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Abstract

The constant phase element (CPE) is a capacitive element with a frequency-independent

negative phase between current and voltage which interpolates between a capacitor and a

resistor. It is used extensively to model the complexity of the physics in e.g. the bioimpe-

dance and electrochemistry fields. There is also a similar element with a positive phase

angle, and both the capacitive and inductive CPEs are members of the family of fractional

circuit elements or fractance. The physical meaning of the CPE is only partially understood

and many consider it an idealized circuit element. The goal here is to provide alternative

equivalent circuits, which may give rise to better interpretations of the fractance. Both the

capacitive and the inductive CPEs can be interpreted in the time-domain, where the impulse

and step responses are temporal power laws. Here we show that the current impulse

responses of the capacitive CPE is the same as that of a simple time-varying series RL-cir-

cuit where the inductor’s value increases linearly with time. Similarly, the voltage response

of the inductive CPE corresponds to that of a simple parallel RC circuit where the capacitor’s

value increases linearly with time. We use the Micro-Cap circuit simulation program, which

can handle time-varying circuits, for independent verification. The simulation corresponds

exactly to the expected response from the proposed equivalents within 0.1% error. The real-

ization with time-varying components correlates with known time-varying properties in appli-

cations, and may lead to a better understanding of the link between CPE and applications.

Introduction

The constant phase element (CPE) is a capacitive impedance with a phase angle in the range

h−π/2, 0i which is independent of frequency. It was first introduced by Cole in connection

with the electrical impedance of suspensions of spheres [1] and of cell membranes [2].

Jonscher observed that this model is valid for a large range of dielectrics, calling it the “univer-

sal” dielectric response. He also connected it to the temporal power law step response of the

Curie-von-Schweidler law [3] which was first observed for real-life capacitors more than a cen-

tury ago. Further Westerlund observed that the response function may be expressed with a

non-integer, fractional, derivative [4] and an effective time-varying capacitance with a power-

law time variation. The CPE satisfies reciprocity just like ordinary capacitors, i.e. an excitation
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and the resulting response can be interchanged [5]. In [6] it was also found that the CPE,

which fundamentally is linear, could be modeled as a voltage-dependent capacitance which

makes it into a nonlinear circuit.

The constant phase element is applied for modeling experimental data from complex sys-

tems and here in particular the bioimpedance and electrochemical impedance fields will be

highlighted. In the first field, the CPE is a common model for tissue [7, Ch. 9.2.5] along with

the related Cole impedance model [8, Ch. 5.8]. Often it is interpreted as a distribution of time

constants due to a statistical distribution of cell sizes.

In electrochemistry, CPE behavior is also commonly observed experimentally, and has

been interpreted as a statistical distribution of time constants due to for example crystal orien-

tation, surface roughness, and resistance distribution in an oxide layer at the surface [9, Ch. 8],

[10, Ch. 13], and [11]. While several physical explanations exist for CPE behavior, such behav-

ior is observed even in idealized experiments on graphite electrodes [12] and equivalent circuit

fitting using CPE elements is often used without prior justification. The CPE model is then

often used with resistors in series and parallel. That is also the case in tissue bioimpedance [13]

as well as in the modeling of supercapacitors [14].

The CPE interpretations in terms of a statistical distribution of cell sizes in the bioimpe-

dance field and the statistical distribution of time constants in electrochemistry will both lead

to a band-limited approximation to a CPE as demonstrated in [8, Ch. 7.2]. This multiple relax-

ation model of the CPE can also be recast into a network model. The simplest example is a

lumped cable model where the admittance increases with the square root of frequency for low

frequencies, i.e. is described by a half-order derivative. In [8, Ch. 7.4], this is generalized to any

order for mechanical models in either a ladder topology or a self-similar tree. Similar topolo-

gies may be developed for electrical models also, resembling the topoelectrical circuits of [15].

Here we demonstrate a new interpretation of CPE behavior in terms of simple circuits with

time-varying component values. The common capacitive CPE with a negative phase angle will

have the same current response to an input voltage impulse as a resistor in series with an

inductor that increases linearly with time. An inductive CPE with a positive phase angle will

have the same voltage response as a resistor in parallel with a linearly increasing capacitor. The

models are inspired by similar ones in linear viscoelasticity [16, 17] where they may model vis-

cosity due to a stick-slip motion between grains in a water-saturated sediment [18].

The paper starts with defining the CPE and connects its frequency and time responses with

the fractional derivative description. The proposed linearly time-varying circuits are then ana-

lyzed analytically and both exact and approximate solutions are found. The results are con-

firmed by simulation of the responses of the time-varying circuits in Micro-Cap 12.

Fractance models

The fractance device is an element with impedance ~ZðoÞ / ðIoÞa where −1 < α< 1 [19, 20].

It is also called a constant phase element, especially if it is capacitive. Here we distinguish

between the common capacitive CPE and the less common inductive CPE. Tilde is used to

denote a Fourier transform.

Capacitive constant phase element

The capacitive constant phase element has an impedance given by [4, 6]:

~ZðoÞ ¼
~uðoÞ
~iðoÞ

¼
1

ðjoÞaCa

; 0 < a � 1: ð1Þ
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where ω is angular frequency, ~u and ~i are the Fourier transforms of voltage and current respec-

tively, Cα is the CPE parameter in F � sα−1 and α is the order. The impedance has a negative

phase angle of −απ/2 which varies from 0 to −π/2. The value α = 1 gives an ordinary capacitor,

a = 0 is a resistor, and a = 0.5 corresponds to the Warburg element used to model diffusion

processes. The CPE model corresponds to an equivalent complex relative permittivity

~εðoÞ ¼
Cad

ε0AðjoÞ
1� a
; ð2Þ

where d and A are the equivalent plate distance and plate area of the capacitor respectively and

ε0 is the permittivity of vacuum.

The inverse Fourier transform of (1) is a convolution of the input voltage with the current

impulse response which here is a temporal power law in time t, [8, App. A.3]:

iimpðtÞ ¼
Ca

Gð� aÞ
t� a� 1; t > 0; 0 < a < 1: ð3Þ

The current step response is the integral of the impulse response and is also a power law func-

tion:

istepðtÞ ¼
Ca

Gð1 � aÞ
t� a ð4Þ

This is the Curie-von-Schweidler law [3, 4]. Both responses have an initial singularity which

indicates that the CPE model is a simplified and idealized model of a real-life phenomenon. In

fact it can be shown that the CPE is an approximation to the more realistic Cole-Cole dielectric

model [21] as well as to the Cole-Davidson, and Havriliak-Negami models.

A power law in the frequency domain is one way of defining a fractional derivative, and this

broad definition applies to several kinds of operators including the Caputo and Riemann-

Liouville ones. The CPE of (1) is therefore equivalent to a fractional capacitor, [4, 8, Ch. 5.8]:

iðtÞ ¼ Ca

dauðtÞ
dta

: ð5Þ

The fractional operator is a time-invariant operator and in [22] it is shown that the fractional

model is linear, has temporal memory, and models slow dynamic electrostatic processes. The

associated step response of (4) fits practical capacitors used in electronic circuits with values

for the fractional order very close to 1, and examples are given with α from 0.9821 to 0.999952

depending on capacitor type. The fit is better than what is achieved with standard equivalent

circuits which have a series resistor to account for the resistance of the capacitor’s plates and

connectors and/or a resistor in parallel to account for leakage in the insulation. It should be

noted that in this work it is the medium model which is fractional, i.e. the complex permittivity

of (2) or the equivalent capacitance, (1) and (5). This is in contrast to [23] where there is a frac-

tional dimensional space.

Inductive constant phase element

An inductive constant phase element where the impedance has a positive phase angle απ/2,

can be described by

~ZðoÞ ¼ ðjoÞaLa; 0 < a � 1; ð6Þ

where Lα is in units of H � sα−1 and α = 1 gives an ordinary inductance. The voltage is a
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fractional derivative of the current:

uðtÞ ¼ La
daiðtÞ
dta

: ð7Þ

Circuit realization of the constant phase element

We model the CPE using time-varying inductors and capacitors. They are examples of linear

circuits that do not obey time-invariance that don’t necessarily exist as physical devices

although some devices may approximate them. In circuit theory the usual definition is that

magnetic flux,F(t), is the product of inductance and current giving the following current-volt-

age characteristics:

uðtÞ ¼
dFðtÞ
dt
¼

d½LðtÞ � iðtÞ�
dt

¼ LðtÞ �
diðtÞ
dt
þ
dLðtÞ
dt

iðtÞ;

ð8Þ

where L(t) is a time-varying inductance. In a time-varying capacitor, current will have a similar

relationship with charge. Sometimes a simpler relationship which only includes the first term

is assumed instead:

uðtÞ ¼ LðtÞ �
diðtÞ
dt

: ð9Þ

This ambiguity is reflected in how time-varying inductors and capacitors are implemented in

circuit simulators. Micro-Cap from Spectrum Software implements both terms of (8). On the

other hand OrCAD PSpice implements the simpler (9), but this is regarded as a problem in

[24]. Simulink1 from The Mathworks, Inc. gives the user a choice between the two. Here both

terms of (8) will initially be used, but it will turn out that since the variation in inductance or

capacitive is linear with time in the proposed models, the omission of the last term will not

change the final result significantly.

In the field of linear viscoelasticity which has inspired this paper, a simple relationship

equivalent to (9) is assumed [25]:

sðtÞ ¼ ZðtÞ �
dεðtÞ
dt

; ð10Þ

where σ is stress, ε is strain and η(t) is the apparent time-varying viscosity as used in [16–18].

Therefore, results may not be directly transferable from one field to the other.

Capacitive constant phase element

The circuit of Fig 1a) where L(t) = L0 + θt0 is an inductance that increases linearly with time

and θ has unit H/s = O. A second time variable, t0 is used here also as is common in time-vary-

ing systems. The time of the input impulse, t, and the time when the inductance starts chang-

ing, t0, are in general independent of each other in such a circuit. We will however assume that

the variable inductor starts changing at the exact moment when the input impulse is applied so
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t0 = t. The voltage-current relationship is then:

uðtÞ ¼ Riþ
d½ðL0 þ yt0ÞiðtÞ�

dt

�
�
�
�
t0¼t

¼ ðRþ yÞiþ L0 þ ytð Þ
di
dt

ð11Þ

It is evident that the only effect of including the second term of (8) in the definition of time-

varying inductance is that θ contributes to the effective resistance.

By applying a voltage impulse as input at time t = 0, the current for positive time after the

impulse has occurred, will follow:

di=dt
i
¼ �

Rþ y
L0 þ yt

; t > 0 ð12Þ

Following [16, App. 1], integration of (12) gives

ln i ¼ �
Rþ y
y
f ln ðL0 þ ytÞ þ lnKg ð13Þ

where K is a constant determined by the initial conditions.

Fig 1. Equivalents to capactive and inductive CPEs. Equivalent circuit for a capacitive Constant Phase Element (a)

and an inductive Constant Phase Element (b). Inductance and capacitance respectively increase linearly with time.

https://doi.org/10.1371/journal.pone.0248786.g001
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Exact CPE. Assume first that the initial value of the inductance, L0, is zero. Taking the

exponential of the previous equation then gives:

iðtÞ / ðytÞ� ðRþyÞ=y; t > 0: ð14Þ

The constant of proportionality cannot in general be found. It can however be determined by

considering a practical case related to the following simulation in Micro-Cap. If the input

impulse is implemented by exciting one sample of duration ts, the integral of the impulse

which is unity, requires a voltage of 1/ts. In that case the initial condition is that i(ts) = 1/(Rts).
Thus the final result will be

iðtÞ ¼
tas
R
t� a� 1; a ¼

R
y
; t > 0: ð15Þ

With positive R, θ, surprisingly this simple circuit has exactly the same impulse response as the

CPE of (3), except for the sign, for all positive values of time. The sign may be changed by

allowing for negative resistance, i.e. R< 0, possibly also negative inductance, θ< 0.

Approximate CPE. As it may be hard to imagine a practical time-varying circuit where a

component value starts with value zero, we will now let L0 6¼ 0. Then the solution is:

iðtÞ ¼
1

R
1þ

y

L0

t
� �� ðRþyÞ=y

; t > 0: ð16Þ

Assuming that t� τ so that the second term in the parenthesis dominates, this is

iðtÞ �
1

R
t
t

� �� a� 1

; t ¼
L0

y
; a ¼

R
y
; t > 0: ð17Þ

This result also the same functional form as (3) and therefore this time-varying circuit approxi-

mates a CPE. In order to get the sign correct also, one or more parameter values may need to

be negative.

Inductive constant phase element

The circuit of Fig 1b) is parallel to that of Fig 1a) in the sense that voltage and current exchange

roles, leading to a current as a function of voltage that resembles (11):

iðtÞ ¼ ð
1

R
þ yÞuþ C0 þ ytð Þ

du
dt

ð18Þ

where the time-varying component is now a capacitor and θ has unit F/s = S. Therefore, when

C0 = 0 the response will parallel that of (15) and be:

uðtÞ ¼ Rtas t
� a� 1; a ¼

1

Ry
; t > 0: ð19Þ

Further, it will have a voltage response to an impulse in current which will be of the same form

as (17) when C0 > 0:

uðtÞ � R
t
t

� �� a� 1

; t ¼
C0

y
; a ¼

1

Ry
; t > 0: ð20Þ

PLOS ONE CPE circuit equivalents

PLOS ONE | https://doi.org/10.1371/journal.pone.0248786 March 26, 2021 6 / 12

https://doi.org/10.1371/journal.pone.0248786


Verification by simulation

Micro-Cap version 12 [26] is a versatile tool for simulating complex circuits. It is used for the

normalized case with positive component values, R = 1, L = 1 + t/0.9, and thus θ = α = 0.9, and

pulse length ts = 1 ms as shown in Fig 2. The Micro-Cap 12 simulator is now freely available

and the circuit diagram and circuit file can be found in the S1 and S2 Files.

It should be remarked that the input to the simulation is the time-varying circuit of Fig 1a)

as given by (11). Its agreement with the solutions of (14) and (16) is therefore independent

confirmation of their validity. In this figure as well as the two next ones, a comparison is also

made with a time-invariant circuit with R = 1, L = 1 with an exponential response.

Eqs (15), (16), and (17) were then implemented in Matlab and plotted on a logarithmic

grid. The case for α = 0.9 is shown in Fig 3. The discrepancy between the Matlab computation

and the Micro-Cap simulation is maximally in the order of 0.1%. The case for R = 1, L =

1 + 0.5t and thus θ = α = 0.5 corresponding to a Warburg element, is shown in Fig 4.

The exact expression and the CPE approximation are similar for time above 4-5 seconds

when τ = 0.9, as shown in Fig 3. In the case of τ = 0.5, Fig 4, it happens after a few seconds.

This is as expected from the theory as the approximation of (17) is valid when t>>τ.

Fig 2. Independent verification. Micro-Cap 12 simulation of current response to a voltage impulse for the circuit of (11) shown in Fig 1a) with R = 1, L = 1

+ t/0.9, i.e. τ = α = 0.9 (red, open squares), R = 1, L = t/0.9, i.e. α = 0.9 (green, solid) compared to an ordinary RL-circuit with response e−t/τ/R, τ = L/R,

L = 1, R = 1 (blue, filled squares). Pulse length is ts = 1 ms.

https://doi.org/10.1371/journal.pone.0248786.g002
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Discussion

Modeling of the capacitive and inductive constant phase elements with time-varying circuits

does not critically depend on which definition of the current-voltage relationship for the time-

dependent inductor one assumes. The second term of (8) only adds θ to R in the results. Thus

(14) and (16) have (R + θ)/θ rather than R/θ in the exponents. The functional form of the final

result is therefore independent of the definition, but it will change the exponents by 1.

The results of (15) and (17) demonstrate that the time-varying circuit of Fig 1a) has the

same current response to an input voltage impulse as the capacitive CPE. It should be noted

that due to the lack of time-invariance in the circuit, this does not imply that the opposite is

true, i.e. that the voltage response to an input current impulse is the same as for a CPE. Also,

the step response is different, as simple integration of the impulse response does not yield the

step response in a time-varying system. These are limitations of the model.

There are several examples of time dependent electrical parameters in biological materials

justifying the modeling of the CPE with a time-varying circuit. One candidate is the memri-

stance displayed for example by human skin [27, 28]. The resistance changes as a function of

the net amount of charge having passed through the material and when the electrical current is

reversed, the resistance will change in the opposite direction. Although the change is charge

driven, it will appear as a time dependent resistor when applying a periodic AC signal. Similar

mechanisms have been reported for capacitance and inductance, named memcapacitance and

meminductance [29] and unpublished results from our group indicate that some biomaterials

Fig 3. Plot of analytically found response. Current response to a voltage impulse for the circuit of Fig 1a) for α = 0.9

computed in Matlab from (15) (green, solid line), (16) (red, dotted line), and (17) (black, dash-dot line) compared to a

standard RL-circuit (blue, dashed line).

https://doi.org/10.1371/journal.pone.0248786.g003
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also have memcapacitive properties. Furthermore, bioimpedance measurements will often

contain elements of non-linear properties, typically when using small electrodes where the cur-

rent density in some volumes may exceed the linear range [30, 31].

Another example of a system that resets itself for every polarity change is the charging of a

double-layer in an electrochemical system due to an imposed signal. In each period, the

applied signal leads to movements of ions in the solution towards or away from the electrode

surface. During charging, ions move towards the electrode, and give electrostatic resistance to

subsequent movement of ions. Similarly, during discharge, the ions move away from the elec-

trode and give resistance to the discharge process which varies with time.

These properties open the possibility for finding the equivalent of a steady-state transfer

response. One way is to let the second temporal variable t0 be reset at every zero-crossing. In

that case it will be easier to justify an approximate Fourier relation between the impulse

response and the transfer function.

A goal is often to translate the non-ideal CPE element into an equivalent capacitor, notable

examples being the Brug equation [32], the oxide layer model [33], and the approaches of [34–

36]. The interpretation is often limited to specific systems, where the Brug equation is the most

widely applied. While limited to a voltage input pulse here, the presented equivalence circuits

may contribute to understanding overall CPE behavior and subsequently establishing more

robust methods of interpretation.

The time-varying models presented here may also point to a method for implementing a

CPE in a practical circuit. An inductor may be implemented with a gyrator realized with one

Fig 4. Plot of analytically found response. Current response to a voltage impulse for the circuit of Fig 1a) for α = 0.5

(Warburg element) computed in Matlab from (15) (green, solid line), (16) (red, dotted line), and (17) (black, dash-dot

line) compared to a standard RL-circuit (blue, dashed line).

https://doi.org/10.1371/journal.pone.0248786.g004
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or more operational amplifiers. The effective inductance will be proportional to a product

of a capacitor and a resistor and in particular the latter may be easier to make time-varying

than an inductor. This method needs further verification as there are limitations with respect

to frequency range in practical gyrators [37]. There may also be limitations in handling of

transients.

Finally, it should be noted that the exact solution of (15) where L0 = 0 is applicable to the

viscous model of [16, 18] also. In these papers only the approximate model of (17) is discussed,

but by setting the constant part of the time-varying viscosity to zero, η0 = 0, in Eqs (6) and (8)

of [16], an exact solution can be found even for the viscous model.

Conclusion

We have shown that the capacitive constant phase element (CPE) has exactly the same current

impulse response as a resistor in series with a linearly increasing inductance. Likewise the

inductive CPE has a voltage impulse response which is similar to that of a resistor in parallel

with a linearly increasing capacitance. The similarity is demonstrated under the condition that

both temporal variables in the time-varying circuit track each other.

The Micro-Cap 12 circuit simulation program which handles such time-varying circuits, is

used for independent confirmation that the impulse responses follow the temporal power law

predicted by theory. The realization with time-varying components correlates with known

time-varying properties in applications, but this property will need to be explored and estab-

lished more firmly in future work.
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