycle Γ,

pðz; t;AÞ ¼ dðt � tsÞ: ð13Þ

It is clear that the perturbation will just change the trajectory from one point z to another

point �z . As we illustrate in Fig 3, since the isochrons foliate the whole basin of attraction W of

Γ, we can say that the perturbation moved the trajectory from one isochron I y to another iso-

chron I �y , thus causing a phase shift Dy ¼ �y � y. However, the phase shift will depend on the

amplitude of the pulse and on the phase at which it was applied. This dependency is captured

by the Phase Response Curves (PRCs). They are calculated by applying the same pulse to the

limit cycle at different phases and registering how much the phase is advanced (or delayed).

Let z = γ(θ) be a point on the limit cycle Γ. If we consider an instantaneous pulse as (13), it is

clear that it will move z to �z ¼ z + Δz. Thus, the PRC is defined as

PRCðA; yÞ ¼ �y � y: ð14Þ

As Fig 3A shows, the isochrons I y of Γpheno portray the distribution of phases along the

basin of attraction W. Whereas the isochrons for the upper branch of the cycle are almost ver-

tical, the isochrons for the lower branch of the cycle show a more interesting geometry: they
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Fig 3. Isochrons and PRCs for the phenomenor model (7). Panel (A) shows the limit cycle Γpheno, 16 equispaced

isochrons, the v and a nullclines (dashed black and green curves, respectively) and the fixed point, P, at their

intersection. The distribution of isochrons clarifies the time dependency of perturbations: as panel (B) shows, a pulse

of amplitude A applied at a time t1 (t2) causes a negative (positive) phase shift, delaying (promoting) the transition to

seizure. This time dependency can be directly inferred from panel (A): a pulse of amplitude A applied at a point on the

cycle z1 = γ(θ1) = γ(t1/T) (z2 = γ(θ2) = γ(t2/T)) displaces the trajectory to a point �z1 2 I �y1
(�z2 2 I �y2

). Since �y1 < y1

(�y2 > y2) the perturbation causes a phase shift Dy1 ¼
�y1 � y1 < 0 (Dy2 ¼

�y2 � y2 > 0) delaying (advancing) the

phase of the oscillator. The panel (C) shows the PRCs for the phenomenor for positive voltage pulses of different

amplitudes summarising the timing (phasic) effect of a given perturbation.

https://doi.org/10.1371/journal.pcbi.1008521.g003
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start vertical until crossing the a-nullcline, when they all bend. The shape of the PRCs as the

amplitude, A, of the pulse increases is determined by this particular geometry of the isochrons.

Since there is an almost constant distance of 0.1 between the lower branch of Γpheno and the

slow nullcline _a ¼ 0, we can distinguish between two cases. For perturbations of A< 0.1, the

perturbed trajectories only reach the part of isochrons consisting in almost vertical lines.

Therefore, the corresponding phase shift Δθ for perturbations on the upper and lower

branches of Γpheno is almost negligible. Hence, the PRC for these phases will be close to zero.

Indeed, only in the vicinity of the fold points Sf
�

the PRCs will show larger values (see zoom

window in Fig 3C).

By contrast, for perturbations of A> 0.1, the change on the geometry of isochrons for

points on the lower branch remarkably changes the shape of PRCs. Perturbations on the lower

branch will have a delaying effect unless they bring trajectories above the middle branch of the

v-nullcline—which corresponds with Sr
in (4)—so they advance phase (see points z1 and z2 at

Fig 3A and 3B illustrating delaying and advancing effects, respectively). The delaying or

advancing effect of a given pulse of amplitude, A, is delimited across a discontinuity for its cor-

responding PRC at the exact phase θ� for which gðy
�
Þ þ A 2 Sr

(see Fig 3C).

The isochrons and PRCs computed for the phenomenor provide insight about how the

combination of both the amplitude, A, and the mean inter pulse interval, Ts, generate the dif-

ferent seizure propensity regimes in Fig 2C. As isochrons in Fig 3 show, unless they bring tra-

jectories above Sr
, the effect of positive voltage pulses at a point, z = γ(θ), on the lower branch

is to cause a delay Δθ< 0. However, for large enough mean inter-pulse intervals Ts, although

perturbations delay the system, they are not frequent enough to stop it from eventually transi-

tioning to seizure (see Fig 2A). Moreover, larger pulses are able to cause the trajectory to cross

the v-nullcline earlier through the cycle (way before the fold point). Thus, the larger the ampli-

tude of the pulse, the more common are these transitions. By contrast, for small enough inter-

pulse intervals, Ts, the transition to seizure can be delayed or even stopped across the accumu-

lation of the delays caused by each single pulse (see Fig 2B). Thus we can conclude that the

mechanism underlying the description of the phenomenor of the role of IEDs, relies on the

one hand on its cubic v-nullcline structure, allowing for relaxation oscillations and on the

other hand on the prevalence of delays for positive perturbations at points on the lower branch

not crossing the middle branch of the v-nullcline.

Phase analysis of relaxation oscillators

As explained in the previous Section, the accurate description of the role of IEDs provided by

the phenomenor is based on the prevalence of delays for perturbations in the ‘non-epileptic’

state, i.e. on the bottom branch of the cycle Γpheno. Since this determining feature of the

model—the prevalence of delays—is based on the bending in a particular direction of the iso-

chrons, we aim to identify which elements in the model are key to cause this particular iso-

chron geometry. As we show next, we perform this identification by taking advantage of the

dynamical properties underlying any relaxation oscillator.

The Oð1Þ geometry of isochrons I y. Next, we discuss some generalities shaping the iso-

chrons of planar relaxation oscillators. To begin, it is worth recalling that if two points �z 2W
and z = γ(θ) belong to the same isochron, I y, they have to meet at the same point of the cycle

after a large enough time, t (see Eq 12). For this reason, the determination of the shape of iso-

chrons requires to study the converging dynamics towards Γ� which we recall consist of trajec-

tories covering Oð1Þ distances in the fast direction and Oð�Þ distances in the slow direction.

Since we aim to study the isochrons for relaxation oscillators, we can take advantage of the

time-scale separation to be more precise concerning this convergence. Consider a point
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�z 2W. In a first approximation one can assume that the convergence of �z is achieved simply

following the layer dynamics (2). If that was the case, since the layer dynamics consider the

variable y as frozen, the isochrons will always be lines of y constant that we denote as F y. How-

ever, for correctly determining the shape of isochrons, we have to take into account that nei-

ther the convergence towards the limit cycle Γ� is instantaneous nor the dynamics on y during

convergence are negligible. As a result, the isochrons are expected to be Oð�Þ corrections of

F y. Indeed, it is worth to note that generalities determining the sign of those Oð�Þ corrections

will explain the prevalence of delaying (or advancing) effects of delta-like pulses in the fast

direction.

Regarding the time needed for solutions to converge to the limit cycle, although the conver-

gence towards a normally hyperbolic attracting limit cycle is ensured [35], for the case of slow-

fast dynamics we can give even more details about this convergence by means of Tikhonov’s

theorem [36] (see also [37, 38]). Roughly speaking, Tikhonov’s theorem states that after a time

th ¼ Oð�j log �jÞ, all orbits starting in a neighbourhood Oð1Þ of the slow manifold S will have

reached a neighbourhood of Oð�Þ of S.

Once we know the time, th ¼ Oð�j log �jÞ, needed to converge, we can compute the motion

of the converging point �z 2W in the slow direction. The travelled distance in the y direction

by �z to approach a Oð�Þ neighbourhood of Γ� is given by

D�y ¼ yth � �y ¼ �
Z th

0

gð�tð�x; �yÞÞdt ¼ �
Z th

0

gðφtð�xÞ; �yÞdt þOð�2Þ; ð15Þ

where φtð�xÞ refers to the solution of the layer system (2). During the time, th, needed to con-

verge, the point z = γ(θ) on the limit cycle has travelled a distance Δy given by

Dy ¼ yth � y ¼ �
Z th

0

gð�tðx; yÞÞdt ¼ �
Z th

0

gðmðgyðt=TÞÞ; gyðt=TÞÞdt; ð16Þ

where in the second equality we utilize the fact that for points on the slow manifold we can use

Eq (6).

Now, let us illustrate how the difference between the distances travelled by the base point

and the converging point, Dy � D�y, will determine the sign of the Oð�Þ correction for isochron

I y at the point �z . If we write the expression for Dy � D�y:

Dy � D�y ¼ �
Z th

0

gðmðgyðt=TÞÞ; gyðt=TÞÞdt � �
Z th

0

gðφtð�xÞ; �yÞdt ¼ Oð�Þ; ð17Þ

we can see that the difference Dy � D�y is directly determined by the difference between the

speeds in the slow direction for the base z and converging �z points during the time th ¼
Oð�j log �jÞ needed for approaching Γ�. Basically, since both points z and �z have to meet at the

same point after the same time, the one travelling slower, needs to travel less distance. The dif-

ference, Dy � D�y, corresponds exactly to the Oð�Þ correction to F y (see Fig 4).

However, at the moment we have a local argument just justifying the shape of isochrons for

a given point �z 2W. Nevertheless, we can globalize this argument by assuming some condi-

tions for g(x, y). In particular, as we show now, if the slow vector field g(x, y) is monotonous in

the fast direction, then the slope of the isochrons will have the same sign for all the points �z 2
I y satisfying fast convergence.
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The asymptotic phase defined in (11) allows to assign a phase to any point z 2W, by defin-

ing the following function Θ(z)

Y : O � R2
! T ¼ ½0; 1Þ;

z 7!YðzÞ ¼ y if z 2 I y;
ð18Þ

whose level curves indeed correspond to the isochrons. Let us assume we can invert Θ(x, y), so

we can define the following function

I yðxÞ : R! R;

x7!I yðxÞ ¼ y for Yðx; yÞ ¼ y ¼ const:
ð19Þ

The slope of isochron I y, which we denote by Ky, is then given by

Ky ¼ @x I yðxÞ; ð20Þ

as we also have

I yð�xÞ ¼ �y ¼ Dy � D�y þ y; ð21Þ

we can write the following expression for the slope Ky

Ky ¼ @xI yðxÞ ¼ @xðDy � D�yÞ: ð22Þ

As the term Dy � D�y can be written in integral form (see Eq (17)), the slope Ky, can be

Fig 4. The slow vector field shapes the isochrons for relaxation oscillators. In the limit �! 0 isochrons are lines of y constant denoted by F y. However,

since � 6¼ 0 but small, the isochrons are Oð�Þ perturbations of F y. As we show in the right panel, the sign of the Oð�Þ corrections depends on the difference

of speeds between the converging point �z and the base point z during the convergence time th. In this case, to approach Γ�, �z has to cross layers of x whose

values are smaller than the ones surrounding Γ�. For this reason �z travels slower than z. Since �z and z have to meet after a time th at the same point on Γ�,
but �z travels slower than z, then �z needs to travel a short distance. This determines the sign of the Oð�Þ correction. Furthermore, if the slow vector field is

monotonous along the fast direction, the farther the point �z , the slower (faster) it travels, so the slope of the isochrons will have the same sign for all the

points �z 2 I y satisfying fast convergence, thus determining the effect of perturbations in the fast direction.

https://doi.org/10.1371/journal.pcbi.1008521.g004
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evaluated as the derivative of the difference of two sums (integrals)

Ky ¼ @x �

Z th

0

gðmðgyðt=TÞÞ; gyðt=TÞÞdt � �
Z th

0

gðφtð�xÞ; �yÞdt
� �

: ð23Þ

As we see, assuming that the vector field g(x, y) is strictly increasing (decreasing) function

with x it is easy to discuss the sign of Ky. If the trajectory followed by the approaching point,

satisfies gð�xðt0Þ; �yðt0ÞÞ < gð�xðt0 þ dtÞ; �yðt0 þ dtÞÞ for 0< δt� th, then, the second integral

will be smaller than the first one. Since this difference will increase with �x, then

Ky > 0 8 �x > gxðt=TÞ. Furthermore, the larger the changes in g(x, y), the larger the slope. We

remark that in the case gð�xðt0Þ; �yðt0ÞÞ > gð�xðt0 þ dtÞ; �yðt0 þ dtÞÞ, we can argue identically to

obtain Ky < 0 8 �x > gxðt=TÞ.
In conclusion, we have illustrated the relationship between geometry of isochrons for relax-

ation oscillations and the slow vector field. First, we have shown how the tilt of the isochron I y

at a given point �z depends on the difference of speeds between �z and the base point z during

convergence. Furthermore, we showed that if the monotonicity of the vector field does not

change, the tilt of the isochrons does not change sign as well.

We can illustrate these theoretical results by revisiting the isochrons for the phenomenor.

As Fig 5 shows, the parameters Ppheno in (8) were chosen so that the tanh in (7) acts almost as a

step function. As a result, the speed in the slow direction dramatically changes when crossing

the slow nullcline. Since there are almost no differences between speeds for points below the

slow nullcline, the isochrons are almost vertical. By contrast, this large difference of speeds

once the slow nullcline is crossed, results in a remarkable bending of the isochrons for points

on the lower branch of Γpheno.
PRCs. Since the shape of PRCs is determined by the geometry of isochrons, next we dis-

cuss the extensions of our previous analysis of isochrons to PRCs. First, we can consider the

limit �! 0. In this case the isochrons would be vertical lines. Therefore, for points in the

lower branch, unless the pulse brings trajectories above the mid-branch Sr
of the slow null-

cline, its corresponding phase shift will be zero. For those points going to the other branch, the

phase shift will be proportional to the skipped segment of the cycle, thus generating the charac-

teristic shape of PRCs for relaxation oscillators [39] (see black curve in Fig 6 right). However,

our knowledge of the geometry of isochrons can extend this result. Without loss of generality

Fig 5. Relationship between the curvature of isochrons and the values for the slow vector field. For the phenomenological epilepsy model (7) with the

set of parameters Ppheno in (8) the figure shows: (A) Limit cycle Γpheno and its isochrons I y (left). (B) Values of the slow vector field (corresponding to _a in

(7)) for points z 2W.

https://doi.org/10.1371/journal.pcbi.1008521.g005
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we discuss the case g 0xðx; yÞ < 0. In this case, we know that perturbations acting over points on

the lower branch not crossing Sr
will delay the system (see Fig 4). As a consequence, the PRC

will have negative values for all the phases θ in the lower branch such that θ< θ� where

gðy
�
Þ þ A 2 Sr

. Although the particular shape of the delaying segment of the PRC will depend

on the particular slow vector field chosen, in general, we expect the crossing of the slow and

fast nullclines to generate a single unstable fixed point (denoted by P) inside Γ�. It is worth to

mention that since isochrons will approach P through Sr
[40], we expect the bending of a par-

ticular isochron to increase as it approaches Sr
. As a consequence, we expect the maximal

delay values of a PRC to concentrate near the critical phase θ�. Finally, if we consider perturba-

tions over points in the upper branch, arguing similarly as in Fig 4, we can conclude that the

effect of pulses of positive amplitude is to advance trajectories.

Phase locking. So far we have theoretically identified the factors shaping the isochrons for

relaxation oscillators. Furthermore, we have discussed how the particular geometry of the iso-

chrons for relaxation oscillators is reflected in the corresponding PRCs. Next, we aim to con-

tinue extending our theoretical approach to determine generalities underlying the mechanism

by which external perturbations suppress the original oscillatory dynamics. We recall that, in

the particular case of epilepsy, we are studying the suppression of the original oscillation

through the perturbation-triggered delays which cause the system to remain in the lower activ-

ity state and thus to prevent the transition to seizure; one mechanism for this is the existence

of stable phase-locked solutions of the perturbed system.

A delta-like pulse of amplitude, A, reaching the cycle at a phase, θ, will map it to a new

phase fA(θ) = θnew, where the map fA(θ) writes as

fAðyÞ ¼ yþ PRCðA; yÞ: ð24Þ

If the perturbation was a train of periodic pulses with an inter stimulus interval given by Ts, we

can describe the phase dynamics of the system by

yiþ1 ¼ fAðyiÞ þ
Ts

T
¼ yi þ PRCðA; yiÞ þ

Ts

T
; ð25Þ

Fig 6. PRC of pulses A> 0 for relaxation oscillators. Next we sketch the PRCs for pulses of amplitude A> 0 for the case g 0xðx; yÞ < 0. For phases θ< θ�,
where θ� satisfies gðy

�
Þ þ A 2 Sr

, due to the slope of isochrons the effect of the pulses will be to delay trajectories. Since isochrons approach the unstable

point P through Sr
, the closer the phase θ to θ�, the larger the bending of the isochrons and thus the larger the corresponding delay value. For phases

y
�
< y < y

f
�

, there is an advancement proportional to the fraction of cycle skipped. This prevalence of advancements is also seen for points in the upper

branch. For phases in a neighbourhood of the fold point y
f
�

, we expect a transition between advancement and delays not drawn because our analysis is only

valid for normally hyperbolic points.

https://doi.org/10.1371/journal.pcbi.1008521.g006
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where θ0 = θ. The fixed points of the above map (25), which are given by

PRCðy;AÞ ¼ �
Ts

T
; ð26Þ

correspond to the phase locking states of the system.

In the following, we shall use Eq (26) to find the phase-locked solutions that prevent sei-

zures. Note that not all the phase-locked states predicted by Eq (26) prevent seizures. For

example, consider a train of pulses whose inter stimulus interval is Ts� T. Since it is forcing

the system with an almost resonant frequency, the system entrains to it. However, that particu-

lar phase-locked state will not prevent seizures since the system will essentially perform one

full oscillation before the next perturbation occurs.

The particular phase-locked solution that does prevent seizures is sketched in Fig 7. Con-

sider a pulse displacing a point z = γ(θ) to �z . If we denote by th the time that �z needs to

approach Γ�, we need �thð�zÞ ¼ gð
�yÞ with �y < y. That is, we need the perturbed trajectory to

reach the cycle at a previous phase. Assuming fast convergence, we can write

gyð�yÞ � gyðyÞ ¼ �

Z th

0

gð�zÞdt: ð27Þ

Since we need �y < y as a necessary condition for phase locking, then, if we assume without

loss of generality that the motion over Γ� is counter-clockwise, the above integral has to be neg-

ative. For that to happen, the perturbation has to necessarily send trajectories above the slow

nullcline. Indeed, if we denote by t� the time needed to cross the slow nullcline, then, the

Fig 7. Mechanism preventing the emergence of seizures. To suppress the original oscillation and keep the system in

the lower branch of Γ� the amplitude A of the pulse has to be large enough so besides causing a delay Δθ, it displaces

trajectories above enough the slow-nullcline so the distance travelled in the negative direction overcomes the distance

travelled in the positive direction, thus causing a negative net displacement. The locking appears by repeating this

mechanism after Ts = TΔθ intervals so the new pulse always hits the system at the same initial point.

https://doi.org/10.1371/journal.pcbi.1008521.g007
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particular class of locking we are interested in has to satisfy

gyð�yÞ � gyðyÞ ¼ �

Z th

0

gð�zÞdt ¼ �
Z t�

0

gð�tð�zÞÞdt þ �
Z th

t�
gð�ðt�þtÞð�zÞÞdt < 0: ð28Þ

Since the first integral is negative and the second is positive, above Eq (28) shows that the

appearance of phase locking requires the perturbed trajectories to be sent to a point such that

the distance travelled during convergence in the negative direction overcomes the distance

travelled in the positive direction, so the total displacement is negative. Then there is a time

Ts = −TΔθ> 0 (with Dy ¼ �y � y) for which the next pulse will kick the system at the same ini-

tial point z = γ(θ) (see Fig 7). The repetition of this process keeps the trajectory on the lower

branch, and prevents the seizure emergence by suppressing the original oscillatory dynamics.

Importantly, we highlight the strong influence of the slow vector field on the appearance of

this locking mechanism. Indeed, the smaller the distance between the slow nullcline and the

lower branch, the smaller the amplitude of perturbations needed for locking the system.

We can check the validity of this result by revisiting the results for the phenomenor. Fig 8A

shows the relative seizure rate increase Δ for a Ts periodic train of pulses. We can see how the

locking preventing the transition to seizure starts for values �A � 0:1, which is the approximate

distance between the lower branch and the slow-nullcline. Furthermore, for a fixed amplitude

A > �A, if we consider the maximum delay value (denoted by Δθ�) of the corresponding PRC

and compute the inter pulse interval value given by T�s ¼ TDy�, it is clear that for inter-pulse

intervals Ts > T�s , the system is likely to transition to seizure because the delays are not large

enough to stop the system. Therefore, we expect the pair ðA;T�s Þ to delimit the locking regime.

By computing the PRCs for all the amplitude values satisfying A > �A, we can calculate the cor-

responding T�s values and thus generate a curve in the (A, Ts) space—which indeed corre-

sponds with the bifurcation curve of the map (25)—showing a nice agreement with the

boundaries of the locking area (see purple line in Fig 8A).

Fig 8. Response of perturbations for the phenomenor. We plot the change in the seizure rate Δ for a random train of pulses following a Gaussian

distribution of mean time Ts and standard deviation σ denoted as N ðTs;s
2Þ. Panels (A) and (B) correspond to the deterministic periodic case N ðTs; 0Þ and

to the random case N ðTs; 0:05TsÞ, respectively. For panel (A) we plot a purple solid line corresponding to the bifurcation of the phase map (25). We plot

the same curve as a dashed purple curve in panel (B) illustrating the resilience of the deterministic phase-locked states to noise. For the specific details about

the numerical computation of this Figure, we refer the reader to Materials and Methods section.

https://doi.org/10.1371/journal.pcbi.1008521.g008
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Results for the random case in Fig 8B can be interpreted by means of the periodic case. The

random dynamics can be computed as well by using a similar map to (25) but substituting Ts
for ts values in the distribution ts � N ðTs; s

2Þ. In this case, the system does not ‘lock’ in the

same way the deterministic system does, that is through fixed points in Eq (26). However, one

might try to interpret random dynamics by means of the periodic case. As we explained for the

deterministic case, the maximum delay value Δθ� of the PRC allows to compute a characteristic

value of T�s , such that perturbations ts > T�s will lead to seizures. Therefore, the robustness of

the deterministic locking states to noise decreases, as the probability of ts being above T�s
increases, which happens with increasing the width σ of the inter pulse distribution.

Epileptor model

Apart from long standing detailed epilepsy models [41], a recent successful phenomenological

model of epileptic dynamics is the epileptor model [17]. This model consists of 5 differential

equations (4 fast and 1 slow) so it can not only display a wide range of dynamical regimes

explaining many different pathways to seizure [42], but importantly it also contains a phenom-

enological yet explicit deterministic mechanism for spontaneous switching between seizing

and non-seizing regime. In order to show the generality of the results derived from our theo-

retical approach and to demonstrate their consequences in models of epilepsy, we will study

the following 2D reduction of the epileptor model [43]:

_v ¼ 1þ Iapp � v3 � 2v2 � z;

_z ¼
tz
s
ðcðv � v0Þ þ zÞ;

ð29Þ

where v and z represent the firing rate and the permittivity of a neuronal population, respec-

tively. For this model we will work with the sets of parameters Pþ;P0 and P� in Table 1.

Identically as the phenomenor, since the time constant for the z variable is small τz� 1,

and _v ¼ 0 describes a cubic curve, the three sets of parameters Pþ;P0 and P� lead to relaxa-

tion oscillators denoted as Γ+, Γ0 and Γ− respectively. The three different sets of parameters

Pþ;P0 and P� were chosen to illustrate the influence of the slow vector field on the response

of perturbations of the system. Indeed, we denoted the parameters as Pþ;P0 and P� because

they set the nullcline to have positive, horizontal and negative slope, respectively. Fig 9 shows

the isochrons and PRCs for the three sets of parameters Pþ;P0 and P� . Since the slow vector

field of the reduced epileptor is monotonic in the fast variable v, the slope of the isochrons

does not change sign for any of the considered cases, and again, it causes a prevalence of delays

for perturbations of positive amplitude over points on the lower branch which is captured by

the PRCs (see Fig 9). We remark the similarity between the computed PRCs in Fig 9 and the

ones sketched in Fig 6.

Table 1. Different parameters for the reduced 2D Epileptor model in (29). For the set of parameters Pi, the system will display a limit cycle Γi of period Ti.

τz v0 Iapp c s Lim. Cycle Period

Pþ 1/2857 -2 3.1 -4 -1 Γ+ T+� 2181.6

P0 1/2857 -1.5 3.1 -16 -1 Γ0 T0 � 695.7

P� 1/2857 -0.1 3.1 2.4 1 Γ− T− � 7333.3

https://doi.org/10.1371/journal.pcbi.1008521.t001
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Fig 9. Isochrons and PRCs for the reduced epileptor. For the sets of parameters Pþ;P0 and P� in Table 1 we show: Limit cycle Γ+, Γ0 and Γ− and its

isochrons I y (left). The phase response curves for pulses in the v direction for different values of A (right). For the three cases we plot 16 equispaced

isochrons. Consistently with our previous analysis, since the monotonicity of the slow vector field does not change, the slope of isochrons does not change

sign. For numerical details about the computation of both the isochrons and the PRCs see Materials and methods section.

https://doi.org/10.1371/journal.pcbi.1008521.g009
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Response to perturbations

Next, we show how while the unperturbed behaviour of the cycles Γ+, Γ0 and Γ− remains quali-

tatively identical, that is, they show relaxation oscillations, their response to the same train of

pulses will be completely different. As we will argue, these remarkable differences can be

explained by the different sets of parameters Pþ;P0 and P� causing different slow vector fields

for each cycle. Identically as in the phenomenor case, we consider a random train of pulses

whose inter pulse interval follows a normal distribution of mean Ts and standard deviation σ,

denoted by N ðTs; s
2Þ and compute the change of the seizure rate Δ for a train with N ðTs; 0Þ

and N ðTs; 0:05TsÞ.

The simulation results are summarized in Fig 10. Consistently with the theoretical results,

we can see a direct correspondence between the mean distance between the lower branch and

the slow nullcline and the appearance of areas suppressing the oscillation. For this reason, Γ−
locks for smaller amplitude values than for Γ0 and Γ+. Furthermore, although the bending of

the isochrons is small and so are the corresponding delays Δθ, because of its large T value (see

Table 1), the range of Ts = −TΔθ values for which Γ− shows locking is even larger than for Γ0

and Γ+. We also remark the good agreement between the bifurcation curves of map (25) and

the areas suppressing the transition to seizure.

Regarding the interpretation of the random perturbation train scenario, we can interpret

results approximately by means of the results for the periodic perturbation scenario. Similarly

as we argued in the phenomenor case (see Fig 8), the robustness of a given locking state to

noise will depend on whether the critical value of T�s ¼ TDy�, (where Δθ� corresponds

with the maximal delay value of the PRC) is or not within the width σ of the distribution

ts � N ðTs; s
2Þ. The higher the probability of occurrence of ts > T�s values, the likely is the sys-

tem to switch to the upper branch. The differences in the resilience of the deterministic locking

areas for Γ+, Γ0 and Γ− in Fig 10, can be explained by the different values of the period for the

3 cycles (see Table 1). Despite the PRCs for the three cycles show a similar range of values for

the delays Δθ, the differences come when these delays are transformed in inter impulse inter-

vals through Ts = TΔθ. The shorter the period T, the smaller the critical T�s ¼ � TDy
�

value.

Since in the three cases the ts distributions have the same width, the smaller the critical T�s
value, the higher the probability of occurrence of ts > T�s values. As a consequence, the resil-

ience of locking states for Γ+ and Γ0 is weaker than for Γ− in which the distribution Ts = −TΔθ
is larger because of its larger period.

Comparison between the phenomenor and the reduced epileptor

Although both the phenomenor in Eq (7) and the reduced epileptor in Eq (29) model seizure

dynamics through relaxation oscillations, it is worth to mention the different role of the slow

variable in the models. In the phenomenor the variable a describes the excitability of the tissue

(the higher excitability, the more likely the spontaneous seizure initiation), whereas in the

(both original and reduced) epileptor the z variable (dubbed as permittivity) has the opposite

polarity: for its low values, the system switches to seizure as its only stable state. As a conse-

quence, although the dynamical mechanism of the two models generate is virtually identical,

the monotonicity of the slow vector field and the rotation direction over the cycle is flipped

(see Fig 11). However, in both models, the motion and the tilt of the isochrons are related in

such a way that the prevalent effect of positive voltage perturbations over the lower branch of

the cycle is to slow-down the oscillations, or in particular to delay the seizures.

To further compare both models from a general mathematical perspective, we come back

to the notation for a generic planar slow-fast system we defined in (1), where g(x, y) corre-

sponds to the slow vector field and x, y to the fast and slow variables, respectively. The main
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Fig 10. Response of perturbations for the reduced epileptor (29). We show the change in the seizure rate Δ for a random train of pulses

whose mean inter impulse interval follows a normal distribution N ðTs;s
2Þ with a mean time Ts and standard deviation σ. Panels A, B, C

correspond to the sets of parameters Pþ;P0 and P� in Table 1. Left Figures correspond to the periodic case N ðTs; 0Þ and right Figures to the

random case N ðTs; 0:05TsÞ. Consistently with our theoretical analysis there is a direct correspondence between the mean distance between

the lower branch and the slow nullcline and the minimal pulse amplitude A for which perturbations may lead to lock the system. Purple solid

lines, bounding locking regimes, correspond to the bifurcations of the map (25). By drawing the same curve for the random case, we illustrate

the resilience of locking states to noise. For the specific details about the numerical computation of this Figure, we refer the reader to Materials

and Methods section.

https://doi.org/10.1371/journal.pcbi.1008521.g010
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differences between both models rely on their different time constant τ values and the specific

slow vector field functions g(x, y). Because of the correspondence between τ� 1 and �, we

expect the isochrons to be bounded in domains OðtÞ (see Fig 4). However, from our analysis it

also follows that the bending of the isochrons, although being contained in OðtÞ domains, will

be also determined by dependence of g(x, y) on the fast variable x between the perturbed and

the base trajectories (see Eq (23)). To illustrate these role of τ and g 0xðx; yÞ, let us compare

Γpheno with Γ−. In both cases, the slow nullcline was near the lower branch, so we have a (quali-

tatively) similar geometry for both phase spaces. For this reason the response to perturbations

was qualitatively similar in both cases (compare Figs 8 and 10C). However, the larger range of

Ts values for which perturbations over Γpheno avoid seizure can be explained by both the larger

τ and the strong change in the monotonicity of g(x, y) for the PE. The combination of both

effects causes a larger bending of the isochrons and thus larger delays. Therefore, for (qualita-

tively) similar geometries, the differences in both the time constants values and in the strength

of variations in the fast component of the slow-vector field have a substantial effect on the

amplitude of the phase response of the system to inputs.

Discussion

In this paper we applied a phase approach to analyse planar relaxation oscillators, motivated

by models of epileptic dynamics. Indeed, the study of neural oscillators by means of the phase

reduction has been extensively utilized in neuroscience from the level of single neurons to the

network scale [28, 44–46]. In this work, the computation of isochrons and PRCs of the

phenomenological seizure dynamics model introduced in [22] fully clarified the mechanism

Fig 11. Slow vector field for the reduced epileptor and the phenomenor. Each cycle is depicted in purple, the v-nullcline in black and the slow nullcline

in green. Notice that the direction of the slow variable in both models is flipped, and thus is also the motion over the cycles and the sign of the derivative of

the slow vector field in the fast direction g 0xðx; yÞ.

https://doi.org/10.1371/journal.pcbi.1008521.g011
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integrating the antagonistic potential effects of IEDs. Furthermore, the theoretical analysis of

the phase response of a generic planar relaxation oscillator manifested the crucial role of the

slow vector field on the geometry of their isochrons. Due to the direct link between isochrons

and PRCs, we have been able to study the relationship between the slow vector field and the

different response behaviour a planar oscillator can display depending on the amplitude and

frequency of perturbations. For the cases considered, whereas the distance between the slow

nullcline and the bottom branch of the cycle indicated the minimum value of amplitude values

suppressing the original oscillation, the minimum value of PRCs (that is, the maximum delay)

was related to the maximum interpulse intervals for which this locking mechanism holds. Fur-

thermore, besides confirming our results, the study of variants of the reduced epileptor model

[43] showed how vastly different responses to perturbations can be exhibited by models differ-

ing only in the slow-nullcline position, but possessing almost identical unperturbed behaviour,

i.e. equivalent limit cycle oscillations, thus demonstrating the key role of the slow vector field

in the response of perturbations for planar relaxation oscillators.

We acknowledge that due to the motivation by models of epilepsy, we showcased the theory

only on a small set of example dynamical systems previously used for modelling the cyclical

transition between an ictal and interictal state, which showed quite similar dynamics, includ-

ing having one linear and one cubic nullcline, and a monotonous slow component of the flow

field. A quick glance at other slow-fast relaxation oscillator models however suggests, that

these properties are far from uncommon in many other models. Moreover, careful consider-

ation of the theoretical arguments however shows, that the specific linear or cubic shape is

indeed not crucial for the general observations to hold. Also, careful consideration of the theo-

retical arguments shows, that the monotonicity of slow vector field is firstly quite natural (the

function needs to change from positive to negative values between the two stable branches of

the stable manifold; it may likely do so just monotonically); and moreover not necessarily

needed—if the change is not monotonic, the dependence of the PRC on the size of the pertur-

bation just becomes more complicated, however the (sign of) the PRC is still given by the inte-

gral of the slow component along the recovery trajectory.

Another apparent limitation is that we focused on the effect of positive pulses acting on the

bottom branch of the cycle. However, the approach straightforwardly extends to planar oscilla-

tors having more complex slow vector fields and to pulses of different sign applied either to the

lower or higher branch. Indeed, we suggest that for a given slow vector field the applied geo-

metrical approach is instrumental in providing an intuitive insight concerning the isochrons

and therefore the PRCs. In that sense, our analysis extends previous results on PRCs and iso-

chrons of planar relaxation oscillators beyond the weak and singular limit [39, 47]. Theoreti-

cally more interesting, while also more demanding, is the generalization to higher dimensional

oscillators, providing richer geometrical structure of the flow, perturbations and trajectories.

However, previous simulation-based results on the full Epileptor model [22] suggest that the

potential dual effect of perturbations on oscillatory behaviour is preserved even in higher

dimensions, although richer behaviour might show for other models or perturbation

scenarios.

Regarding epilepsy, our results indicate the key influence of the slow vector field on the pro-

pensity for seizure emergence. We acknowledge our analysis relied on reduced planar models.

However, we plan to make advantage of recent methodologies computing isochrons of high

dimensional systems [48] to extend our approach to different high dimensional models as [17,

19–21, 49]. In general, the high dimensionality of these models permits to describe more accu-

rately seizures initiation and termination [14, 50]. We believe the continuation of this line of

research may provide an alternative vision to the questions these models approach. Further-

more, because of the usage of the phase variable and the determination of PRCs, we think this
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approach can also help to determine more accurately coupling functions for studies approach-

ing epilepsy from the coupling of different oscillatory units [51].

Importantly, the quest for deeper and intuitive understanding of the effect of perturbation

on epileptic network dynamics is not just an intriguing mathematical exercise, but an indis-

pensable part of an important while difficult journey to understand the mechanisms of seizure

initiation, and the possible ways to preclude this initiation by therapeutic stimulation interven-

tions [52]. Of course, while the general conceptual insights are on their own relevant for gen-

eral understanding the possible dynamical phenomena in response to perturbations, the

observed role of the slow component of the field and in particular the nullcline suggests that

any computational models of epilepsy dynamics should also attempt to reasonably approxi-

mate these aspects (and not only the unperturbed behaviour), if aspiring for providing relevant

predictions concerning treatment protocols or just outcomes of endogenous perturbations

and inter-regional interactions. This opens also the question of how to practically estimate

these properties from experimental data, be it through stimulation protocols or purely obser-

vation data; this seems to be a natural avenue for obtaining more realistic models of epileptic

dynamics.

In conclusion, we have outlined and carried out phase response analysis of planar relaxation

oscillator models of epileptic dynamics that opens not only a path in epilepsy research with

many interesting analytical, computational, experimental and potentially clinical implications,

but also provides a framework applicable to gain insight in the plethora of other computational

biology problems in which slow-fast relaxation oscillator models are pertinent.

Materials and methods

This section contains some technical details concerning the numerical implementation of

computations used to provide the presented results. Integration of ordinary differential equa-

tions was done using a 8th-order Runge-Kutta Fehlberg method (rk78) with a tolerance of

10−14.

Counting of seizures

In this Section we explain how we generate the diagrams in Figs 2C, 8, and 10 showing the

effect of perturbations on the transition to seizure for both the phenomenor (PE) and the

reduced epileptor (RE). As we explain along the manuscript, both models describe epileptic

dynamics through a relaxation oscillator of period T whose dynamics on the upper stable

branch correspond to seizures. As for both models, the upper branch of the cycle terminates at

the upper fold point Sfþ (which in both cases corresponds to v = 0), we have proceeded this

way: for each case we integrate the corresponding system for a time t� T with a time step Δt
and apply a pulse of amplitude A in the v direction at equispaced Ts intervals. Each time the

following condition is satisfied: v(t − Δt)< 0< v(t), we consider the system transitions to sei-

zure. Finally, the change in seizure rate Δ is computed by dividing the number of seizures in

the perturbed case by the number of seizures for the unperturbed case (which is 1 seizure per

period). For the random case we proceed the same way just perturbing the system at intervals

ts � N ðTs; s
2Þ.

From the adopted criteria for counting seizures it follows that very large perturbations

might cause or constitute a seizure per se independently of the Ts value. For that reason, since

we were interested in the relationship of both the amplitude A and the inter pulse interval Ts
we limited the simulated amplitude in the above mentioned Figures to maximum of A = 0.8

for the PE and A = 1.8 for the RE (note that perturbations of A� 1 for the PE and A� 2 for

the RE will cause seizures independently of the Ts value).
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Computation of isochrons

To compute isochrons of slow-fast systems, we assume we have an analytic vector field _z ¼
ZðzÞ having a T-periodic hyperbolic attracting limit cycle Γ which we parametrise by γ(θ) (see

Eqs (9) and (10)). To find γ(θ), we construct a Poincaré section and use a Newton method to

find a fixed point of the corresponding Poincaré map. By doing this, we obtain a point z0 2 Γ
and the period T. Then, we integrate the system (9) with initial condition z(0) = z0 for a time T
to obtain zðyTÞ≕ gðyÞ for y 2 ½0; 1Þ.

Next, we need to compute the linearisation N(θ) of the isochrons around Γ. To that aim,

typically one solves a variational-like equation [53]. However, in slow-fast systems the cycle is

strongly attracting (indeed, its characteristic multiplier is Oðe� k=�Þ with k> 0) [54]. For this

reason, obtaining N(θ) via numerical integration requires to deal with very small numbers, so

one needs high precision algorithms and large number of decimals.

As an alternative to numerical integration, we took advantage of the fact thatrΘ(z) is per-

pendicular to the level curves of Θ(z), which indeed correspond to the isochrons. Therefore,

we can use the infinitesimal PRC (iPRC), that isrΘ(γ(θ)), to compute N(θ) through the fol-

lowing equation [53]:

rYðgðt=TÞÞ ¼
NðyÞ?

ThNðyÞ?;ZðgðyÞÞi
; ð30Þ

where v? refers to a perpendicular vector to v and <�, �> to the usual dot product. Instead of

computing the iPRCrΘ(γ(t/T)) by integrating the adjoint equations (which also display

numerical instabilities) we compute it by means of the procedure described in next subsection.

Finally, we globalise the isochrons via the backwards integration of N(θ) (we refer the

reader to [53] for more details about the globalisation procedure).

Computation of PRCs

The PRCs in this paper were computed using a continuation method. The computation of

PRCs by direct integration of the perturbed trajectories, usually measures the phase shift over

the maximum of a certain variable. That is, they require to integrate a relaxation time Trel large

enough so the perturbed trajectories reach the maximal values over the cycle. By contrast, as

we now show, continuation methods just require the perturbed trajectories to reach a point on

the cycle. Therefore, one needs to integrate a shorter time Trel. Specifically in slow-fast systems,

in which the periods of the system are large, the usage of continuation methods saves a lot of

computational effort. To compute PRCs, we have used the continuation method introduced in

[55], which we now briefly review for the sake of completeness.

A pulse acting on a point z = γ(θ) 2 Γ will displace the trajectory to �z ¼ z þ A. Then, after a

time Trel large enough, the trajectory will be again on the limit cycle but with another phase �y.

Mathematically

FAðgðyÞÞ ¼ gðfAðyÞÞ; ð31Þ

where FAðzÞ ¼ �Trelðz þ AÞ, and fAðyÞ ¼ �y. Then the PRC is PRC(θ, A) = fA(θ) − (θ + Trel/T).

The idea of the method is to obtain fA(θ) by solving Eq (31). To that aim, one can use the

following algorithm which computes the PRC for a perturbation of amplitude A by means of a

Newton method. The computation of PRCs via continuation is achieved using the computed

PRC as an initial seed for computing the PRC for a new amplitude A0 = A + ΔA. Given the

parameterization of the limit cycle γ(θ), and fA(θ) an approximate solution of Eq (31), we per-

form the following operations:
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1. Compute E(θ) = FA(γ(θ)) − γ(fA(θ)).

2. Compute @θ γ(fA(θ)) = TZ(γ(fA(θ))).

3. Compute DfA ¼
<@ygðfAðyÞÞ;EðyÞ>

<@ygðfAðyÞÞ;@yðfAðyÞÞ>
.

4. Set fA(θ) fA(θ) + ΔfA(θ).

5. Repeat steps 1-4 until the error E is smaller than the established tolerance. Then PRC(A,

θ) = fA(θ) − (θ + Trel/T).

We refer the reader to [55] for the implementation of this methodology for not pulsatile

perturbations. To compute the iPRC by means of this algorithm one has to consider perturba-

tions of A small and fA(θ) = θ + Trel/T as initial seed. Then,rΘ(γ(θ)) = PRC(A, θ)/A.
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Writing – review & editing: Alberto Pérez-Cervera, Jaroslav Hlinka.
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