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Subpopulation-proteomics reveal growth rate, but
not cell cycling, as a major impact on protein
composition in Pseudomonas putida KT2440
Sarah Lieder1, Michael Jahn2, Jana Seifert3,4, Martin von Bergen3,5,6, Susann Müller2 and Ralf Takors1*
Abstract

Population heterogeneity occurring in industrial microbial bioprocesses is regarded as a putative effector causing
performance loss in large scale. While the existence of subpopulations is a commonly accepted fact, their
appearance and impact on process performance still remains rather unclear. During cell cycling, distinct
subpopulations differing in cell division state and DNA content appear which contribute individually to the
efficiency of the bioprocess. To identify stressed or impaired subpopulations, we analyzed the interplay of growth
rate, cell cycle and phenotypic profile of subpopulations by using flow cytometry and cell sorting in conjunction
with mass spectrometry based global proteomics. Adjusting distinct growth rates in chemostats with the model
strain Pseudomonas putida KT2440, cells were differentiated by DNA content reflecting different cell cycle stages.
The proteome of separated subpopulations at given growth rates was found to be highly similar, while different
growth rates caused major changes of the protein inventory with respect to e.g. carbon storage, motility, lipid
metabolism and the translational machinery.
In conclusion, cells in various cell cycle stages at the same growth rate were found to have similar to identical
proteome profiles showing no significant population heterogeneity on the proteome level. In contrast, the growth
rate clearly determines the protein composition and therefore the metabolic strategy of the cells.
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Introduction
Commonly applied assumptions consider microbial popu-
lations in bioreactors as uniform, thus leveling individual
properties of subpopulations to averages. However, it is in-
creasingly accepted that clonal microbial cultures com-
prise individuals that are not identical, differing in terms
of DNA content and cell physiology (Brehm-Stecher and
Johnson 2004; Delvigne and Goffin 2013). Heterogeneity
of clonal microbial cultures may result from several dis-
tinct sources, either from internal biological origins, such
as mutations, cell cycle decisions and age distribution, or
from ‘external’ technical factors (Avery 2006; Müller et al.
2010). Notably, external factors interact with biological
properties, yielding the superimposition of both impacts
in the population. Here, we shed light on the impact of
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two key players in the origin of population heterogeneity,
the growth rate and the cell cycle.
Traditionally, the cell cycle is suggested to play a role

in the development of population heterogeneity within
clonal populations (Müller et al. 2010). A short summary
of the sequence of cell cycle phases can be found in
Figure 1. The bacterial cell cycle was described for
Escherichia coli comprising the B-Phase, which is de-
fined as the time between division and start of replica-
tion, the replication phase (C-Phase), the pre-D-Phase
(an interphase between the C- and D-Phase) and the
division phase (D-Phase) (Cooper 1991; Müller and Babel
2003). Furthermore, under optimal growth conditions accel-
erated proliferation (also called ‘multifork DNA-replication’)
can be monitored: new rounds of DNA replication may be
initiated before a previous round is completed, puta-
tively providing another source of heterogeneity (Bley
1990; Müller 2007).
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Figure 1 Schematic overview of the bacterial cell cycle. The bacterial cell cycle can be divided into B, C, pre-D and D phases constituting a
defined order within one generation time. Under unlimited growth conditions, some bacterial species are capable of accelerating proliferation by
uncoupling DNA synthesis from division. As a result, a new round of DNA replication is initiated before the completion of the previous round
(Cooper 1991; Müller et al. 2010).
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It is suspected, that biosynthesis of biotechnological
interesting compounds occurs in dependency of the cell
cycle, e.g. only within the stochastic B- and pre-D-phases,
when cells are neither replicating nor dividing (Müller
et al. 2010). Ackermann et al. (1995) described for
Methylobacterium rhodesianum that products like polyhy-
droxyalkanoates (PHAs) accumulate only when cells com-
prise a certain chromosome number. This phenomenon
was found to occur at off-cell-cycling stages. In microbial
biotechnology, heterogeneity caused by cell cycling may
cause inefficiently producing subpopulations and could
have significant impact on the overall process perform-
ance (Lencastre Fernandes et al. 2011). Here, we aim to
investigate if the protein inventory of a cell, which is re-
lated to its metabolic activity, is dependent on cell cycle
stages and how growth rates may influence both, protein
composition and cell cycling.
Pseudomonas putida KT2440 was used as a model or-

ganism owing to its numerous qualities as an expression
host, such as safety (Bagdasarian et al. 1981; Nakazawa
and Yokota 1973), fast growth, a fully sequenced genome
(Nelson et al. 2002) and high stress tolerance (Martins
Dos Santos et al. 2004). Together with simple nutrient
demand, the potential to regenerate redox cofactors at a
high rate (Blank et al. 2008) and its amenability to gen-
etic manipulation, P. putida is an ideal host for heterol-
ogous gene expression (Meijnen et al. 2008). With the
advance of genome-wide pathway modeling (Puchałka
et al. 2008) and ‘omics techniques, the way for systems-
wide engineering strategies was paved to turn P. putida
into a flexible cell factory chassis (Yuste et al. 2006).
Consequently, P. putida is more and more explored and
already successfully used for numerous industrial appli-
cations (Poblete-Castro et al. 2012; Puchałka et al. 2008).
In our study, we applied continuous cultivations under

controlled growth conditions at defined growth rates. While
(fed-) batch approaches are characterized by steadily chan-
ging environmental conditions such as media composition,
steady-state modes of a chemostat, where cells are cultivated
with a pre-installed growth rate, are defined by environmen-
tal conditions that remain unchanged (Carlquist et al. 2012).
Notably, (fed-) batch cultures usually represent a mixture of
cells growing with different speed as a consequence of
changing environmental conditions (Unthan et al. 2014).
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Investigating a wide spectrum of growth rates with
chemostat cultivation and sampling at steady state condi-
tions gave a specific and unmasked view on the influence
of the growth rate on population characteristics. Features
like DNA content of the cells, protein composition and
adenylate energy charge measurements were included
in the study. Additionally, subpopulations with differ-
ent DNA content were sorted at growth rates 0.1 h−1,
0.2 h−1 and 0.7 h−1 and analyzed for their proteome
composition.
Summarizing, we investigated if cell cycling subpopu-

lations at the same growth rate were independent and
different from each other on the level of metabolic path-
ways, e.g. whether slow growing cells with longer cell
cycling phases might specialize between proliferation
and production phases. In addition, we wanted to clarify
if cells invest into different protein species under rising
growth rates.

Materials and methods
Bacterial strains and cultivation conditions
Chemicals were purchased from Fluka, St. Gallen, Switzerland.
Experiments were performed with P. putida KT2440
(ATCC 47054) cells originating from a single colony
stored in a working cell bank at −70°C. Cells were cultivated
in M12 minimal salt medium containing 2.2 gL−1 (NH4)2
SO4, 0.4 gL−1 MgSO4 · 7 H2O, 0.04 gL−1 CaCl2 · 2 H2O,
0.02 gL−1 NaCl, 2 gL−1 KH2PO4 and trace elements (2 mgL−1

ZnSO4 · 7 H2O, 1 mgL−1 MnCl2 · 4 H2O, 15 mgL−1 Na3-
citrate · 2 H2O, 1 mgL−1 CuSO4 · 5 H2O, 0.02 mgL−1

NiCl2 · 6 H2O, 0.03 mgL−1 NaMoO4 · 2 H2O, 0.3 mgL−1

H3BO3, 10 mgL−1 FeSO4 · 7 H2O).
A shake flask preculture (150 mL) was started from a

minimal medium working cell bank (8.5 mL) with a glu-
cose concentration of 5 gL−1. At mid-exponential growth
phase, the preculture was used to inoculate the bioreactor
(KLF 3.7 L, Ser. No. 10819, Bioengineering AG, Wald,
Switzerland) to reach a final working volume of 1.5 L. Be-
fore inoculation, the cultivation conditions were set to
30°C, a stirrer speed of 700 rpm, a pressure of 0.5 bar
and an aeration of 2 Lmin−1 sterile filtered ambient air.
The pH was set and maintained at pH 7 with 25% (v/v)
NH4OH. Exhaust gas composition (Blue Sense CO2 and
O2, (DCP-CO2 DCP-02, Blue Sense gas sensor GmbH,
Herten, Germany), dissolved oxygen and pH in the liquid
phase (Ingold, Mettler Toledo GmbH, Giessen, Germany)
were monitored online. After glucose depletion, the batch
cultivation was continued as a chemostat. At steady state
conditions, the dilution rate equals the specific growth
rate μ in a chemostat set-up. Each dilution rate (and there-
fore growth rate) and environmental condition was kept
for 5 residence times. The dilution rate was adjusted by
feeding at a defined flow rate. Weight gain of the reactor
was monitored and a harvest pump was started at a
weight gain of 10 g. Additionally, the dilution rate was
checked manually by measuring the mass of the harvest
outflow within a timespan of one hour before sampling.
Steady state was evaluated online via exhaust air analysis.
Chemostat cultivations were performed in three individual
biological replicates.

Determination of the adenylate energy charge
The adenylate energy charge (AEC) value mirrors the
cellular energy status (Atkinson and Walton 1967) and
can be assessed as follows: Biocatalytic reactions inside
the cells were stopped with 35% (w/v) HClO4. 4 mL bio-
suspension was taken directly into 1 mL of precooled
(−20°C) HClO4 solution on ice and mixed immediately
(Theobald et al. 1997). The sample was shaken at 4°C
for 15 min in an overhead rotation shaker. Afterwards,
the solution was neutralized on ice by fast addition of
1 mL 1 M K2HPO4 and 0.9 mL 5 M KOH (Buchholz
et al. 2001). The neutral solution was centrifuged at 4°C
and 4,000×g for 10 min to remove cell debris, precipi-
tated protein and potassium perchlorate. The super-
natant was kept at −20°C for batch high pressure liquid
chromatography (HPLC) measurements. At each sam-
pling time, the biosuspension sample and a filtrated
sample without cells was treated according to the above
described procedure.
Nucleotide analysis was performed by reversed phase

ion pair HPLC (Theobald et al. 1997). The HPLC system
(Agilent Technologies, Waldbronn, Germany) consisted of
an Agilent 1200 series autosampler, an Agilent 1200 series
Binary Pump SL, an Agilent 1200 series thermostated
column compartment, and an Agilent 1200 series diode
array detector set at 260 and 340 nm. The nucleotides
were separated and quantified on an RP-C-18 column that
was combined with a guard column (Supelcosil LC-18-T;
15 cm× 4.6 mm, 3 μm packing and Supelguard LC-18-T
replacement cartridges, 2 cm; Supelco, Bellefonte, USA)
at a flow rate of 1 ml/min. A gradient elution method
(Cserjan-Puschmann et al. 1999) was adapted and per-
formed with two mobile phases, buffer A (0.1 M KH2PO4/
K2HPO4, with 4 mM tetrabutylammonium sulfate and
0.5% (v/v) methanol, pH 6.0) and (ii) solvent B (70% (v/v)
buffer A and 30% (v/v) methanol, pH 7.2). The following
gradient programs were implemented: 100% (v/v) buffer A
from 0 min to 3.5 min, increased to 100% (v/v) B until
43.5 min, remaining at 100% (v/v) B until 51 min, de-
creased to 100% (v/v) A until 56 min and remaining at
100% (v/v) A until 66 min.
The AEC is calculated according to Atkinson and

Walton (1967):

AEC ¼ ATP½ � þ 0:5⋅ ADP½ �
AMP½ � þ ADP½ � þ ATP½ � ð1Þ
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Sample preparation and staining for flow cytometry
Samples for flow cytometry were washed with PBS, re-
suspended in cryo-protective solution (15% (v/v) glycerol
in PBS according to Jahn et al. (2013)) and stored at −20°C.
Deep-frozen cell samples were thawed on ice and cen-

trifuged for 2 min at 8,000×g and 4°C to remove the
cryo-protective solution. The supernatant was discarded,
the cells were resuspended in ice cold PBS and adjusted
to an optical density of OD600nm = 0.05 in 2 mL volume.
For DNA staining, the cells were centrifuged, taken up
in 1 mL permeabilization buffer (0.1 M citric acid, 5 gL−1

Tween 20), incubated for 10 min on ice, centrifuged again
and the supernatant was removed. Finally, cells were
resuspended in 2 mL ice cold staining buffer (0.68 μM
DAPI, 0.1 M Na2HPO4), filtered through a Partec Cell-
Trics mesh (Partec, Germany) with 30 μm pore size and
stored on ice until analysis.
Flow cytometry and cell sorting
Flow cytometry was performed using biological dupli-
cates. For each biological replicate two technical replicates
were investigated using a MoFlo cell sorter (Beckman-
Coulter, USA) as described before (Jahn et al. 2013;
Jehmlich et al. 2010). Forward scatter (FSC) and side
scatter signals (SSC) were acquired using blue laser ex-
citation (488 nm, 400 mW) and a bandpass filter of
488/10 nm together with a neutral density filter of 2.0
for emission. The DAPI fluorescence was recorded
using a multi-line UV laser for excitation (333–365 nm,
100 mW) and a bandpass filter of 450 ± 30 nm for emis-
sion. The datasets were annotated according to the
miFlowCyt standard (Lee et al. 2008) and are publicly
available on the FlowRepository database (Spidlen et al.
2012). Cells were sorted at the most accurate mode (single
cell, one drop) with a sorting speed of 4,000 s−1 and a
sample chamber cooled to 4°C. For cell sorting a total
number of 5 × 106 cells per replicate were directly sorted
on a filter well plate (LoProdyne™ membrane with
0.45 μm pore size, Nunc, Germany) and the residual
buffer was constantly drawn off by an exhaust pump.
After sorting, the filter membrane was washed three
times with 200 μL PBS, air dried and stored at −20°C
for further analysis.
Identification of proteins by LC-MS-MS
For quantitative proteomics, the filter membrane was
cut into smaller pieces and treated by trypsin for whole
cell proteolytic digestion as described in Jahn et al. (2013).
The obtained peptide solution was purified using the Zip-
Tip protocol (Millipore, USA), dried in a vacuum concen-
trator at 30°C and finally taken up in 20 μL 0.1% (w/v)
formic acid. The solution was separated by nano-ultra per-
formance liquid chromatography and measured by an
LTQ Orbitrap XL (Thermo Fisher Scientific, Germany) as
described in Jahn et al. (2013).

Data analysis
Mass spectra were analyzed by MaxQuant v1.2.2.5 (Cox
and Mann 2008) for protein identification and label-free
quantification with the genome database of P. putida
KT2440 and the settings given in Jahn et al. (2013). The
label-free quantification (LFQ) values were used for fur-
ther data analysis and can be found in the Additional
file 1. The mean, standard deviation and relative quan-
tity of replicates in relation to the reference population
(RP, μ = 0.2 h−1, mean of two biological replicates) was
calculated. The RP was sorted in order to exclude in-
fluences of the sorting procedure on the proteomic
content. Unsorted cells of the 0.2 h−1 grown popula-
tion were used as an unaffected control population
(CP). Student's t-test was performed for significance
testing (p < 0.05) of single proteins. Proteins were an-
notated using COG (clusters of orthologous groups)
(Tatusov et al. 1997) and clustered in two hierarchical
levels of metabolic pathways (‘metabolism’, ‘pathway’).
Protein clusters were tested for significant changes using
the R Bioconductor (www.bioconductor.org) packages
GAGE (Luo et al. 2009) and GlobalTest (Goeman et al.
2006), setting p < 0.05 and a relative fold change (FC)
of 1.5 (log2 FC > 0.58) as thresholds. Hierarchical groups
were visualized using a color-coded circular treemap (Jahn
et al. 2013).

Results
Subpopulation dynamics of P. putida KT2440 were ana-
lyzed in a wide range from slow growth rates starting at
μ = 0.1 h−1 to high growth rates of up to μ = 0.7 h−1. At
growth rates higher than μ = 0.7 h−1, wash out of the
culture was observed, meaning that the maximal growth
rate was exceeded and cells could not reproduce fast
enough to keep the population density constant. For this
reason, μ = 0.7 h−1 was the highest growth rate investi-
gated in this study. The physiological and the energetic
state of the averaged cell population was analyzed by
biomass/substrate yield (Yx/s), biomass specific substrate
uptake rates (qs), and adenylate energy charge measure-
ments (AEC), each measured at steady state growth condi-
tions (Figure 2). Observed stable carbon dioxide emission
rates served as the criterion to qualify the achievement of
steady-state cultivation conditions.
The yield of biomass on glucose increased gradually

by 10% from μ = 0.1 h−1 to μ = 0.5 h−1. Further rise of
the growth rate resulted in yield reductions, returning to
the level at μ = 0.1 h−1 (−10%). The energetic capacity of
the cells can be estimated via AEC, taking the relative
contribution of all three phosphorylated forms of aden-
ine into account. The AEC was found to be stable with

http://www.bioconductor.org
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Figure 2 Summary of the physiological state of the average
population. The specific glucose uptake rate (qs, gGLCgCDWh

−1, black
bars), the adenylate energy charge (AEC, dark grey bars) and the
biomass yield (Yx/s, gCDWgGLC

−1 , light grey bars) were measured at
steady state conditions for different growth rates μ (h−1). The
growth rate was stepwise increased until a wash-out of the cells was
monitored. Concentrations of cell dry weight (CDW), glucose (GLC)
and the AEC were measured offline, sampling after 5 residence times
of one specific growth rate (0.1≤ μ (h−1)≤ 0.7). Error bars show the
standard deviation between three biological replicate cultivations.
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increasing growth rate until μ = 0.4 h−1. Further increas-
ing the growth rate resulted in a reduction of the AEC
level by – 18% (p-value < 0.01), which was almost the
same at maximum growth, still staying in the range of ex-
pected physiological levels. The specific glucose uptake
rate qs was increasing linearly with increasing growth rate.
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Figure 3 Dot plots of DNA content (DAPI, in arbitrary fluorescence un
growth rates 0.1 h−1, 0.2 h−1 and 0.7 h−1. The dataset of the biological r
KT2440 grown at steady state conditions in chemostats were stained with DA
scatter increased with increasing growth rate. The indicated gates (C1, C2, Cx)
spectrometric analysis.
To be able to distinguish between subpopulations, flow
cytometry was proven to be a suitable tool shedding
light on the dynamics of single cells within a heteroge-
neous microbial population (Cooper 1991; Müller and
Babel 2003; Shapiro 2000; Skarstad et al. 1985). Here,
the DNA content was monitored via flow cytometry in
addition to forward scattering (FSC) giving relative infor-
mation about cell size (Müller and Nebe-Von-Caron
2010) (Figure 3). The dataset of the biological replicate
can be found in the Additional file 2: Figure S1. The
subpopulation analysis revealed that the major differen-
tial parameter was the alteration of DNA content as
distinguished by flow cytometry. Three subpopulations
could be identified in total: cells containing a single
chromosome equivalent (C1), two chromosome equiv-
alents (C2) and cells with more than two chromosome
equivalents (Cx) (Figure 3). Population composition with
respect to DNA content varied clearly as a function of
growth rates. At μ = 0.1 h−1, 82.0 ± 0.3% of cells contained
a single chromosome equivalent, while only 18.0 ± 0.2%
contained a double chromosome equivalent content. No
Cx subpopulation could be detected. On the contrary, at
the high growth rate of μ = 0.7 h−1 only 1.4 ± 0.8% of cells
belonged to the C1 subpopulation, 16.1 ± 0.1% of cells
contained a double chromosome content and 82.5 ± 1.0%
more than double.
To investigate whether subpopulations with different

DNA content show physiological differences as well, we
sorted the cell population at three growth rates (0.1 h−1,
0.2 h−1 and 0.7 h−1) into subpopulations containing sin-
gle (C1), double (C2) or more than double chromosome
content (Cx) aiming to analyze their proteome profile as
the basis of their phenotype. In total, 677 unique pro-
teins could be detected. 351 proteins were found in at
I (A.F.U.)

=0.2 h-1 µ=0.7 h-1

its (A.F.U.)) versus forward scatter (FSC, in A.F.U.) at different
eplicate can be found in the Additional file 2: Figure S1. Cells of P. putida
PI and analyzed by flow cytometry. The DNA content and the forward
were used for sorting 5x106 cells per subpopulation for further mass
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least one replicate of all subpopulations and 245 proteins
were found across all replicates. 707 different functions
of 647 unique proteins were annotated using the data-
base of clusters of orthologous groups (COG) (Tatusov
et al. 1997) (Additional file 2: Figure S2). 95.2% of the
non-sorted control population (CP) proteome could be
found in the reference population (RP) proteome with-
out significant changes, indicating only a small influence
of cell sorting on protein recovery and confirming the
quality of the analysis.
Significant changes in protein quantity were defined by

exceeding a threshold of more than 1.5 fold change (FC)
in combination with a p-value < 0.05 (Student's t-test).
Changes in metabolic pathways were detected using
GAGE and GlobalTest gene set analysis (Goeman et al.
2006; Luo et al. 2009) applying the same significance
filter as for the individual proteins.
As a result, at any given growth rate, the proteomic

patterns of the subpopulations did not differ significantly
from each other (Figure 4a). When looking at single pro-
teins, only three were detected that comprised signifi-
cantly different levels between subpopulations at growth
rate μ = 0.1 h−1 and μ = 0.7 h−1, respectively. The abun-
dance of cell division protein FtsZ was found to be 3.6
fold lower in subpopulation C1 in contrast to C2. FtsZ is
a bacterial tubulin homologue self-assembling into a ring
at mid-cell level and localizing the bacterial divisome
machinery (Adams and Errington 2009; Weart et al.
2007). The two other proteins were the molecular chaperone
GroEL (FC 1.7) and a P-47-like protein (PP_2007, FC 2.4).
Also at high growth rate of μ = 0.7 h−1, only three proteins,
the translocation protein TolB (FC 1.8), the NADH de-
hydrogenase subunit G (PP_4124, FC 1.51) and a succinyl-
diaminopimelate transaminase (PP_1588, FC 0.26) showed
significant differences between the subpopulations C2 and
Cx. Surprisingly, no changes in metabolic pathways could
be found between subpopulations at any given growth rate.
Comparing the subpopulations of different growth rates

with RP, biologically significant differences were detectable
as tested by gene set analysis (GAGE (Luo et al. 2009) and
Globaltest (Goeman et al. 2006)) (Figure 4b and 4c).
At μ = 0.1 h−1, subpopulations C1 and C2 showed higher
abundance of proteins related to ‘cell motility’, and pro-
teins involved in ‘cell cycle control, cell division and
chromosome partitioning’ (cell cycle) were additionally
highly abundant in subpopulation C2. Apart from COG
annotated pathways, several proteins connected to carbon
storage were found to be significantly changed (Figure 5).
Mirroring low qS at slow growth compared to moderate
growth, four main signaling proteins in chemotaxis
(CheA, CheB, CheW, CheV) as well as 6 methyl accepting
chemotaxis transducers were significantly increased. Fur-
thermore, the low abundance of glycogen synthesis pro-
teins (GlgA, Pgm) and the high abundance of glycogen
hydrolysis proteins (GlgX, GlgP) could be seen together
with an increase of proteins involved in PHA production
(PhaA, PhaC).
In contrast, subpopulations C2 and Cx of fast growing

cells (μ = 0.7 h−1) revealed higher presence of proteins
grouped in the pathway ‘Translation, ribosomal struc-
ture and biogenesis’ (Translation), while proteins of
'Signal transduction mechanisms’ (Signaling) and ‘Lipid
transport and metabolism’ (Lipids), were significantly un-
derrepresented. The faster growth was reflected in proteins
related to translation and therefore protein production.
Here, 11 tRNA synthetases and 25 ribosomal proteins
showed significantly higher abundance. In lipid metabol-
ism, mostly enzymes of beta-oxidation were found in lower
presence at fast growth (Figure 5). The supposed down
regulation of the ‘Cell Cycle’ (C2 versus Cx) was mainly
due to the single protein change of the poorly character-
ized PP_3128.
In summary, the proteome of cells differing in DNA con-

tent but of identical growth rate was highly similar, whereas
the proteome of cells cultivated at different growth rates
was significantly diverging in particular pathways.

Discussion
Considering the influence of different growth rates on
the population, proteome analysis revealed that slow
growth triggered starvation response, while fast growing
cells displayed accelerated protein synthesis and allevi-
ated stress physiology. In slowly growing cells, proteins
connected to PHA synthesis and glycerol hydrolysis
were amplified, indicating higher PHA carbon storage
activity. Additionally, these cells showed protein patterns
anticipating increased motility and chemotaxis response.
Notably, low qS values of slowly growing cells (μ = 0.1 h−1)
were not reflected on the energetic state of the population.
AEC values did not differ significantly between slow and
moderate growth rates of 0.1 h−1 and 0.4 h−1, respectively.
Chemotaxis and cellular motility as a response to carbon-
poor conditions are well-known phenomena in natural en-
vironments (Harshey 2003; Soutourina and Bertin 2003).
Our observations in slowly growing cells are in agreement
with findings of transcriptome studies in ‘average popula-
tions’ of other species. For instance, studies in E. coli
showed higher expression of genes involved in motility
at slower growth rates in direct comparison to faster
growth conditions (Nahku et al. 2010) and studies in
Saccharomyces cerevisiae showed significant amplifica-
tion of carbon storage metabolism at slow growth
(François and Parrou 2001).
Fast growing cells were obviously investing resources

in proteins involved or related to the translation machin-
ery. Multiple ribosomal proteins as well as tRNA synthe-
tases were highly abundant fostering protein/biomass
production (Figure 5). This finding is also in agreement
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Figure 4 Circular treemaps visualizing differentially expressed functional protein categories. Proteins detected by mass spectrometry were
clustered according to their pathway annotation in COG covering two levels of specificity (Tatusov et al. 1997). The size of a sector is proportional
to the number of proteins found in one specific pathway in relation to the total protein number. The color code represents the log2 mean fold
change (log2 FC) of protein quantity in one pathway. The color blue codes for an underrepresentation, red for an overrepresentation of the
proteins in a pathway compared to the reference population (RP, μ = 0.2 h−1). Pathways with a fold change in the range log2 FC < −0.58 and log2
FC > 0.58 are labeled with the respective pathway name. Pathways that were significantly changed using GAGE (Luo et al. 2009) and Globaltest
(Goeman et al. 2006) gene set analysis are additionally marked (*). a. Comparison of the subpopulations C1/C2 and C2/Cx at growth rates 0.1 h−1

and 0.7 h−1, respectively. b. Comparison of the subpopulations C1 and C2 at μ = 0.1 h−1 with RP. c. Comparison of the subpopulations C2 and
Cx at μ = 0.7 h−1 with RP.
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with observations in eukaryotes like S. cerevisiae (Rebnegger
et al. 2014) and prokaryotes such as Salmonella typhimur-
ium (Schaechter et al. 1958). Additionally, proteins of typical
carbon storage pathways, e.g. PHA synthesis, were less
abundant in P. putida KT2440. Proteins of lipid biosyn-
thesis, especially involved in beta oxidation were also low-
ered in fast growing cells compared to RP. This observation
is in agreement with the lower abundance of the PHA syn-
thesis proteins, as the beta oxidation provides precursors for
this pathway (Aldor and Keasling 2003).
To our surprise, the almost 6.5-fold increase of the

specific glucose uptake rate with increasing growth
rate (Figure 2), was not mirrored by major changes
µ=0.1h-1, C1

µ=0.1h-1, C2

µ=0.7h-1, C2

µ=0.7h-1, CX

µ=0.1h-1, C1

µ=0.1h-1, C2

µ=0.7h-1, C2

µ=0.7h-1, CX

Figure 5 Heatmaps of metabolic pathways of special interest.
The log2 fold changes of annotated proteins are visualized ranging
from blue (low abundance) to red (high abundance). A detailed
annotation of the protein names can be found in the Additional file 1.
One line of the heatmap represents the different subpopulations (C1, C2
and Cx) at different growth rates (μ= 0.1 h−1, μ= 0.7 h−1). Proteins of
the specific pathways are shown column-wise.
among proteins involved in carbohydrate and energy
metabolism.
Notably, relative changes of protein quantity can be elu-

cidated with the method applied here. Absolute changes
per cell, dependent on the growth rate were not measured
with the applied workflow, as it was first shown for the
sum of proteins by Schaechter et al. (1958). Their pioneer-
ing studies described an exponential increase in protein,
DNA and RNA contents and therefore, cell size with in-
creasing growth rates (Bremer and Dennis 1996; Maaløe
and Kjeldgaard 1966; Schaechter et al. 1958). In our study,
the relative cell size estimation was acquired using FSC. In
accordance to various other cell cycle analyses, the FSC
increased with increasing growth rates (Donachie 1968;
Hewitt et al. 1999; Neumeyer et al. 2013; Skarstad et al.
1983) (Figure 3). Following the rational of Schaechter et al.
(1958), this phenomenon reflects increasing protein con-
tents per cell. We presume that the increased amount of
cellular glucose uptake is proportional to the elevated
production of proteins, thus increasing absolute pro-
tein quantity but leaving relative quantity unchanged.
Studying the putative impact of growth rate and cell

cycle stage on the functional diversity of a population,
the growth rate is obviously a major determinant for cel-
lular protein composition, as found in our chemostat
studies. Growth and cell cycle were clearly linked, but
subpopulations showing different DNA content showed
only small differences in cellular physiology at the same
growth rate. The detection of FtsZ in a significant higher
abundance in the C2 subpopulation, which is preparing
for division after finishing replication, is in agreement
with its assigned function as a proposed diffusible factor
(Teather et al. 1974) initiating cell division (Chien et al.
2012). Despite this cell cycle related finding, subpopula-
tions showed almost identical protein patterns irrespect-
ive of cell sizes, anticipated protein mass (Lindmo 1982;
Rønning et al. 1979) and DNA content.
Surprisingly, no signs for a specialization of cells in dif-

ferent cell stages for e.g. carbon storage or protein produc-
tion/growth could be observed that could support the
hypothesis of shared tasks of subpopulations in B- and
pre-D/D-phases during the cell cycle. This result is re-
markable: subpopulations distinguished by DNA content
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appear to be physiologically highly similar provided that
the growth rate is the same.
Although we are aware that subpopulations do not mirror

single cell proteome compositions, the high resemblance of
the subpopulations proteome patterns at the various growth
rates point to their nearly identical physiological state.
One may argue whether this finding was influenced by

the operation mode ‘chemostat’. We identified the high
similarity among subpopulations by installing distinct
growth rates, because superimposing impacts in classical
(fed-) batch fermentations would have prevented the un-
equivocal growth-to-subpopulation analysis. However,
the chemostat approach might have excluded the detec-
tion of subpopulations with different protein contents
because this ‘growth rate filter’ was installed. Assuming
that cells aim to grow with the least energetic burden as
possible, cellular protein compositions should be opti-
mized at a given growth rate. Therefore, it could not be
excluded, that subpopulations showing different protein
patterns may have existed, but were washed-out because
they could not achieve the required growth rate. While
the latter demands for further in-depth analysis, the de-
termining impact of growth on cell cycle and subpopula-
tions is clearly visible. It gives rise to the assumption
that the cell cycle itself has a minor impact on popula-
tion heterogeneity under the conditions tested.
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protein annotation.
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