# A Draft Map of the Human Ovarian Proteome for Tissue Engineering and Clinical Applications

# Emna Ouni‡, Didier Vertommen§, Maria Costanza Chiti‡, Marie-Madeleine Dolmans‡¶, and Christiani A. Amorim‡∥

Fertility preservation research in women today is increasingly taking advantage of bioengineering techniques to develop new biomimetic materials and solutions to safeguard ovarian cell function and microenvironment in vitro and in vivo. However, available data on the human ovary are limited and fundamental differences between animal models and humans are hampering researchers in their quest for more extensive knowledge of human ovarian physiology and key reproductive proteins that need to be preserved. We therefore turned to multi-dimensional label-free mass spectrometry to analyze human ovarian cortex, as it is a high-throughput and conclusive technique providing information on the proteomic composition of complex tissues like the ovary. Indepth proteomic profiling through two-dimensional liquid chromatography-mass spectrometry, Western blotting, histological and immunohistochemical analyses, and data mining helped us to confidently identify 1508 proteins. Moreover, our method allowed us to chart the most complete representation so far of the ovarian matrisome, defined as the ensemble of extracellular matrix proteins and associated factors, including more than 80 proteins. In conclusion, this study will provide a better understanding of ovarian proteomics, with a detailed characterization of the ovarian follicle microenvironment, in order to enable bioengineers to create biomimetic scaffolds for transplantation and three-dimensional in vitro culture. By publishing our proteomic data, we also hope to contribute to accelerating biomedical research into ovarian health and disease in general. Molecular & Cellular Proteomics 18: 10.1074/ mcp.RA117.000469, S159-S173, 2019.

The World Health Organization has ranked infertility in women as the fifth highest serious global disability (1). Based

on this critical assessment, several strategies have been developed to preserve and even restore fertility in women.

Although the human ovary is relatively well understood in terms of secretory patterns of ovarian hormones and the pathogenesis of ovarian diseases, little is known about the molecular composition and regulation of the microenvironment that directs the development and function of ovarian follicles, the functional units that mainly reside in the ovarian cortex and play an important role in oogenesis and gonadal hormone secretion. A few studies have focused on mRNA expression to provide a complete characterization of gene expression in the ovary. However, study of gene expression at the mRNA level yields no information about post-transcriptional modifications (2). Moreover, even abundant mRNA transcripts may be translated inefficiently or degrade rapidly, resulting in lower than expected levels of protein expression (3).

On the other hand, by focusing on final gene products, a proteomic approach has the advantage of investigating complex biological events and diseases, providing more conclusive information.

For several years now, ovarian proteomic studies have concentrated on characterizing follicular fluid composition in human preovulatory follicles (4–5), emphasizing the functional selectivity of the basement membrane toward plasma proteins (6). Efforts have also been made to identify ovary-related transcription in different species to explore the complex functions of the ovary in an integrated manner. This is necessary because of obvious difficulties in obtaining human ovaries, as well as the feasibility of conducting experimental research in humans because of ethical and logistical constraints. He *et al.* (2015). described ovarian proteomics in rhesus monkeys through identification of 4325 proteins to provide a basis for future studies of human reproductive disorders using this

From the ‡Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium; §de Duve Institute, Université Catholique de Louvain, Brussels, Belgium; ¶Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium

<sup>&</sup>lt;sup>#</sup> Author's Choice—Final version free via Creative Commons CC-BY license.

Received November 15, 2017, and in revised form, February 15, 2018

Published, MCP Papers in Press, February 23, 2018, DOI 10.1074/mcp.RA117.000469

Author contributions: E.O. and C.A.A. designed research; E.O. performed research; E.O. and D.V. analyzed data; E.O. wrote the paper; D.V. contributed new reagents/analytic tools; M.C.C. participated in experimental procedures; M.-M.D. controlled the clinical aspect of the study and revised critically the manuscript; C.A.A. helped in result interpretation and revised critically the manuscript.

animal as a model (7). To our knowledge, the only proteomic analysis of human ovaries performed to date was conducted by Wang *et al.* (2005) (8). The study identified 138 proteins by two-dimensional (2D) electrophoresis and MALDI-TOF mass spectrometry, but without differentiation of ovarian extracellular matrix (ECM)<sup>1</sup> proteins, despite the ECM's important role in defining the follicular environment and orchestrating cellular organization and function. Indeed, the only aspect of the ovarian ECM to have been investigated so far is the basement follicular membrane, and this was done through immunohistochemical tests, which only offer a limited characterization restricted by the type and number of antibodies used (9–10).

The goal of this study was therefore to provide a draft map of functional proteins identified in human ovarian cortex and complement available ovarian ECM data. By using 2D liquid chromatography-mass spectrometry (2D-LC/MS) and ensuring adequate sample preparation, we aimed to shed light on potential key intra- and extracellular proteins in reproduction, to form a basis for comparative studies between normal and pathological ovaries and open the door to improved bioengineering techniques for creation of better biomimetic scaffolds.

#### EXPERIMENTAL PROCEDURES

Experimental Design and Statistical Rationale—This study involved six 2D-LC/MS experiments using human ovarian cortex from three patients undergoing laparoscopic surgery for benign gynecologic disease. Fresh and cryopreserved samples derived from the same biopsy were analyzed. Each biopsy from each of the patients was initially divided into two fragments; one was immediately analyzed (fresh tissue) and the other was frozen and thawed before analysis (frozen), totaling six experiments. Because the ovarian biopsies were obtained from patients with healthy ovaries, only a small portion of their ovarian tissue was taken (≤9 mm<sup>2</sup>) so as not to impact their ovarian activity. For this reason, we could not carry out technical replicates. Moreover, the scarcity of fresh human ovarian biopsies limited the number of samples available for analysis.

To provide a descriptive draft map of ovarian tissue, a threshold was maintained to select the most confidently detected proteins. This threshold included proteins with a Sequest HT score  $\geq$ 10 in any of the 6 samples for gene ontology and pathway analyses. Each protein score was calculated by the Proteome Discoverer application as

<sup>1</sup> The abbreviations used are: ECM, extracellular matrix; 2D-LC/ MS, two-dimensional liquid chromatography mass spectrometry; bFGF, basic fibroblast growth factor; BMP-2, bone morphogenetic protein 2; CGMP-PKG, cyclic GMP-protein kinase G; DAB, 3,3'diaminobenzidine; EGF, epithelial growth factor; FDR, false discovery rate; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HILIC, hydrophilic interaction liquid chromatography; HSA, human serum albumin; HSPG2, perlecan; IGF, insulin-like growth factor; IGFALS, insulin-like growth factor-binding protein acid-labile subunit; MEM, minimal essential medium; MMP, matrix metalloproteinase; OGN, mimecan; ORA, overrepresentation enrichment analysis; PARS, platelet-associated regulatory system; PCNA, proliferating cell nuclear antigen; PEDF, pigment epithelium-derived factor; PI3K-Akt, phosphoinositide 3-kinase serine/threonine kinase Akt; PSM, peptide spectrum match; RAS, renin-angiotensin system; SLRP, small leucine-rich proteoglycan; TBS, tris-buffered saline; VEGF, vascular endothelial growth factor; aSMA, alpha-smooth muscle actin.

follows: protein score = (sum of all cross-correlation factors of 0.8 or above) + (peptide charge  $\times$  peptide relevance factor), the default value for the peptide relevance factor being 0.4.

To establish a draft map of the ovarian matrisome, only proteins with a score  $\geq$ 10 in any of the 6 samples and identified by at least two unique peptides in three or more samples were considered.

Fresh and frozen sample compositions were compared based on spectral counts for each detected matrisome protein. A formal quantitative approach was first attempted to carry out comparisons through a paired t test. However, a number of issues emerged with this type of test, making it hard to draw any conclusions: (1) small sample size because of limited availability of patients; (2) inability to justify the normality of data, possibly warranting use of non-parametric tests; and (3) need for multiple testing, requiring adequate adjustment (inflation) of p values. The first preliminary results pointed to only a few significant (p < 0.05) outcomes (proteins) before adjustment, whereas after adjustment (Benjamini-Hochberg), none of the proteins remained significant. It would therefore be naive to conclude that this somehow proves equivalence. In view of the small sample size and the fact that multiplicity corrections typically suppress detection to avoid false positives, we did not feel that this quantitative argument was sound enough to yield any conclusions. A gualitative, more descriptive approach was therefore pursued, considering the importance of comparing protein content and immunohistochemistry results between fresh and frozen tissues.

Collection of Ovarian Tissue and Biopsy Processing—Use of human ovarian cortex was approved by the Institutional Review Board of the Université Catholique de Louvain on November 28, 2016 (IRB reference 2012/23MAR/125, registration number B403201213872). Ovarian biopsies were taken from 3 women (30, 49, and 59 years of age) after obtaining their informed consent. All patients were undergoing laparoscopic surgery for benign gynecologic disease not related to the ovaries (supplemental Table S2). Biopsies were immediately transported on ice to the laboratory in minimal essential medium (MEM)-Glutamax (Gibco, Invitrogen, Merelbeeke, Belgium) and rigorously washed in Dulbecco's phosphate-buffered saline (DPBS) (Gibco) to remove blood remains.

The cortical area of the ovary was selected for analysis, as it is the reservoir of most of the follicle population and would therefore provide the greatest insights into the follicular microenvironment and regulatory factors. Hence, the medullary part of the biopsy was removed, and the cortex was cut into small fragments. A small piece of each biopsy was fixed in formalin and the remaining fragments were either immediately digested or cryopreserved.

*Tissue Preparation for Fresh Ovarian Cortex*—For extraction of intra- and extracellular proteins, including ECM proteins, we applied a modified version of our isolation protocol for human preantral follicles (11). Ovarian cortical fragments were first subjected to mechanical digestion using a tissue chopper (McIlwain Tissue Chopper; Mickle Laboratory, Guilford, UK), before being, incubated with 0.28 Wünsch units/ml Liberase DH (Roche Diagnostics, GmbH, Mannheim, Germany) diluted in 5 ml DPBS in a water bath at 37 °C with mild agitation. After 30 min, the suspension was centrifuged at  $260 \times g$  for 15 min at 4 °C, the supernatant was collected, and the action of Liberase was inhibited with 20 mm EDTA (Sigma, Bornem, Belgium). The sample was then stored at -80 °C until MS analysis.

*Tissue Preparation for Frozen Ovarian Cortex*—Freezing of ovarian cortex was performed using our routine protocol (12). Briefly, the ovarian fragments were suspended in a cryoprotective solution consisting of MEM-Glutamax (Gibco) supplemented with 4 mg/ml human serum albumin (HSA, Bornem, Belgium) at 4 °C, and transferred to 2 ml cryovials (Simport, Quebec City, Canada) containing 0.8 ml cryoprotective solution. The cryovials were cooled in a programmable freezer (Freezer Control CL-8800i, CryoLogic, Victoria, Australia) us-

ing the following program: (1) cooled from 0 °C to -8 °C at -2 °C/ min; (2) seeded manually; (3) cooled to -40 °C at -0.3 °C; and (4) cooled to -140 °C at -30 °C/min before being transferred to liquid nitrogen (-196 °C) for storage. After 24 h in liquid nitrogen, the cryovials were exposed to room temperature for 2 min and immersed in a water bath at 37 °C until the ice completely melted. To remove the cryoprotective solution, the ovarian cortical pieces were immediately transferred from the cryovials to plastic Petri dishes containing MEM, where they were washed three times (5 min per bath). A fragment from each sample was then fixed in formalin and the rest was digested and stored at -80 °C, as described above for fresh tissue.

Sample Preparation for Mass Spectrometry Analysis—Total protein content was quantified by the Bradford assay. Three hundred  $\mu$ g of proteins was reduced using 5 mM DTT and incubated at 56 °C for 20 min. After cooling to room temperature, cysteines were alkylated by addition of 30 mM chloroacetamide for 25 min.

Proteins were then precipitated by adding TCA to a final concentration of 10% [w/v]. After centrifugation at 14000 rpm for 5 min at 4 °C, the pellet was resuspended in 100 mM ammonium bicarbonate (pH 8.0) and 0.5 M urea, with continuous vortexing and sonication. Protein digestion was performed using trypsin at an enzyme/substrate ratio of 1:100 [wt/wt] overnight at 30 °C (Promega, Madison, WI). The reaction was halted by adding TFA to a final concentration of 0.1% [v/v] and the sample was stored at -20 °C.

Label-free Differential 2D-LC/MS-Tryptic digests were first desalted and concentrated on HyperSep C18 cartridges (50 mg/ml, Thermo Scientific, San Jose, CA) according to the manufacturer's instructions. Peptides were then loaded onto a hydrophilic interaction liquid chromatography (HILIC) TSKgel amide-80 column (4.6 mm by 25 cm; Tosoh Bioscience, Stuttgart, Germany) equilibrated with solvent B (98% ACN [v/v], 0.1% TFA [v/v] in water) and connected to an Agilent 1100 HPLC system. The peptides were separated using a 70-min elution gradient that consisted of 5% to 45% solvent A (2% ACN [v/v], 0.1% TFA [v/v] in water) at a flow rate of 500  $\mu$ l/min. Absorbance was monitored at 214 nm to ensure that all samples contained similar amounts of material. Fractions were collected at 2-min intervals (starting at 30-min elution, 20 in total) and dried using a Speedvac. Peptides were resuspended in 10 µl of solvent C (3.5% ACN [v/v], 0.1% TFA [v/v] in water) and analyzed by LC-MS/MS. The LC-MS/MS system consisted of an LTQ XL IT mass spectrometer (Thermo Scientific) equipped with a microflow ESI source. Samples (6.5 µl) were injected and desalted on a peptide trap (C18 Pepmap  $0.30 \times 5$  mm, ThermoScientific) equilibrated with solvent C (3.5% ACN [v/v], 0.1% TFA [v/v] in water) at a flow rate of 30 µl/min. After valve switching, peptides were eluted in backflush mode from the trap onto the analytical column (BioBasic C18 0.18 imes 150 mm, Thermo-Scientific) equilibrated in solvent D (5% ACN [v/v], 0.05% formic acid [v/v] in water) and separated using a 70-min gradient from 0% to 70% solvent E (80% ACN [v/v], 0.05% formic acid [v/v] in water) at a flow rate of 1.5  $\mu$ l/min. The MS scan routine was set to analyze, by MS/MS, the five most intense ions of each full MS scan, with dynamic exclusion enabled to ensure detection of co-eluting peptides.

Protein Identification and Quantitation—Protein identification was performed with Sequest HT. More specifically, peak lists were generated by Extract-MSn (Thermo Scientific) within Proteome Discoverer 1.4.2. From raw files, MS/MS spectra were exported using the following settings: peptide mass range 350–5000 Da, minimal total ion intensity 500. The resulting peak lists were searched using Sequest HT against a human protein database obtained from UniProt (March 1, 2014, 87,489 entries). The following parameters were applied: trypsin was selected with proteolytic cleavage only after arginine and lysine; the number of internal cleavage sites was set to 1; mass tolerance for precursors and fragment ions was 1.0 Da; and considered dynamic modifications were +15.99 Da for oxidized methionine and +57.00 for carbamidomethyl cysteine. Peptide matches were filtered using the q-value and posterior error probability calculated by the Percolator algorithm, ensuring an estimated false discovery rate (FDR) below 5%. Filtered Sequest HT output files for each peptide were grouped according to the protein from which they were derived, and their individual peptide spectrum match (PSM) score was taken as an indicator of protein abundance. No normalization procedure was required because sampling rates (*mean PSM*  $\div$  *number of detected proteins*) were similar between all samples (17  $\pm$  0.57 in fresh samples and 16  $\pm$  0.44 in frozen samples). These MS proteomic data were deposited in the ProteomeXchange Consortium database via the PRIDE partner repository with the data set identifier PXD008183.

*Bioinformatics*—Gene ontology (biological process and cellular component) analysis of the ensemble of detected proteins was performed through WebGestalt (http://www.WebGestalt.org) and DAVID (https://david.ncifcrf.gov) online databases. Pathway analysis was conducted via the KEGG pathway (http://www.genome.jp/kegg/pathway.html). Identification of matrisome proteins was achieved by comparison against matrisome atlas proteins (13). JMP<sup>®</sup> 12.2.0 was used to generate qualitative analysis graphs to compare fresh and frozen samples.

Histological and Immunohistochemical Analyses – Histological analysis was performed on fresh and frozen-thawed samples of ovarian cortex. After fixation, the ovarian fragments were dehydrated, embedded in paraffin and serially sectioned (5  $\mu$ m-thick sections). Every fourth slide was stained with hematoxylin-eosin (Merck, Darmstadt, Germany) for histological evaluation; the other slides (Superfrost® Plus slides, Menzel-Glaser, Braunschweig, Germany) were kept for immunostaining.

Paraffin sections were deparaffinized with Histosafe (Yvsolab SA, Beerse, Belgium) and rehydrated in alcohol series. After blocking endogenous peroxidase activity with 3%  $H_2O_2$  [v/v], epitope unmasking was performed with use of citrate buffer (0.01 M) at 98 °C for 75 min in a water bath or Tris-EDTA-Tween buffer (Tris 10 mM, EDTA 1 mM pH 9.0, Tween 20) at 96 °C for 20 min. Slides were incubated for 30 min with 10% goat serum and 1% BSA to block nonspecific binding sites and then analyzed using primary antibodies to proliferating cell nuclear antigen (PCNA) (1/4000 dilution, Dako, Glostrup, Denmark), desmin (1/50 dilution, Dako), alpha-smooth muscle actin ( $\alpha$ SMA) (1/100 dilution, Dako),  $\beta$ -catenin (1/15000 dilution, BD Biosciences, San Diego, USA), emilin-1 (1/25 dilution, Dako) and VI (1/100 dilution, Acris, Tokyo, Japan).

Immunohistochemical staining was carried out using 3,3'-diaminobenzidine (DAB) horseradish peroxidase chromogen-based system (EnVision<sup>TM</sup>+, Dako) and hematoxylin as a counterstain. Slides were then mounted with DPX mounting medium (Sigma). Negative control samples were obtained by omission of the primary antibody, whereas placenta was used as a positive control for collagen VI, endometrium as a positive control for PCNA, desmin,  $\alpha$ SMA,  $\beta$ -catenin and fibrillin-1, and uterine myoma tissue as a positive control for emilin-1 and collagen IV. Glycosaminoglycans were identified by alcian blue staining at pH 2.5 (Bio-Optica, Milan, Italy) to label carboxylated and sulfated proteoglycans (14). Images were taken with a Nikon Eclipse Ci microscope equipped with a Leica DFC450 camera interfaced to Leica Application Suite V4.5 software.

Western Blotting-Proteins (25  $\mu$ g) in each sample were precipitated using the methanol:chloroform method, then boiled in 2X Laemmli buffer and loaded onto polyacrylamide gels. Following SDS-PAGE, the proteins were transferred onto PVDF membranes, which were then blocked in Tris-buffered saline (TBS) containing 0.1% [v/v] Tween and 3% [w/v] BSA. Membranes were incubated overnight at





KEGG pathway analysis (number of proteins) n=6



FIG. 1. Gene ontology and pathway analysis of the ovarian proteome. *A*, Cellular component analysis. *B*, Biological process analysis. Enriched biological processes and protein localization were achieved using WebGestalt database. *C*, KEGG pathway analysis. Proteins were identified based on conversion of their UniProt accession ID to Entrez Gene.

4 °C with primary antibodies against mimecan (OGN, 1/4000 dilution, Invitrogen, CA, USA) and insulin-like growth factor-binding protein complex acid labile subunit (IGFALS, 1/1000 dilution, OriGene, Rockville, USA), diluted in blocking buffer, then washed extensively in TBS containing 0.1% [v/v] Tween before and after incubation for 1 h with HRP-conjugated secondary antibodies (1/20,000 dilution). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 1/10,000 dilution, Merck) was used as a loading control. Immunodetection was achieved with ECL Classico substrate (Merck).

## RESULTS

Total Ovarian Proteome Analysis—A total of 5,253 proteins were detected with an FDR <5%, out of which 1508 unique proteins were confidently identified based on a score  $\geq$ 10. These 1508 proteins were kept for further bioinformatic analysis.

Functional Classification of the Ovarian Proteome and Pathway Analysis – To obtain an extended evaluation of the pool of proteins identified within our samples, we conducted cellular component, biological process and KEGG pathway analyses online using WebGestalt (http://WebGestalt.org) on all detected proteins within the threshold, after converting their UniProt accessions into Entrez Gene and removing duplicates. The following settings were selected to carry out the functional classification: genome protein-coding as a reference set for enrichment analysis, and overrepresentation enrichment analysis (ORA) as a method of reference. We thus obtained a better understanding of the gene ontology of detected proteins within our samples (Fig. 1).

Cellular component analysis revealed, at a glance, the localization of proteins detected by MS and their distribution among cellular compartments (Fig. 1*A*). It is worth mentioning that whereas membrane proteins represented most of detected proteins, it was also possible to extract proteins from different cellular compartments. Indeed, our protein extraction method enabled us to extract and detect, with a high degree of confidence, extracellular as well as intracellular proteins, transmembrane proteins and cell receptors, such as mem-

#### Top 50 abundant proteins n=6



Fig. 2. **TOP 50 most abundant proteins.** After retrieval of the top contaminating plasma proteins from the proteome data set, the most abundant proteins in all samples were classified based on their PSM.

brane-associated progesterone receptor component 1, ryanodine receptor 1 and prolow-density lipoprotein receptorrelated protein 1.

Biological process analysis showed many detected proteins to be implicated in metabolic processes, growth, proliferation and communication (Fig. 1*B*). Despite limited available information on ovarian proteomics, 68 proteins were confidently assessed as being involved in reproduction, whereas others were responsive to endogenous and exogenous stimulation, including photosensitive and mechanosensitive proteins.

Relevant biological processes related to reproduction were further investigated through pathway analysis using the KEGG database (Fig. 1*C*), which highlights proteins involved in the phosphoinositide 3-kinase serine/threonine kinase Akt (PI3K-Akt) signaling pathway and oocyte meiosis pathway. Among our proteomic data, we also detected other pathways linked to ovarian activity, such as cyclic GMP-protein kinase G (cGMP/PKG), gap junctions, and estrogen signaling (supplemental Data S1*A*). Different mechano-regulating pathways chiefly related to smooth muscle contraction and relaxation, like the actin cytoskeleton organization pathway, were also identified. Moreover, because cells function in mutual interaction with the surrounding ECM for ECM regulation, cellular adhesion and activity modulation, we detected ECM-interaction receptors and focal adhesion proteins. Interaction between the ECM and ovarian cells is also governed by matrix metalloproteinases (MMPs), which were encountered, but with a very low PSM and score, reflecting their small proportion compared with other proteins found in our samples. Nevertheless, some ECM degradation proteases were clearly discernible, namely cathepsin G, cathepsin D and plasmin.

Top 50 Detected Proteins—High expression of some proteins in the ovary suggested that they may play specific roles in the maintenance of normal ovarian function (Fig. 2). The 50 most abundant proteins observed in our fresh (n = 3) and frozen (n = 3) samples were pooled and ranked based on the number of PSMs after retrieval of hemoglobin subunits and top plasma-contaminating proteins: serum albumin, serotransferrin, ceruloplasmin, transthyretin, immunoglobulin, complement factors and apolipoprotein A-I (inspired by commercial kits available for plasma protein retrieval from analyzable samples). Around 76% of ranked proteins were recorded among the 50 most commonly found proteins in each individual sample. Collagens, as expected, were the most abundant proteins, mainly collagen VI, followed by cytoskeleton organization proteins (vimentin,  $\alpha$ -filamin, actin, actinin) and ECM (annexins, fibrillin-1, galectin, lumican) and cellular regulators (GAPDH, transketolase, 14-3-3 protein zeta/delta) from different cellular compartments. Certain proteogylcans were also widely detected, such as mimecan and perlecan.

*Ovarian ECM Proteome Map*—Although gene ontology can offer us a preliminary understanding of the cellular compartments, functions and biological processes of proteins, it has clear limitations with respect to ECM protein differentiation and classification, which is why we needed to clearly establish which proteins should be considered part of the ECM. To this end, all proteins detected by MS were compared against the Matrisome Project data (13) to identify all ECM proteins within our samples. Hence, we were able to provide an extended definition of the ovarian ECM, including not only all structural ECM components, but also proteins able to regulate and remodel the ECM. We subsequently categorized our proteins following Naba *et al.* 's (2016) classification (13):

1 Core matrisome proteins: ECM glycoproteins, collagens and proteoglycans.

- 2 ECM-associated proteins.
- ECM-affiliated proteins: proteins showing biochemical and architectural analogy with ECM proteins or known to be associated.
- ECM regulators: proteins responsible for ECM turnover.
- Secreted factors interacting with core ECM proteins.

The ensemble above forms the matrisome (Fig. 3). Subsequently, only matrisome proteins that were confidently detected based on score and number of unique peptides were retained and their distribution among samples was evaluated and compared between tests, using their PSM values as an estimate of protein abundance. This approach allowed us to constitute the ovarian matrisome draft map consisting of: (1) the core matrisome, including 28 glycoproteins, 11 subtypes of collagen and 7 proteoglycans, representing 15%, 49% and 7% of the total matrisome proteins respectively (Fig. 3 and 4); and (2) matrisome-associated proteins, including 12 ECMaffiliated proteins, 23 ECM regulators and 4 secreted factors, representing around 18%, 10%, and 1% of the total matrisome proteins respectively. This percentage calculation was based on the sum of PSM means of all proteins within the same category (e.g. collagens), divided by the sum of PSM means of all matrisome proteins (Fig. 3). Thus, the ECM of human ovarian cortex comprises 85 matrisome proteins in

total: 46 core matrisome proteins and 39 matrisome associated-proteins.

As expected, secreted factors and ECM modification enzymes were less abundant than structural proteins and, consequently, less well represented in our data set (Fig. 3).

Comparison Between Fresh and Frozen-Thawed Ovarian Cortex Proteomic Data—In order to evaluate the ability of cryopreserved tissue to reflect fresh tissue proteomic composition, we compared proteomic data from fresh and cryopreserved samples. A comparison of total proteins within each group showed similar variability between fresh and frozen samples (Fig. 5A) and, interestingly, an overlap of more than 70% in detected proteins between the two sample types (Fig. 5B). Considering only matrisome proteins, analysis of PSM means revealed no clear difference between fresh and frozen-thawed samples among highly abundant proteins. However, the curve showed some differences among less abundant proteins, which are very difficult to detect by MS in complex samples such as ours (Fig. 6).

Histological and Immunohistochemical Analyses—To assess the localization and distribution of detected proteins of interest by MS, 8 proteins from different cellular components with relevant functions in ovarian tissue were analyzed. Fresh and frozen-thawed samples collected from all patients were evaluated and compared by immunohistochemical staining (Fig. 7). It is important to stress that no visible differences between fresh and frozen-thawed tissue samples were observed in any of the selected proteins.

First, to confirm MS data on the dominant type of collagen in ovarian cortex, collagen VI was stained and compared with collagen IV, because it is the most widely characterized collagen type in the ovary (10-15-17). Positive staining for collagen IV was predominantly found in the follicular basement membrane, whereas collagen VI was detected throughout the interstitial ECM, and often close to the basement membrane. Collagen VI has different roles in tissues where it is expressed, ranging from mechanical roles, which are typical of collagen components of the ECM, to more specific cytoprotective functions, counteracting apoptosis and oxidative damage and regulating cell autophagy and differentiation (18).

Mechanical tissue features related to ovarian cyclic evolvement were evaluated using desmin and  $\alpha$ SMA as markers of muscle contraction. Although ovarian cortex was highly immunopositive for desmin, it contained lower levels of  $\alpha$ SMA, which was mainly present around blood vessels in all analyzed samples.

ECM proteins emilin-1 and fibrillin-1 were investigated as elasticity markers (19–20). Immunostaining results showed broad distribution of both glycoproteins within ovarian cortex in all patient samples with similar localizations, emphasizing the close relationship between structural and regulatory properties of emilin-1 and fibrillin-1 in connective tissue. Emilin-1 is usually distributed in tissues where resilience and elastic recoil are prominent, is known to interact with integrins, and

| Name         Pl fresh         Pl fresh <th< th=""><th>Glycoprot</th><th>eins</th><th></th><th></th><th></th><th></th><th></th><th>Lov</th><th>v</th><th></th><th>High</th><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Glycoprot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | eins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          |                                                                                                                                                                                                                                                                         |                                                                                                                          | Lov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | v                                                                                                                                        |                                                                                                                                                                                                 | High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Accession         pit resp         pit resp     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NTREZ GENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ducto'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |          | <b>D</b> 4 ( )                                                                                                                                                                                                                                                          | <b>D1</b> 6                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>D2</b> 6                                                                                                                              | <b>D2</b> (                                                                                                                                                                                     | <b>P2 6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS                                                                                                                                                                                                                                                                                                                        |
| 1600<br>1000       Dermisoprin (DP7)<br>1000       9       10       12       2       2       11       2       2       11       2       2       11       2       11       2       11       2       11       2       11       2       11       2       11       2       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Accession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Protein name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |          | P1 fresh                                                                                                                                                                                                                                                                | P1 frozen                                                                                                                | P2 fresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P2 frozen                                                                                                                                | P3 fresh                                                                                                                                                                                        | P3 frozen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | me                                                                                                                                                                                                                                                                                                                        |
| 1301 a       Plaule 3 (PL0B)       33       33       33       34       44       24       21         2204 Price       33       33       35       28       204       800       201       201       100       201       100       201       100       201       100       201       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dermatopontin (DPT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          | 9                                                                                                                                                                                                                                                                       | 10                                                                                                                       | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                                                                                       | 15                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                         |
| 2000       Profile (P64)       52       1.7       2.14       1.99       9.21       2.21         2204       Profile (P64)       63       1.8       1.9       2.24       1.9       1.9       2.25       1.9       1.9       2.25       1.9       1.9       2.25       1.9       1.9       2.25       1.9       1.9       2.25       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       2.2       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9       1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10516                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fibulin 5 (FBLN5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          | 33                                                                                                                                                                                                                                                                      | 33                                                                                                                       | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                       | 24                                                                                                                                                                                              | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                         |
| 2734       Pitrongen alpha challoff(s)       43       23       22       11       13       14         2735       Pitrongen alpha challoff(s)       60       67       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63       63 <t< td=""><td>2200</td><td>Fibrillin 1 (FBN1)</td><td colspan="4">Fibrillin 1 (FBN1)</td><td>175</td><td>214</td><td>281</td><td>490</td><td>321</td><td>30</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fibrillin 1 (FBN1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fibrillin 1 (FBN1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                |          |                                                                                                                                                                                                                                                                         | 175                                                                                                                      | 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 281                                                                                                                                      | 490                                                                                                                                                                                             | 321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                        |
| 2246       Phone protect and Protect ProtectProtect Protect Protect Protect ProtectProtect ProtectProtect Prot                                                                            | 2243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fibrinogen alpha chain (FGA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |          | 41                                                                                                                                                                                                                                                                      | 25                                                                                                                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                       | 19                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                         |
| 2266       Plancing agained and (Koli)       10       20       10       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20       20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fibrinogen beta chain (FGB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          | 90                                                                                                                                                                                                                                                                      | 48                                                                                                                       | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 68                                                                                                                                       | 73                                                                                                                                                                                              | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                         |
| 3483       insulpikality of the factor binding protein and bialls subunit (RFALS)       3       2       7       3       2       4         3991       Laminis baber 14(MAS2)       133       78       132       28       4       4         3991       Laminis subunit bab 5 (LAMAS2)       133       78       132       28       28       4       4         3991       Laminis subunit bab 5 (LAMAS2)       132       28       28       4       4       14         3991       Laminis subunit bab 7 (LAMAS1)       132       88       28       44       14       14         4339       Macrofibilitis-sociated protein 2 (LAM21)       130       7       11       11       11       17         4339       Macrofibilitis-sociated protein 2 (LAM21)       20       13       8       130       6       6         4339       Macrofibilitis-sociated protein 1 (LAM21)       20       13       9       2       6       2       2       1         4339       Macrofibilitis-sociated protein 1 (LAM21)       13       9       2       6       2       2       1       1       1       1       1       1       1       1       1       1       1 <td< td=""><td>2266</td><td>Fibrinogen gamma chain (FG</td><td colspan="4">-ibrinogen gamma chain (FGG)</td><td>65</td><td>47</td><td>50</td><td>55</td><td>25</td><td>5</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fibrinogen gamma chain (FG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -ibrinogen gamma chain (FGG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |          |                                                                                                                                                                                                                                                                         | 65                                                                                                                       | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                       | 55                                                                                                                                                                                              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                         |
| 3986       Lamin Subart Babe 2 (MAQ2)       3       2       1       5       5       3       4         3911       Lamin Subart Babe 2 (MAQ2)       12       1       3       2       1       5       2       4         3913       Lamin Subart Babe 2 (MAQ2)       12       15       4       3       2       3       3         3913       Lamin Subart Bab 2 (MAQ2)       12       15       4       3       2       3       4         3913       Lamin Subart Bab 2 (MAQ2)       13       13       11       17       3       32       44       10       40       40         3914       Lamin Subart Bab 2 (MAQ2)       13       13       11       17       13       13       11       17       13       13       14       6       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       14       15       11       15       15       15       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16       16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3483                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Insulin-like growth factor-bir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nding protein acid labile subunit (IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GFALS)                         |          |                                                                                                                                                                                                                                                                         |                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                        | 7                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                         |
| 3930 Laminis subart bia 1 (MAM)       31       7       1       1       2       2         3931 Laminis subart bia 1 (MAM)       31       28       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       32       33       48       44       44         4237       MicroBinEr-associed profein 2 (MAP2)       30       7       33       48       34       44       44         4331       MicroBinEr-associed profein 2 (MAP2)       30       7       33       48       40       44       43       44       43       44       43       44       44       43       44       43       44       43       44       44       43       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       44       45       45       46 <t< td=""><td>3908</td><td>Laminin subunit alpha 2 (LAN</td><td>VA2)</td><td></td><td></td><td>3</td><td>2</td><td>1</td><td>5</td><td>9</td><td>4</td><td>4</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3908                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laminin subunit alpha 2 (LAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VA2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |          | 3                                                                                                                                                                                                                                                                       | 2                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5                                                                                                                                        | 9                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                         |
| 3911       Lamin subart bis (LAMAS)       213       276       12       400       4       4         3911       Lamin subart bis (LAMAS)       22       15       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40       40<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laminin subunit alpha 4 (LAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VIA4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |          | 11                                                                                                                                                                                                                                                                      | 7                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                        | 2                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |
| 3913     Lamin suburities 1(AMB)     22     15     4     8     7     3     3       313     Lamin suburities 1(AMB)     10     7     11     11     17       323     Lamin suburities 1(AMB)     10     7     13     11     11     17       323     Microfinitir associated protein 2(MFAP2)     10     7     13     10     4     6       323     Microfinitir associated protein 2(MFAP2)     10     7     13     8     10     4     6       323     Microfinitir associated protein 2(MFAP2)     10     7     13     8     10     4     6       323     Microfinitir associated protein 2(MFAP2)     10     7     13     8     10     4     6       323     Microfinitir associated protein 2(MFAP2)     10     4     4     2     2     1       313     Procollage Cantopeotias enhance (POLE)     7     13     4     4     2     2     1       314     Microfinitir associated protein 3(MFA)     10     1     1     2     3     2     1       314     Childer matchilder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laminin subunit alpha 5 (LAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MA5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |          | 115                                                                                                                                                                                                                                                                     | 78                                                                                                                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26                                                                                                                                       | 4                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                         |
| 1913       Lamma sabula eta 2 (LANK2)       11/2       8/3       4/2       13/2       1/2         1913       Lamma sabula eta 2 (LANK2)       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2       1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3912                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laminin subunit beta 1 (LAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IB1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |          | 22                                                                                                                                                                                                                                                                      | 15                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                                                                                                                        | 2                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                         |
| 333       Jamin suburit gimma 1 (JAMC1)       98       78       33       488       34       34         433       Microfinitar sociated protein 2 (MPAPa)       35       20       100       0.0       20       31         433       Microfinitar sociated protein 4 (MPAPa)       35       20       100       0.0       20       31         533       Procellagen C-mologistidas embance (PCOLCI)       7       34       4       2       2         540       Procellagen C-mologistidas embance (PCOLCI)       7       3       4       4       2       2         7448       Witcoaccin (VTN)       7       3       4       4       2       2       4         7449       Witcoaccin (VTN)       7       3       4       4       2       2       4         7449       Witcoaccin (VTN)       12       14       9       2       6       2       3         7441       Tankformidia Septidia singenike mitingenike (TNAGL1)       48       7       5       9       2       1       1         7448       Tankformidia Septidia singenike mitingenike (TNAGL1)       7       3       8       6       9       4       2       7       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laminin subunit beta 2 (LAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | IB2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |          | 117                                                                                                                                                                                                                                                                     | 83                                                                                                                       | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 47                                                                                                                                       | 19                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                         |
| 4339       Microfinianisaciality protein 2 (MR/P2)       10       7       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       11       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Laminin subunit gamma 1 (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AMC1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |          | 98                                                                                                                                                                                                                                                                      | 78                                                                                                                       | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 48                                                                                                                                       | 14                                                                                                                                                                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                         |
| 4339<br>4339<br>4339<br>4339<br>4334<br>4334<br>4334<br>4334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Microfibrillar-associated pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tein 2 (MFAP2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |          | 10                                                                                                                                                                                                                                                                      | 7                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                       | 11                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                         |
| 481 a       Midogen 1 (M01)]       28       18       8       10       4       6         5118       Procellagen C-indopetidae enhancer (PCOLC)       1       13       23       14       23       2       2         5118       Procellagen C-indopetidae enhancer (PCOLC)       1       13       23       2       4       2       2       2         5118       Procellagen C-indopetidae enhancer (PCOLC)       13       13       4       4       2       2       2         5118       Procellagen C-indopetidae enhancer (PCOLC)       13       13       4       2       2       2       2       3         6119       13       23       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Microfibrillar-associated pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | itein 4 (MFAP4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          | 35                                                                                                                                                                                                                                                                      | 29                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 102                                                                                                                                      | 25                                                                                                                                                                                              | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                         |
| 22795<br>1318       Nidogen 2(MD2)<br>(mitologened (MTR)       7       3       4       4       2       2         7057       Thrombospond I (1MS1)       7       3       4       4       2       2         7480       Vinou (MVR)       13       9       2       6       4       2       2         7480       Vinou (Millehand factor (VVR)       13       9       2       6       4       2       2         7440       Vinou (Millehand factor (VVR)       13       9       2       6       2       3         7431       tadio (MILL)       44       31       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13       13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4811                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Nidogen 1 (NID1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          | 28                                                                                                                                                                                                                                                                      | 18                                                                                                                       | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                                                                                                                                       | 4                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                         |
| 5118       Procollage Conduction (PCOLCE)       1       1       3       5       2         767       Thrombopndin 1 (PMS)       12       1       1       3       4       2       2         7448       Vironectin (VM)       12       1       1       3       4       2       2       2         7449       Vironectin (VM)       12       1       1       3       4       2       2       2         7449       Vironectin (VM)       13       0       2       6       2       3         74411       Idderination Structure restanding Prints andgen-like (TIMAGL1)       4       31       31       32       9       6         7445       Transforming provin factor beta induced (TGPB)       78       37       56       75       30       36       6       6         7446       Transforming growth factor beta induced (TGPB)       131       9       14       8       6       9       4       2       14         7446       Transforming growth factor beta induced (TGPB)       1014       %       15       35       4       2       15          1       3       3       5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nidogen 2 (NID2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          | 70                                                                                                                                                                                                                                                                      | 44                                                                                                                       | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21                                                                                                                                       | 5                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                                                                                                                                                                                                                                                                                         |
| 2057<br>446       Winnebospondi 1(FMS1)<br>447       7       3       4       4       2       2         448       Winnebospondi 1(FMS1)<br>448       13       9       2       60       62       2       3         4510       Von Willebrad factor (VWF)<br>137       13       9       2       60       42       2       3         64129       isoform 3 of Tubulointerstital nephrifts antgen-like (TINALL1)<br>13       8       7       5       3       2       1         64131       Garma 10 of Encretin (FM1)<br>13       81       49       76       63       36       6         133       79       179       139       122       9       0       0       0       12       1       12       1       1       3       13       12       9       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Procollagen C-endopeptidase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e enhancer (PCOLCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |          |                                                                                                                                                                                                                                                                         | 1                                                                                                                        | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                        |                                                                                                                                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |
| 1448       127       144       25       60       42       29         11117       128       44       31       1115       104       102       47         11117       128       44       31       315       104       102       47         11117       144       31       315       104       102       47         14813       131       322       9       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       6       7       7       7       7       7       7 <td>7057</td> <td>Thrombospondin 1 (THBS1)</td> <td></td> <td></td> <td></td> <td>7</td> <td>3</td> <td>4</td> <td>4</td> <td>2</td> <td>2</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Thrombospondin 1 (THBS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          | 7                                                                                                                                                                                                                                                                       | 3                                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                        | 2                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |
| 7490       Von Willerand tackor (VWF)       33       9       2       6       2       3         64129       isoform 3 of Tubulointerstratia inegnikie (TINAGLI)       4       31       15       164       32       9       2       1         64131       Cartinge intermediate layer protein 2 (CIP2)       8       78       63       36       6         2335       isoform 10 of Thionectin (FNI)       79       37       56       79       33       9       12       9       3         7045       Transcin X8 (TIXKI)       131       79       379       139       122       9       3         7045       Transcin X8 (TIXKI)       14       8       6       9       4       2         Glycoproteins         Sum of PSM means       1104       %       15          1       3       13       5       -          2       14       6       8       4       2          2       13       6       2       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vitronectin (VTN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          | 17                                                                                                                                                                                                                                                                      | 14                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60                                                                                                                                       | 42                                                                                                                                                                                              | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                         |
| 11117       Eastin microtinol interfacer 1 (EMUN3)       44       31       115       104       0.02       47         11117       Carliage intermediate layer protein 2 (CIP2)       13       32       9       6         235       isoform 0 of Fibroneckin (FN1)       81       49       78       63       36       6         7045       Transforming growth factor beta induced (TGFBi)       131       49       78       63       36       6         7045       Transforming growth factor beta induced (TGFBi)       131       9       4       2       2       1         Giycoproteins         Sum of PSM means       1104       %       15       9       4       2         Collagen type I alpha 1 chain (COLA12)       1       3       13       5       4       102         Collagen type I alpha 1 chain (COLA12)       2       4       31       13       5       4       2         Collagen type I alpha 1 chain (COLA12)       2       4       31       13       5       4       2         Collagen type I alpha 1 chain (COLA2)       2       2       1       3       13       5       4       2 <td< td=""><td>7450</td><td>Von Willebrand factor (VWF</td><td>)</td><td></td><td></td><td>13</td><td>9</td><td>2</td><td>6</td><td>2</td><td>3</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Von Willebrand factor (VWF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |          | 13                                                                                                                                                                                                                                                                      | 9                                                                                                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                                                                        | 2                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |
| 64129       isoform 3 of Tubulointerstital negenike (TUAGLI)       8       7       5       9       2       1         18131       Carlinge internedial super protein 2 (CP2)       81       49       78       63       36       6         2335       isoform 10 of Fibronectin (FN1)       79       32       9       6       36       6       6         7045       Transcin X8 (TNX8)       79       329       13       32       9       4       2         UniProt       Tenacin X8 (TNX8)       131       79       179       139       112       29       7         MiProt       EGF-containing fibulin-like extracellular matrix protein 1 (FEMP1)       14       8       6       9       4       2         Glycoproteins         Sum of PSM means       1104       %       15         Other protein name       P1 fresh       P1 fresh       P2 fresh       P2 fresh       P3 fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Elastin microfibril interfacer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 (EMILIN1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |          | 44                                                                                                                                                                                                                                                                      | 31                                                                                                                       | 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 104                                                                                                                                      | 102                                                                                                                                                                                             | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                                                                                                                                                                                                                                                                         |
| 148.13       Cartiage intermediate layer protein 2(CIP2)       i       13       22       9       6         235       tisoform 10 of Fibroneck (R1N)       131       49       76       63       36       6         7045       Transforming growth factor beta induced (TGFBI)       131       79       130       130       29       13       29       130       36       6         7045       Transforming growth factor beta induced (TGFBI)       14       8       6       9       4       2       2         Glycoproteins         Sum of PSM means       1104       %       15       5         Ollagens         NREGeron P2 fresh       P1 fresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Isotorm 3 of Tubulointerstiti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | al nephritis antigen-like (TINAGL1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )                              |          | 8                                                                                                                                                                                                                                                                       | 7                                                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                                                                                        | 2                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                           |
| 2335       Is form 10 of Fibrometin (FNI)       81       43       78       63       36       6         7045       Transcin X8 (TWR)       131       79       179       179       129       130       112       29       1         Accession       Import       Import       Import       Import       Import       14       8       6       9       4       2         Inform 10 of FISO metring from fibring f                                                                                                                                                                                                                                                                                                                                                                                                             | 148113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cartilage intermediate layer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | protein 2 (CILP2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                |          |                                                                                                                                                                                                                                                                         |                                                                                                                          | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 32                                                                                                                                       | 9                                                                                                                                                                                               | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                         |
| 7045       Transforming growth factor beta induced (TGFBI)       79       37       56       75       30       36         1184       Transforming growth factor beta induced (TGFBI)       13       79       179       179       179       179       179       179       179       120       12       29       1         Value of the second of                                                                                                                                                                                                                                                                                                                                | 2335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Isoform 10 of Fibronectin (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |          | 81                                                                                                                                                                                                                                                                      | 49                                                                                                                       | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 63                                                                                                                                       | 36                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                         |
| 1181       Tenacin X8 (TWG)       122       29       132       79       179       139       112       29       1         accession       B4DW75       EGF-containing fbulle-like extracellular matrix protein 1 (EFEMP1)       14       8       6       9       4       2         Glycoproteins         Sum of PSM means       1104       %       15         Ollagens         NRE2 GEN       Protein name       P1 fresh       P1 fresh       P2 frozen       P3 fresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7045                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Transforming growth factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | beta induced (TGFBI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |          | 79                                                                                                                                                                                                                                                                      | 37                                                                                                                       | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 75                                                                                                                                       | 30                                                                                                                                                                                              | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                         |
| uniprot<br>accession<br>BADV75         EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1)         14         8         6         9         4         2           Glycoproteins<br>Sum of P5M means         1104         %         15           ollagens           NTRE2 GEN<br>Accession         Protein name         P1 fresh         P1 fresh         P2 fresh         P2 fresh         P3 f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tenascin XB (TNXB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          | 131                                                                                                                                                                                                                                                                     | 79                                                                                                                       | 179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 139                                                                                                                                      | 112                                                                                                                                                                                             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1:                                                                                                                                                                                                                                                                                                                        |
| accession<br>B&DV75         CGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1)         14         8         6         9         4         2           Glycoproteins<br>Sum of PSM means         1104         %         15           Ollagens         Sum of PSM means         1104         %         15           Ollagens           NTRE GEN<br>Accession           Protein name         P1 fresh         P1 fresh         P2 fresh         P2 fresh         P3 fresh <t< td=""><td>UniProt</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | UniProt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          |                                                                                                                                                                                                                                                                         |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                           |
| B4DW75       [C6F-containing fibulin-like extracellular matrix protein 1 (EFEMP1)       14       6       6       9       4       2         Glycoproteins         Sum of P5M means       1104       %       15         Ollagens         NTREZ GENE       Protein name       P1 fresh       P1 fresh       P1 fresh       P3 fresh       P3 frozen       P         1277       Collagen type 1 alpha 1 chain (COLIA1)       1       3       13       5       4       4         1284       Collagen type 1 alpha 1 chain (COLIA2)       22       22       11       12       3       6       3       1       3       13       5       4       6       8       4       1       1       3       13       5       4       1       1       3       13       5       4       1       1       1       1       3       13       5       1       1       1       1       3       13       5       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | accession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                |          |                                                                                                                                                                                                                                                                         |                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                           |
| NREZ GENE<br>Accession         Protein name         P1 fresh         P1 frosh         P2 fresh         P2 fresh         P3 fre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sum of PSM means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glycop<br>1104                 | proteins | %                                                                                                                                                                                                                                                                       |                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                           |
| Accession         P2 resi         P2 resi         P2 resi         P3 resi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collagens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sum of PSM means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glycor<br>1104                 | proteins | %                                                                                                                                                                                                                                                                       | [                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          |                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                           |
| 1277       Collagen type I alpha 1 chain (COL1A1)       1       3       13       5         1278       Collagen type I alpha 2 chain (COL1A2)       2       4       6       8       4         1282       Collagen type I alpha 2 chain (COL4A1)       28       13       6       37       2       1         1284       Collagen type I alpha 1 chain (COL4A1)       22       22       11       12       11       3       1         1291       Collagen type I alpha 1 chain (COL6A2)       196       182       244       389       186       138       22         1303       L217       L297       2058       1174       1094       1         1303       Collagen type V alpha 2 chain (COL6A2)       1303       1217       297       2058       1174       1094       1         1303       Collagen type V alpha 2 chain (COL1A1)       4       4       4       3       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1 <t< td=""><td>Collagens</td><td></td><td>Sum of PSM means</td><td>Glycor<br/>1104</td><td>proteins</td><td>%</td><td>D1 frazon</td><td>15</td><td></td><td>D2 froch</td><td>D2 frozon</td><td>PS</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Collagens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sum of PSM means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glycor<br>1104                 | proteins | %                                                                                                                                                                                                                                                                       | D1 frazon                                                                                                                | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                          | D2 froch                                                                                                                                                                                        | D2 frozon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PS                                                                                                                                                                                                                                                                                                                        |
| 1278       Collagen type I alpha 2 chain (COLIA2)       2       4       6       8       4         1282       Collagen type I alpha 2 chain (COLA1)       28       13       6       37       2       1         1284       Collagen type IV alpha 2 chain (COLA2)       22       22       11       12       11       3       1         1291       Collagen type VI alpha 2 chain (COLA2)       462       367       573       624       318       226       4         1292       Collagen type VI alpha 2 chain (COLA2)       106       182       244       389       186       138       2         1293       Collagen type VI alpha 3 chain (COLA3)       1303       1217       1967       186       182       2         1303       Collagen type VI alpha 1 chain (COL1A1)       4       4       4       3       1       -         1303       Collagen type XII alpha 1 chain (COL1A1)       254       245       798       735       397       241       4         80781       Collagen type XII alpha 1 chain (COL1A1)       254       245       798       735       397       241       4         80781       Collagen type XII alpha 1 chain (COL1A1)       1686       177       17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Collagens<br>ENTREZ GENE<br>Accession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sum of PSM means Protein name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glycop<br>1104                 | proteins | %<br>P1 fresh                                                                                                                                                                                                                                                           | P1 frozen                                                                                                                | 15<br>P2 fresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P2 frozen                                                                                                                                | P3 fresh                                                                                                                                                                                        | P3 frozen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PS                                                                                                                                                                                                                                                                                                                        |
| 1282       Collagen type IV alpha 1 chain (COLA1)       28       13       6       37       2       1         1284       Collagen type IV alpha 2 chain (COLA2)       22       22       11       12       11       3         1291       Collagen type IV alpha 2 chain (COLA2)       462       367       573       624       318       236       4         1292       Collagen type VI alpha 3 chain (COLA2)       196       182       244       399       186       1138       2         1293       Collagen type VI alpha 3 chain (COLA3)       1303       1217       1967       2058       1174       1094       1         1303       Collagen type VIII alpha 1 chain (COLA1)       4       4       4       3       1       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Collagens<br>INTREZ GENE<br>Accession<br>1277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Collagen type I alpha 1 chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sum of PSM means Protein name (COL1A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Glycop<br>1104                 | proteins | %<br>P1 fresh                                                                                                                                                                                                                                                           | P1 frozen                                                                                                                | 15<br>P2 fresh<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P2 frozen<br>13                                                                                                                          | P3 fresh                                                                                                                                                                                        | P3 frozen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PS<br>me                                                                                                                                                                                                                                                                                                                  |
| 1284       Collagen type VI alpha 1 chain (COL4A2)       22       22       11       12       11       3         1291       Collagen type VI alpha 1 chain (COL6A1)       462       367       573       664       318       236       4         1292       Collagen type VI alpha 3 chain (COL6A3)       196       182       244       389       186       138       2         1295       Collagen type VI alpha 1 chain (COL1A3)       4       4       4       3       1       4       4       3       1       4       4       3       397       241       4         1303       Collagen type VII alpha 1 chain (COL1A1)       254       245       798       735       397       241       4         80781       Collagen type XVII alpha 1 chain (COL1A1)       254       245       798       735       397       241       4         80781       Collagen type XVIII alpha 1 chain (COL1A1)       17       16       35       40       22       22       22       22       22       22       22       22       22       22       22       2       2       3          Fortein name       P1 fresh       P1 frozen       P2 fresh       P2 fresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Collagens<br>INTREZ GENE<br>Accession<br>1277<br>1278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sum of PSM means Protein name (COL1A1) (COL1A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glycog<br>1104                 | proteins | % P1 fresh 1 2                                                                                                                                                                                                                                                          | P1 frozen                                                                                                                | 15<br>P2 fresh<br>3<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P2 frozen 13 6                                                                                                                           | <b>P3 fresh</b><br>5<br>8                                                                                                                                                                       | P3 frozen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PS<br>me                                                                                                                                                                                                                                                                                                                  |
| 1291       Collagen type VI alpha 1 chain (COL6A1)       462       367       573       624       318       236       4         1292       Collagen type VI alpha 1 chain (COL6A2)       196       182       244       389       186       138       28         1293       Collagen type VI alpha 1 chain (COL8A1)       4       4       4       3       1       1         1303       Collagen type VI alpha 1 chain (COL18A1)       4       4       4       3       1       1         1303       Collagen type XVII alpha 1 chain (COL18A1)       4       4       4       4       3       1       1         80781       Collagen type XVIII alpha 1 chain (COL18A1)       17       16       35       40       22       22       2       2          Sum of PSM means       3664       %       49       49       49       49       49       49       449       44       48       38       38       109       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120 </td <td>Collagens<br/>ENTREZ GENE<br/>Accession<br/>1277<br/>1278<br/>1282</td> <td>Collagen type I alpha 1 chain<br/>Collagen type I alpha 2 chain<br/>Collagen type IV alpha 1 chai</td> <td>Protein name (COLIA1) (COLIA2) in (COL4A1)</td> <td>Glyco;<br/>1104</td> <td>proteins</td> <td>% P1 fresh 1 2 28</td> <td>P1 frozen</td> <td>15<br/>P2 fresh<br/>3<br/>4<br/>6</td> <td>P2 frozen<br/>13<br/>6<br/>37</td> <td>P3 fresh<br/>5<br/>8<br/>2</td> <td>P3 frozen</td> <td>PS<br/>me</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Collagens<br>ENTREZ GENE<br>Accession<br>1277<br>1278<br>1282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Protein name (COLIA1) (COLIA2) in (COL4A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Glyco;<br>1104                 | proteins | % P1 fresh 1 2 28                                                                                                                                                                                                                                                       | P1 frozen                                                                                                                | 15<br>P2 fresh<br>3<br>4<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P2 frozen<br>13<br>6<br>37                                                                                                               | P3 fresh<br>5<br>8<br>2                                                                                                                                                                         | P3 frozen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PS<br>me                                                                                                                                                                                                                                                                                                                  |
| 1292       Collagen type VI alpha 2 chain (COLGA2)       196       182       244       389       186       138       2         1293       Collagen type VII alpha 1 chain (COLA3)       1003       1217       1967       2058       1174       1094       1         1303       Collagen type VII alpha 1 chain (COLA1)       4       4       4       3       1       1         1303       Collagen type VII alpha 1 chain (COL1A1)       254       245       798       735       397       241       4         7373       Collagen type XII alpha 1 chain (COL1A1)       686       652       1309       1280       1500       740       1         80781       Collagen type XIII alpha 1 chain (COL18A1)       177       16       35       40       22       22       2       2          Sum of PSM means       3664       %       49       49       49       4       4       38       8       176       176       176       176       176       176       176       177       17       4       177       16       35       40       22       2       137       177       176       176       18       163       18       51       68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Collagens<br>ENTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 2 chai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Protein name (COL1A1) (COL1A2) in (COL4A1) in (COL4A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Glycor                         | proteins | % P1 fresh 1 2 28 22                                                                                                                                                                                                                                                    | P1 frozen<br>13<br>22                                                                                                    | 15<br>P2 fresh<br>3<br>4<br>6<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P2 frozen<br>13<br>6<br>37<br>12                                                                                                         | P3 fresh<br>5<br>8<br>2<br>11                                                                                                                                                                   | P3 frozen<br>4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PS<br>me<br>(<br>1<br>1                                                                                                                                                                                                                                                                                                   |
| 1293       Collagen type VI alpha 3 chain (COLGA3)       1303       1217       1967       2058       1174       1094       1         1295       Collagen type VII alpha 1 chain (COLBA1)       4       4       4       3       1       -         1303       Collagen type XII alpha 1 chain (COL12A1)       254       245       798       735       397       241       4         7373       Collagen type XII alpha 1 chain (COL12A1)       686       652       1309       1280       1500       740       1         80781       Collagen type XVIII alpha 1 chain (COL18A1)       17       16       35       40       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22 <td>Collagens<br/>ENTREZ GENE<br/>Accession<br/>1277<br/>1278<br/>1282<br/>1284<br/>1291</td> <td>Collagen type I alpha 1 chain<br/>Collagen type I alpha 2 chain<br/>Collagen type IV alpha 1 chai<br/>Collagen type IV alpha 2 chai<br/>Collagen type VI alpha 1 chai</td> <td>Sum of PSM means Protein name (COL1A1) (COL1A2) in (COL4A1) in (COL4A2) in (COL6A1)</td> <td>Glyco;<br/>1104</td> <td>proteins</td> <td>% P1 fresh 1 2 28 22 462</td> <td>P1 frozen<br/>13<br/>22<br/>367</td> <td>15<br/>P2 fresh<br/>3<br/>4<br/>6<br/>11<br/>573</td> <td>P2 frozen<br/>13<br/>6<br/>37<br/>12<br/>624</td> <td>P3 fresh<br/>5<br/>8<br/>2<br/>11<br/>318</td> <td>P3 frozen<br/>4<br/>3<br/>236</td> <td>PS<br/>me<br/>(<br/>1<br/>1<br/>43</td>                                                                                                                                                                                                                                                                            | Collagens<br>ENTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1284<br>1291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 2 chai<br>Collagen type VI alpha 1 chai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sum of PSM means Protein name (COL1A1) (COL1A2) in (COL4A1) in (COL4A2) in (COL6A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Glyco;<br>1104                 | proteins | % P1 fresh 1 2 28 22 462                                                                                                                                                                                                                                                | P1 frozen<br>13<br>22<br>367                                                                                             | 15<br>P2 fresh<br>3<br>4<br>6<br>11<br>573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2 frozen<br>13<br>6<br>37<br>12<br>624                                                                                                  | P3 fresh<br>5<br>8<br>2<br>11<br>318                                                                                                                                                            | P3 frozen<br>4<br>3<br>236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PS<br>me<br>(<br>1<br>1<br>43                                                                                                                                                                                                                                                                                             |
| 1295       Collagen type VIII alpha 1 chain (COL18A1)       4       4       4       4       3       1       1         1303       Collagen type XII alpha 1 chain (COL12A1)       254       245       798       735       397       241       4         6373       Collagen type XVI alpha 1 chain (COL18A1)       686       652       1309       1280       1500       740       1         80781       Collagen type XVIII alpha 1 chain (COL18A1)       17       16       35       40       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       23       33       40       22       22       22       22       22       22       22       22       22       22       22       22       23       33       33       33       33       33       33       33       33       33       33       33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Collagens<br>ENTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1284<br>1291<br>1291<br>1292                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 2 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 2 chai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Protein name           (COL1A1)           (COL1A2)           in (COL4A1)           in (COL4A2)           in (COL4A2)           in (COL6A1)           in (COL6A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Glyco;<br>1104                 | proteins | % P1 fresh 1 2 28 22 462 196                                                                                                                                                                                                                                            | P1 frozen<br>13<br>22<br>367<br>182                                                                                      | 15<br>P2 fresh<br>3<br>4<br>6<br>11<br>573<br>244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389                                                                                           | P3 fresh<br>5<br>8<br>2<br>11<br>318<br>186                                                                                                                                                     | P3 frozen<br>4<br>3<br>236<br>138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PS<br>me<br>(<br>1<br>1<br>4<br>3<br>22                                                                                                                                                                                                                                                                                   |
| 1303       Collagen type XII alpha 1 chain (COL12A1)       254       245       798       735       397       241       4         7373       Collagen type XIV alpha 1 chain (COL14A1)       686       652       1309       1280       1500       740       1         80781       Collagen type XIV alpha 1 chain (COL18A1)       17       16       35       40       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       23       35       40       22       22       24       49       49       49       49       49       49       49       49       49       49       44       44       49       44       44       44       44       44       44       44       44       44       44       44       44       44 </td <td><b>ENTREZ GENE</b><br/>Accession<br/>1277<br/>1278<br/>1282<br/>1284<br/>1291<br/>1292<br/>1293</td> <td>Collagen type I alpha 1 chain<br/>Collagen type I alpha 2 chain<br/>Collagen type IV alpha 1 chai<br/>Collagen type IV alpha 2 chai<br/>Collagen type VI alpha 2 chai<br/>Collagen type VI alpha 3 chai</td> <td>Protein name           (COL1A1)           (COL1A2)           in (COL4A1)           in (COL6A1)           in (COL6A2)           in (COL6A2)           in (COL6A2)           in (COL6A2)</td> <td>Glycop<br/>1104</td> <td>proteins</td> <td>%<br/>P1 fresh<br/>1<br/>2<br/>28<br/>22<br/>462<br/>196<br/>1303</td> <td>P1 frozen<br/>13<br/>22<br/>367<br/>182<br/>1217</td> <td>15<br/>P2 fresh<br/>3<br/>4<br/>6<br/>11<br/>573<br/>244<br/>1967</td> <td>P2 frozen<br/>13<br/>6<br/>37<br/>12<br/>624<br/>389<br/>2058</td> <td>P3 fresh<br/>5<br/>8<br/>2<br/>11<br/>318<br/>186<br/>1174</td> <td>P3 frozen<br/>4<br/>3<br/>236<br/>138<br/>1094</td> <td>PS<br/>me<br/>(<br/>1<br/>1<br/>4<br/>3<br/>22<br/>14</td> | <b>ENTREZ GENE</b><br>Accession<br>1277<br>1278<br>1282<br>1284<br>1291<br>1292<br>1293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 2 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 3 chai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Protein name           (COL1A1)           (COL1A2)           in (COL4A1)           in (COL6A1)           in (COL6A2)           in (COL6A2)           in (COL6A2)           in (COL6A2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Glycop<br>1104                 | proteins | %<br>P1 fresh<br>1<br>2<br>28<br>22<br>462<br>196<br>1303                                                                                                                                                                                                               | P1 frozen<br>13<br>22<br>367<br>182<br>1217                                                                              | 15<br>P2 fresh<br>3<br>4<br>6<br>11<br>573<br>244<br>1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058                                                                                   | P3 fresh<br>5<br>8<br>2<br>11<br>318<br>186<br>1174                                                                                                                                             | P3 frozen<br>4<br>3<br>236<br>138<br>1094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PS<br>me<br>(<br>1<br>1<br>4<br>3<br>22<br>14                                                                                                                                                                                                                                                                             |
| 7373       Collagen type XIV alpha 1 chain (COL14A1)       686       652       1309       1280       1500       740       1         80781       Collagen type XVIII alpha 1 chain (COL18A1)       17       16       35       40       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       22       23       33       6       33       91       10       16       36       49       33       81       10       11       14       14       34       36       31       11       341       168       108       10       11       2       1       2       8       6       2       2       1       2       1       2       1       2       1       2       1       2       1       2       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>ENTREZ GENE</b><br>Accession<br>1277<br>1278<br>1282<br>1284<br>1291<br>1292<br>1293<br>1295                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 2 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 3 chai<br>Collagen type VI alpha 3 chai<br>Collagen type VII alpha 1 ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Protein name           (COL1A1)           (COL1A2)           in (COL4A1)           in (COL6A1)           in (COL6A2)           in (COL6A2)           in (COL6A3)           iain (COL8A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Glycop<br>1104                 | proteins | % P1 fresh 1 2 28 22 462 1303 4                                                                                                                                                                                                                                         | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4                                                                         | 15<br><b>P2 fresh</b><br>3<br>4<br>6<br>11<br>573<br>244<br>1967<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3                                                                              | P3 fresh<br>5<br>8<br>2<br>11<br>318<br>186<br>1174<br>1                                                                                                                                        | P3 frozen<br>4<br>3<br>236<br>138<br>138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PS<br>me<br>(<br>1<br>1<br>4<br>3<br>22<br>14<br>3                                                                                                                                                                                                                                                                        |
| 80781       Collagen type XVIII alpha 1 chain (COL18A1)       17       16       35       40       22       22       22       22       23         Collagens         Sum of PSM means       3664       %       49         roteoglycans         NTREZ GENE Accession       Protein name       P1 fresh       P1 fresh       P1 fresh       P2 fresh       P2 fresh       P3 fresh       P3 fresh       P3 fresh       M fresh       19       18       51       68       28       22       22         3339       Heparan sulfate proteoglycan 2 (HSPG2)       19       18       51       68       28       22       22       33       6       33       2       2       33       6       32       2       2       33       6       3       2       2       2       33       6       3       2       2       33       6       3       2       2       2       33       6       3       2       2       2       33       6       3       2       2       3       6       3       2       2       2       3       6       3       2       2       3       6       3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Collagens<br>Accession<br>1277<br>1278<br>1284<br>1291<br>1292<br>1293<br>1295<br>1303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 2 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 3 chai<br>Collagen type VI alpha 1 cha<br>Collagen type VII alpha 1 cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sum of PSM means           Protein name           (COL1A1)           (COL1A2)           in (COL4A1)           in (COL4A2)           in (COL6A1)           in (COL6A3)           iain (COL6A1)           in (COL6A3)           iain (COL8A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Glyco;<br>1104                 | proteins | % P1 fresh 1 2 28 22 462 190 1303 4 254                                                                                                                                                                                                                                 | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4<br>245                                                                  | 15<br>P2 fresh<br>3<br>4<br>6<br>11<br>573<br>244<br>1967<br>4<br>798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3<br>735                                                                       | P3 fresh<br>5<br>2<br>11<br>318<br>186<br>1174<br>1<br>397                                                                                                                                      | P3 frozen<br>4<br>3<br>236<br>138<br>1094<br>241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PS<br>me<br>(<br>1<br>1<br>1<br>1<br>4<br>3<br>22<br>14<br>:<br>:<br>4                                                                                                                                                                                                                                                    |
| Collagens           Sum of PSM means         3664         %         49           roteoglycans           NTREZ GENE<br>Accession         Protein name         P1 fresh         P1 frozen         P2 frozen         P3 frozen         P           1634         Decorin (DCN)         8         37         27         17         4           2331         Fibromodulin (FMOD)         8         37         245         224         186         108         1           3339         Heparan sulfate proteoglycan 2 (HSPG2)         98         73         245         224         186         108         1           4060         Lumican (LUM)         98         73         245         224         186         108         1           4959         Osteoglycin (OGN)         155         103         311         341         168         220         2           549         Proline and arginine rich end leucine rich repeat protein (PRELP)         2         1         2         8         6         1           127435         Podocan (PODN)         1         2         1         2         8         6         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collagens<br>INTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1282<br>1293<br>1293<br>1293<br>1293<br>1303<br>7373                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 3 chai<br>Collagen type VII alpha 1 cha<br>Collagen type XII alpha 1 chai<br>Collagen type XIV alpha 1 chai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Protein name           (COL1A1)           (COL1A2)           in (COL4A2)           in (COL4A1)           in (COL6A1)           in (COL6A2)           in (COL6A2)           in (COL6A3)           iain (COL8A1)           iain (COL12A1)           ain (COL14A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glyco;<br>1104                 | proteins | %<br>P1 fresh<br>1<br>2<br>28<br>22<br>462<br>196<br>1303<br>4<br>4<br>254<br>686                                                                                                                                                                                       | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4<br>245<br>652                                                           | 15<br><b>P2 fresh</b><br>3<br>4<br>6<br>11<br>573<br>244<br><b>1967</b><br>4<br>798<br>1309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3<br>735<br>1280                                                               | P3 fresh<br>5<br>8<br>2<br>11<br>318<br>186<br>1174<br>1<br>337<br>337                                                                                                                          | P3 frozen<br>4<br>3<br>236<br>138<br>1094<br>241<br>740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PS<br>me<br>(<br>1<br>1<br>1<br>4<br>3<br>22<br>14<br>4<br>3<br>4<br>4<br>4<br>4<br>10                                                                                                                                                                                                                                    |
| Sum of PSM means         3664         %         49           roteoglycans           NTREZ GENE<br>Accession         Protein name         P1 fresh         P1 frozen         P2 fresh         P2 frozen         P3 fresh         P3 frozen         P<br>m           1634         Decorin (DCN)         8         37         27         17         4           2331         Fibromodulin (FMOD)         8         37         27         17         4           2333         Heparan sulfate proteoglycan 2 (HSPG2)         8         73         245         224         186         108         1           4969         Osteoglycin (OGN)         155         103         311         341         168         220         2           5549         Proline and arginine rich end leucine rich repeat protein (PRELP)         2         3         6         3         2         1         2         8         6         1           127435         Podocan (PODN)         1         2         1         2         8         6         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Collagens<br>INTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1282<br>1293<br>1293<br>1295<br>1303<br>7373<br>80781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 3 chai<br>Collagen type VII alpha 1 cha<br>Collagen type XII alpha 1 ch<br>Collagen type XIV alpha 1 ch<br>Collagen type XIV alpha 1 ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Protein name           (COL1A1)           (COL1A2)           in (COL4A2)           in (COL6A1)           in (COL6A2)           in (COL6A2)           in (COL6A3)           sain (COL8A1)           sin (COL12A1)           ain (COL14A1)           shin (COL12A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Glyco;<br>1104                 | proteins | %<br>P1 fresh<br>1<br>2<br>28<br>28<br>22<br>462<br>196<br>1303<br>4<br>254<br>686<br>686<br>17                                                                                                                                                                         | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4<br>245<br>652<br>16                                                     | 15<br><b>P2 fresh</b><br>3<br>4<br>6<br>11<br>573<br>244<br><b>1967</b><br>4<br>798<br>1309<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3<br>735<br>1280<br>40                                                         | P3 fresh<br>5<br>8<br>2<br>11<br>318<br>186<br>1174<br>1<br>397<br>397<br>1500<br>22                                                                                                            | P3 frozen<br>4<br>3<br>236<br>138<br>1094<br>241<br>740<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PS<br>me<br>(<br>1<br>1<br>1<br>4<br>3<br>2<br>2<br>1<br>4<br>4<br>4<br>4<br>4<br>100<br>2                                                                                                                                                                                                                                |
| Proteoglycans           NTREZ GENE<br>Accession         Protein name         P1 fresh         P1 frozen         P2 frozen         P3 frozen         P<br>m           1634         Decorin (DCN)         8         37         27         17         4           2331         Fibromodulin (FMOD)         19         18         51         68         28         22         1           3339         Heparan sulfate proteoglycan 2 (HSPG2)         215         140         114         144         38         38         1           4969         Osteoglycin (OGN)         98         73         245         224         186         108         1           5549         Proline and arginine rich end leucine rich repeat protein (PRELP)         2         3         6         3         2           127435         Podocan (PODN)         1         2         1         2         8         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Collagens<br>INTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1284<br>1291<br>1292<br>1293<br>1295<br>1303<br>7373<br>80781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 2 chai<br>Collagen type IV alpha 2 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XIV alpha 1 ch<br>Collagen type XIV alpha 1 ch<br>Collagen type XIV alpha 1 ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Protein name           (COL1A1)           (COL4A2)           in (COL6A1)           in (COL6A2)           in (COL6A3)           iain (COL2A1)           iain (COL12A1)           iain (COL12A1)           iain (COL12A1)           iain (COL12A1)           iain (COL12A1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Glycop<br>1104                 | agens    | % P1 fresh 1 2 28 462 196 1303 4 254 686 17                                                                                                                                                                                                                             | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4<br>245<br>652<br>16                                                     | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>1309<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3<br>735<br>1280<br>40                                                         | P3 fresh<br>5<br>8<br>11<br>318<br>186<br>1174<br>1174<br>1<br>397<br>1500<br>22                                                                                                                | P3 frozen<br>4<br>3<br>236<br>138<br>1094<br>241<br>740<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PS<br>me<br>(<br>1<br>1<br>1<br>4<br>3<br>22<br>14<br>:<br>14<br>:<br>4<br>4<br>4<br>10<br>2                                                                                                                                                                                                                              |
| NTREZ GENE<br>Accession         Protein name         P1 fresh         P1 fresh         P2 fresh         P2 fresh         P3 fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Collagens<br>INTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1284<br>1291<br>1292<br>1293<br>1295<br>1303<br>7373<br>80781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 3 chai<br>Collagen type VII alpha 1 ch<br>Collagen type XII alpha 1 ch<br>Collagen type XIV alpha 1 ch<br>Collagen type XIV alpha 1 ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Protein name           i (COL1A1)           i (COL1A2)           in (COL4A2)           in (COL6A1)           in (COL6A2)           in (COL6A2)           in (COL6A3)           iain (COL12A1)           iain (COL12A1)           iain (COL12A1)           iain (COL12A1)           stain (COL12A1)           Sum of PSM means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Glyco<br>1104                  | agens    | % P1 fresh 1 2 28 22 462 1903 4 254 6 17 %                                                                                                                                                                                                                              | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4<br>245<br>652<br>16                                                     | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>1967<br>4<br>798<br>1309<br>35<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3<br>735<br>1280<br>40                                                         | P3 fresh<br>5<br>8<br>2<br>111<br>318<br>186<br>1174<br>1<br>1174<br>1<br>397<br>1500<br>22                                                                                                     | P3 frozen<br>4<br>3<br>236<br>138<br>1094<br>241<br>241<br>241<br>241<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PS<br>me<br>1<br>1<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>2<br>2<br>1<br>4<br>1<br>2<br>2<br>2                                                                                                                                                                                                                             |
| Accession         P1 fresh         P1 fresh         P1 fresh         P1 fresh         P2 fresh         P2 fresh         P3 fresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Collagens<br>NTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1284<br>1291<br>1293<br>1295<br>1303<br>7373<br>80781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 2 chai<br>Collagen type IV alpha 2 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VII alpha 1 chai<br>Collagen type VII alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XVIII alpha 1 chai                                                | Protein name           (COL1A1)           (COL1A2)           in (COL4A1)           in (COL6A1)           in (COL6A2)           in (COL6A3)           iain (COL12A1)           ain (COL12A1)           ain (COL12A1)           bain (COL12A1)           sin (COL12A1)           Sum of PSM means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glyco<br>1104<br>Coll<br>3664  | agens    | %<br>P1 fresh<br>1<br>2<br>28<br>462<br>1303<br>4<br>254<br>686<br>686<br>17<br>17<br>7<br>%                                                                                                                                                                            | P1 frozen<br>13<br>22<br>367<br>1827<br>1217<br>4<br>245<br>652<br>16                                                    | 15<br><b>P2 fresh</b><br>3<br>4<br>11<br>573<br>244<br><b>1967</b><br>4<br>798<br>1309<br>35<br>4<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3<br>735<br>1280<br>40                                                         | P3 fresh<br>5<br>8<br>11<br>318<br>136<br>1174<br>1174<br>1<br>397<br>22                                                                                                                        | P3 frozen<br>4<br>3<br>236<br>138<br>1094<br>241<br>740<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PS<br>me<br>1<br>1<br>1<br>4<br>2<br>1<br>4<br>4<br>1<br>2<br>2<br>1<br>4<br>4<br>1<br>0<br>2                                                                                                                                                                                                                             |
| 1634       Decorin (DCN)       8       37       27       17       4         2331       Fibromodulin (FMOD)       19       18       51       68       28       22         3339       Heparan sulfate proteoglycan 2 (HSPG2)       215       140       114       144       38       38       1         4969       Osteoglycin (OGN)       98       73       245       224       186       108       1         5549       Proline and arginine rich end leucine rich repeat protein (PRELP)       2       3       6       3       2         127435       Podocan (PODN)       Proteoglycans       1       2       1       2       8       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Collagens<br>INTREZ GENE<br>Accession<br>1277<br>1278<br>1284<br>1291<br>1293<br>1295<br>1303<br>7373<br>80781<br>Proteogly<br>INTREZ GENE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 3 chai<br>Collagen type VII alpha 3 chai<br>Collagen type XII alpha 1 cha<br>Collagen type XII alpha 1 cha<br>Collagen type XIV alpha 1 cha<br>Collagen type XVIII alpha 1 cha<br>Collagen type XVIII alpha 1 cha<br>Collagen type XVIII alpha 1 cha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Protein name         I (COL1A1)         I (COL1A2)         in (COL4A2)         in (COL4A2)         in (COL6A1)         in (COL6A2)         in (COL6A3)         aiain (COL12A1)         ain (COL12A1)         ain (COL12A1)         ain (COL12A1)         sin (COL12A1)         Sum of PSM means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glycop<br>1104<br>Coll<br>3664 | agens    | % P1 fresh 1 2 28 22 462 1903 4 254 686 17 %                                                                                                                                                                                                                            | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4<br>245<br>652<br>16<br>16                                               | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>1967<br>4<br>798<br>1309<br>35<br>49<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3<br>735<br>1280<br>40                                                         | P3 fresh<br>5<br>2<br>11<br>318<br>186<br>1174<br>1<br>1397<br>222                                                                                                                              | P3 frozen<br>4<br>3<br>236<br>138<br>1094<br>241<br>740<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PS<br>me<br>1<br>1<br>1<br>1<br>4<br>1<br>4<br>1<br>4<br>1<br>1<br>4<br>1<br>1<br>2<br>2<br>7<br>9<br>9<br>9<br>9                                                                                                                                                                                                         |
| 2331     Fibromodulin (FMOD)     19     18     51     68     28     22       3339     Heparan sulfate proteoglycan 2 (HSPG2)     215     140     114     144     38     38     1       4060     Lumican (LUM)     98     73     245     224     186     108     1       4569     Osteoglycin (OGN)     155     103     311     341     168     220     2       2     3     6     3     2     1     2     8     6       127435     Podocan (PODN)     Proteoglycans     7     1     2     7     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Collagens<br>INTREZ GENE<br>Accession<br>1277<br>1278<br>1284<br>1291<br>1292<br>1295<br>1303<br>7373<br>80781<br>Proteogly<br>INTREZ GENE<br>Accession                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 2 chain<br>Collagen type IV alpha 2 chai<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VII alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XVIII alpha 1 chai<br>Collagen type XVIII alpha 1 chai<br>Collagen type XVIII alpha 1 chain<br>Collagen type XVIII alpha 1 chain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Protein name         I (COL1A1)         (COL1A2)         in (COL4A1)         in (COL4A2)         in (COL6A3)         inin (COL8A1)         ain (COL12A1)         ain (COL12A1)         ain (COL12A1)         ain (COL12A1)         bin (COL12A1)         constrain (COL12A1) | Glycop<br>1104<br>Coll<br>3664 | agens    | % P1 fresh 1 2 28 22 462 190 4 254 686 1303 4 254 686 7                                                                                                                                                                                                                 | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4<br>245<br>652<br>16<br>16<br>P1 frozen                                  | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>1967<br>4<br>798<br>1309<br>335<br>35<br>4<br>4<br>9<br>4<br>9<br>4<br>9<br>4<br>9<br>4<br>9<br>4<br>9<br>4<br>9<br>9<br>4<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3<br>735<br>1280<br>40<br>                                                     | P3 fresh<br>5<br>8<br>11<br>318<br>186<br>1174<br>1<br>397<br>22<br>22                                                                                                                          | P3 frozen<br>3<br>236<br>138<br>1094<br>241<br>740<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PS<br>me<br>(<br>5<br>1<br>1<br>4<br>3<br>2<br>2<br>2<br>1<br>4<br>4<br>3<br>10<br>2<br>2<br>9<br>5<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                             |
| 3339       Heparan sulfate proteoglycan 2 (HSPG2)       215       140       114       144       38       38       1         4060       Lumican (LUM)       98       73       245       224       186       108       1         4969       Osteoglycin (OGN)       155       103       311       341       168       220       2         127435       Podocan (PODN)       1       2       1       2       8       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NTREZ GENE           Accession           1277           1278           1282           1284           1291           1292           1293           1295           1303           7373           80781           Proteogly           INTREZ GENE           Accession           1634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XVIII alpha 1 chai                                                 | Protein name         Protein name         (COL1A1)         (COL1A2)         in (COL4A2)         in (COL6A1)         in (COL6A2)         in (COL6A3)         nain (COL12A1)         ain (COL12A1)         ain (COL12A1)         ain (COL12A1)         Sum of PSM means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Glycoj<br>1104<br>             | agens    | % P1 fresh 1 28 22 462 196 1303 4 254 686 17 % % P1 fresh 8                                                                                                                                                                                                             | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4<br>245<br>652<br>16<br>P1 frozen                                        | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>1967<br>4<br>798<br>1309<br>35<br>4<br>35<br>49<br>798<br>1309<br>35<br>49<br>798<br>1309<br>35<br>49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P2 frozen 13 6 37 12 624 389 2058 3 735 1280 40 P2 frozen 27                                                                             | P3 fresh<br>5<br>8<br>2<br>11<br>318<br>186<br>1174<br>1<br>397<br>1500<br>22<br>22                                                                                                             | P3 frozen<br>3<br>236<br>138<br>1094<br>241<br>740<br>22<br>22<br>22<br>8<br>8<br>9<br>740<br>740<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PS<br>me<br>(<br>5<br>5<br>1<br>1<br>1<br>4<br>3<br>2<br>2<br>2<br>1<br>4<br>4<br>10<br>2<br>2<br>9<br>5<br>me<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                             |
| 4060       Lumican (LUM)       98       73       245       224       186       108       1         4969       Osteoglycin (OGN)       155       103       311       341       168       220       2         5549       Proline and arginine rich end leucine rich repeat protein (PRELP)       2       3       6       3       2         127435       Podocan (PODN)       1       2       1       2       8       6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Collagens<br>INTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1293<br>1293<br>1293<br>1293<br>1293<br>1293<br>1293<br>129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 3 chai<br>Collagen type VII alpha 1 ch<br>Collagen type XII alpha 1 ch<br>Collagen type XII alpha 1 ch<br>Collagen type XIV alpha 1 ch<br>Collagen type XVIII alpha 1 ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Protein name         Protein name         (COL1A1)         (COL1A2)         in (COL4A2)         in (COL6A1)         in (COL6A2)         in (COL6A3)         nain (COL14A1)         ain (COL14A1)         sin (COL14A1)         Sum of PSM means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glycoj<br>1104<br>             | agens    | %           P1 fresh           1           2           4254           686           17           %           P1 fresh           8           1303           4           254           686           17                                                                   | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4<br>245<br>652<br>16<br>8<br>91 frozen<br>P1 frozen<br>18                | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>1967<br>4<br>1967<br>4<br>1967<br>4<br>1309<br>35<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3<br>735<br>1280<br>40<br>40<br>P2 frozen<br>27<br>68                          | P3 fresh<br>5<br>8<br>2<br>111<br>318<br>1174<br>1<br>1<br>397<br>1500<br>22<br>2<br>8<br>93 fresh<br>17<br>28                                                                                  | P3 frozen<br>4<br>3<br>236<br>138<br>1094<br>241<br>740<br>22<br>241<br>740<br>22<br>8<br>740<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PS<br>mee<br>(<br>5<br>5<br>7<br>1<br>1<br>1<br>4<br>3<br>2<br>2<br>1<br>4<br>4<br>3<br>1<br>2<br>7<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>8<br>9<br>9<br>9<br>9<br>9                                                                                                                        |
| 4969       Osteoglycin (OGN)       155       103       311       341       168       220       2         5549       Proline and arginine rich end leucine rich repeat protein (PRELP)       2       3       6       3       2       2         127435       Podocan (PODN)       1       2       1       2       8       6         Proteoglycans         Sum of PSM means       546       %       7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Collagens<br>INTREZ GENE<br>Accession<br>1277<br>1278<br>1284<br>1291<br>1292<br>1295<br>1303<br>7373<br>80781<br>Proteogly<br>INTREZ GENE<br>Accession<br>1634<br>2331<br>3339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 3 chai<br>Collagen type VII alpha 3 chai<br>Collagen type XII alpha 1 ch<br>Collagen type XII alpha 1 ch<br>Collagen type XIV alpha 1 ch<br>Collagen type XVIII alpha 1 ch<br>Ch<br>Collagen type XVIII alpha 1 ch<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch<br>Ch | Protein name         I (COL1A1)         I (COL1A2)         in (COL4A2)         in (COL6A1)         in (COL6A2)         in (COL6A3)         iain (COL12A1)         ain (COL12A1)         iain (COL12A1)         iain (COL12A1)         sin (COL12A1)         Sum of PSM means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Glycoj<br>1104<br>Coll<br>3664 | agens    | % P1 fresh 1 2 28 22 462 190 1303 4 254 66 1303 4 254 68 17 % P1 fresh 8 19 215                                                                                                                                                                                         | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4<br>245<br>65<br>16<br>P1 frozen<br>P1 frozen<br>18<br>140               | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>788<br>1090<br>35<br>4<br>788<br>1090<br>4<br>788<br>1090<br>78<br>109<br>78<br>109<br>78<br>109<br>78<br>109<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P2 frozen 13 6 37 12 624 389 2058 3 735 1280 40 P2 frozen 27 68 144                                                                      | P3 fresh<br>5<br>8<br>2<br>111<br>318<br>1174<br>1<br>337<br>1500<br>22<br>2<br>2<br>8<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>8<br>8                               | P3 frozen<br>4<br>3<br>236<br>138<br>1094<br>241<br>740<br>22<br>8<br>P3 frozen<br>4<br>22<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PS<br>me<br>(<br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u><br><u>5</u><br><u>6</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u><br><u>7</u>                                                                                                             |
| S549     Proline and arginine rich end leucine rich repeat protein (PRELP)     2     3     6     3     2       127435     Podocan (PODN)     1     2     1     2     8     6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Collagens<br>INTREZ GENE<br>Accession<br>1277<br>1278<br>1284<br>1291<br>1292<br>1293<br>1295<br>1303<br>7373<br>80781<br>Proteogly<br>INTREZ GENE<br>Accession<br>1634<br>2331<br>3339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VII alpha 1 cha<br>Collagen type VII alpha 1 cha<br>Collagen type XII alpha 1 cha<br>Collagen type XII alpha 1 cha<br>Collagen type XII alpha 1 cha<br>Collagen type XIV alpha 1 cha<br>Collagen type XIV alpha 1 cha<br>Collagen type XVIII alpha 1 cha<br>Cha<br>Collagen type XVIII                                        | Protein name         Protein name         1 (COL1A1)         1 (COL1A2)         in (COL4A2)         in (COL6A1)         in (COL6A2)         in (COL6A3)         nain (COL12A1)         ain (COL12A1)         ain (COL12A1)         ain (COL12A1)         ain (COL12A1)         sum of PSM means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glycoj<br>1104<br>Coll<br>3664 | agens    | % P1 fresh 1 2 28 462 196 1303 4 254 686 1303 4 254 686 17 7 % P1 fresh 8 19 215 98                                                                                                                                                                                     | P1 frozen<br>13<br>22<br>367<br>1827<br>1217<br>4<br>245<br>652<br>16<br>16<br>P1 frozen<br>P1 frozen<br>18<br>140<br>73 | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>1967<br>4<br>798<br>1309<br>35<br>4<br>37<br>49<br>P2 fresh<br>37<br>51<br>114<br>245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P2 frozen 13 6 37 12 624 389 2058 3 735 1280 40 P2 frozen 27 68 144 224                                                                  | P3 fresh<br>5<br>8<br>2<br>11<br>318<br>136<br>1174<br>1<br>397<br>2<br>500<br>22<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8                     | P3 frozen<br>3<br>236<br>138<br>1094<br>241<br>740<br>22<br>8<br>P3 frozen<br>4<br>22<br>38<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PS<br>me<br>(<br>5<br>5<br>1<br>1<br>1<br>4<br>3<br>22<br>14<br>4<br>3<br>10<br>2<br>9<br>5<br>me<br>10<br>2<br>9<br>5<br>me                                                                                                                                                                                              |
| 127435         Podocan (PODN)         1         2         1         2         8         6           Proteoglycans           Sum of PSM means         546         %         7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Collagens<br>INTREZ GENE<br>Accession<br>1277<br>1282<br>1282<br>1291<br>1292<br>1293<br>1295<br>1303<br>7373<br>80781<br>Proteogly<br>INTREZ GENE<br>Accession<br>1634<br>2331<br>3339<br>4060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XII alpha 1 ch<br>Collagen type XII alpha 1 ch<br>Collagen type XIV alpha 1 ch<br>Collagen type XVIII alpha 1 ch<br>Ch<br>Collagen type XVIII alpha 1 ch<br>Ch<br>Ch<br>Ch<br>C                        | Protein name         Protein name         (COL1A1)       (COL1A2)         in (COL4A2)       in (COL6A1)         in (COL6A2)       in (COL6A2)         in (COL1A1)       in (COL6A3)         nain (COL1A1)       in (COL6A3)         in (COL1A1)       in (COL1A1)         in (COL1A1)       in (COL1A1)         sin (COL18A1)       Sum of PSM means         Protein name         an 2 (HSPG2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Glycoj<br>1104<br>Coll<br>3664 | agens    | %           P1 fresh           1           2           28           22           462           196           1303           4           254           686           17           %           P1 fresh           8           19           215           98           155 | P1 frozen<br>13<br>22<br>367<br>182<br>1217<br>4<br>245<br>652<br>16<br>16<br>P1 frozen<br>18<br>140<br>73<br>103        | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>1967<br>4<br>1967<br>4<br>1967<br>4<br>1967<br>4<br>1967<br>4<br>1967<br>4<br>1967<br>4<br>9<br>35<br>109<br>35<br>109<br>35<br>109<br>35<br>109<br>35<br>109<br>109<br>109<br>109<br>109<br>109<br>109<br>109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3<br>735<br>1280<br>40<br>40<br>P2 frozen<br>27<br>68<br>144<br>224<br>341     | P3 fresh<br>5<br>8<br>2<br>111<br>3186<br>1174<br>1<br>1500<br>22<br>7<br>5<br>5<br>00<br>22<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>186<br>8<br>168 | P3 frozen<br>4<br>3<br>236<br>138<br>1094<br>241<br>740<br>221<br>740<br>221<br>8<br>7<br>8<br>7<br>8<br>108<br>221<br>38<br>108<br>220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PS<br>me<br>(<br>5<br>11<br>1<br>1<br>4<br>3<br>22<br>2<br>14<br>10<br>2<br>2<br>14<br>10<br>2<br>2<br>14<br>10<br>2<br>2<br>14<br>10<br>2<br>14<br>10<br>2<br>14<br>10<br>2<br>14<br>10<br>2<br>14<br>10<br>2<br>14<br>11<br>10<br>2<br>14<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |
| Proteoglycans<br>Sum of PSM means 546 % 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1291<br>1292<br>1293<br>1295<br>1303<br>7373<br>80781<br>Yroteogly<br>NTREZ GENE<br>Accession<br>1634<br>2331<br>3339<br>4060<br>4969<br>5549                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 2 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XVIII alpha 1 chai<br>Chai<br>Collagen type XVIII alpha 1 chai<br>Chai<br>Collagen type XVIII                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glycoj<br>1104<br>Coll<br>3664 | agens    | % P1 fresh 1 2 28 22 462 190 1303 4 254 6 17 % P1 fresh 8 19 9 1 5 2                                                                                                                                                                                                    | P1 frozen  13 22 367 182 21217 4 245 652 16 16 P1 frozen  P1 frozen  18 140 73 103                                       | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>7<br>8<br>1967<br>4<br>7<br>3<br>109<br>7<br>4<br>9<br>7<br>8<br>4<br>9<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | P2 frozen 13 6 37 12 624 389 2058 3 735 1280 40 P2 frozen 27 68 144 224 341 6                                                            | P3 fresh<br>5<br>8<br>2<br>111<br>318<br>186<br>1174<br>1<br>397<br>1500<br>22<br>2<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                             | P3 frozen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PS<br>me<br>(<br>1<br>1<br>1<br>4<br>3<br>2<br>2<br>1<br>4<br>4<br>4<br>10<br>2<br>2<br>9<br>5<br>me<br>11<br>3<br>3<br>11<br>1<br>1<br>2<br>2<br>3<br>11<br>1<br>2<br>2<br>3<br>3<br>11<br>1<br>2<br>2<br>2<br>3<br>3<br>11<br>1<br>1<br>2<br>2<br>2<br>1<br>1<br>1<br>1                                                 |
| Proteoglycans<br>Sum of PSM means 546 % 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1291<br>1292<br>1293<br>1295<br>1303<br>7373<br>80781<br>Yroteogly<br>NTREZ GENE<br>Accession<br>1634<br>2331<br>3339<br>1634<br>2331<br>3339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VII alpha 1 chai<br>Collagen type VII alpha 1 chai<br>Collagen type VII alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XVIII alpha 1 chai<br>Col                                             | Protein name         I (COL1A1)         (COL1A2)         in (COL4A1)         in (COL6A2)         in (COL6A3)         nain (COL12A1)         ain (COL12A1)         ain (COL12A1)         ain (COL12A1)         ain (COL12A1)         ain (COL12A1)         sin (COL12A1)         sin (COL12A1)         chain (COL12A1)         chain (COL12A1)         chain (COL18A1)         Chain (COL18A1)         Protein name         an 2 (HSPG2)         I leucine rich repeat protein (PRELF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Glyco<br>1104<br>Coll<br>3664  | agens    | % P1 fresh 1 28 22 462 190 303 4 254 686 1303 4 254 686 17 7 % P1 fresh 8 19 215 98 155 2 1                                                                                                                                                                             | P1 frozen<br>13 22 367 182 245 652 16 16 16 P1 frozen<br>P1 frozen<br>18 140 73 103                                      | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>1967<br>4<br>798<br>1967<br>4<br>798<br>309<br>35<br>35<br>4<br>9<br>4<br>788<br>35<br>4<br>9<br>7<br>8<br>4<br>7<br>8<br>8<br>7<br>8<br>8<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P2 frozen 13 6 37 12 624 389 2058 3 735 1280 40                                                                                          | P3 fresh 5 8 2 11 318 186 11174 1 397 1500 22 P3 fresh 17 28 186 168 38                                                                                                                         | P3 frozen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PS<br>me<br>1<br>1<br>1<br>1<br>4<br>4<br>4<br>1<br>0<br>2<br>2<br>9<br>9<br>9<br>9<br>9<br>9<br>1<br>1<br>3<br>3<br>1<br>1<br>1<br>2<br>2                                                                                                                                                                                |
| Sum of PSM means 546 % 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1284<br>1291<br>1292<br>1293<br>1295<br>1303<br>7373<br>80781<br>NTREZ GENE<br>Accession<br>1634<br>2331<br>3339<br>4060<br>4969<br>5549<br>127435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VII alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collage                                    | Protein name  Protein name  (COL1A1) (COL1A2) in (COL4A2) in (COL4A2) in (COL6A3) in (COL6A3) in (COL6A3) in (COL6A3) in (COL12A1) ain (COL14A1) thain (COL18A1)  Protein name  Protein name  n 2 (HSPG2)  I leucine rich repeat protein (PRELF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Glycoj<br>1104<br>Coll<br>3664 | agens    | % P1 fresh 1 28 22 462 1303 4 24 686 1303 4 254 686 17 7 % P1 fresh 8 19 215 98 155 2 1                                                                                                                                                                                 | P1 frozen<br>13 22 367 182 7 182 7 4 245 652 16 16 7 18 140 7 18 140 7 3 103 2                                           | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>798<br>4<br>798<br>1309<br>35<br>35<br>49<br>798<br>49<br>798<br>49<br>798<br>49<br>798<br>49<br>798<br>49<br>798<br>49<br>798<br>798<br>798<br>798<br>798<br>798<br>798<br>79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P2 frozen<br>13<br>6<br>37<br>12<br>624<br>389<br>2058<br>3<br>735<br>1280<br>40<br>P2 frozen<br>27<br>68<br>144<br>224<br>341<br>6<br>2 | P3 fresh 5 8 2 11 318 136 174 17 397 1500 22  P3 fresh 17 28 38 186 168 3 8                                                                                                                     | P3 frozen<br>3<br>236<br>138<br>1094<br>241<br>740<br>22<br>241<br>740<br>22<br>38<br>4<br>22<br>38<br>108<br>220<br>2<br>2<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PS<br>mee<br>(<br>9<br>11<br>14<br>22<br>14<br>4<br>4<br>10<br>2<br>2<br>14<br>10<br>2<br>2<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ollagens<br>NTREZ GENE<br>Accession<br>1277<br>1278<br>1282<br>1291<br>1292<br>1293<br>1295<br>1303<br>7373<br>80781<br>NTREZ GENE<br>Accession<br>1634<br>2331<br>3339<br>1634<br>2331<br>3339<br>1634<br>2331<br>3339<br>1634<br>2331<br>3339<br>1634<br>2331<br>3339<br>1634<br>2331<br>1634<br>2331<br>1634<br>2331<br>1634<br>2331<br>1634<br>2331<br>1634<br>2331<br>1635<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1635<br>1634<br>1635<br>1634<br>1634<br>1635<br>1634<br>1634<br>1634<br>1634<br>1634<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1634<br>1635<br>1635<br>1635<br>1635<br>1636<br>1636<br>1637<br>1636<br>1637<br>1637<br>1636<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>1637<br>163 | Collagen type I alpha 1 chain<br>Collagen type I alpha 2 chain<br>Collagen type IV alpha 1 chai<br>Collagen type IV alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VI alpha 1 chai<br>Collagen type VII alpha 1 chai<br>Collagen type VII alpha 1 chai<br>Collagen type XII alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XIV alpha 1 chai<br>Collagen type XVIII alpha 1 chai<br>Col                                             | Protein name         Protein name         i (COL1A1)         i (COL1A2)         in (COL4A2)         in (COL6A1)         in (COL6A2)         in (COL6A3)         nain (COL12A1)         ain (COL12A1)         ain (COL12A1)         ain (COL12A1)         sum of PSM means                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Glycop<br>1104<br>Coll<br>3664 | agens    | <ul> <li>%</li> <li>P1 fresh</li> <li>1</li> <li>2</li> <li>28</li> <li>462</li> <li>1303</li> <li>4</li> <li>254</li> <li>686</li> <li>137</li> <li>7</li> <li>%</li> <li>P1 fresh</li> <li>8</li> <li>19</li> <li>2155</li> <li>2</li> <li>1</li> </ul>               | P1 frozen<br>13 22 367 182 367 182 1217 4 245 652 16 16 16 P1 frozen P1 frozen 18 140 73 103 2                           | 15<br>P2 fresh<br>3<br>4<br>11<br>573<br>244<br>1309<br>35<br>35<br>49<br>49<br>8<br>49<br>8<br>49<br>8<br>8<br>49<br>8<br>8<br>49<br>8<br>8<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | P2 frozen 13 6 37 12 624 389 2058 3 735 1280 40                                                                                          | P3 fresh 5 8 2 11 318 186 17 174 1 397 1500 22  P3 fresh 17 28 38 186 168 3 8                                                                                                                   | P3 frozen<br>3<br>236<br>138<br>1094<br>241<br>740<br>22<br>241<br>740<br>22<br>8<br>8<br>1094<br>22<br>1094<br>22<br>1094<br>22<br>1094<br>22<br>1094<br>22<br>1094<br>22<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>1094<br>10 | P:<br>ma<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14                                                                                                                                                                                                                                    |

Fig. 3. **Ovarian matrisome proteins.** Core matrisome proteins (glycoproteins, collagens and proteoglycans) and matrisome-associated proteins (ECM-affiliated proteins, ECM regulators and secreted factors) detected with a score  $\geq$ 10 in at least one sample and identified with at least 2 unique peptides in 3 or more samples were taken into consideration. The color code represents protein abundance among fresh and frozen ovarian tissues according to their PSMs. The figure explains how percentages in Fig. 4 were estimated to illustrate matrisome protein distribution in human ovarian tissue (e.g. glycoproteins (%) = (sum of PSM means in detected glycoproteins/total PSM mean sum of all categories)\*100 = (1104/7423)\*100  $\approx$  15%).

# ECM-affiliated proteins

ECM regulators

| ENTREZ GENE | Protein name                                    |     | P1 frozen | P2 fresh | P2 frozen | P3 fresh   | P3 frozen | PSM  |
|-------------|-------------------------------------------------|-----|-----------|----------|-----------|------------|-----------|------|
| Accession   |                                                 |     |           |          |           | 10 11 6511 |           | mean |
| 3263        | Hemopexin (HPX)                                 | 40  | 24        | 173      | 173       | 87         | 33        | 88   |
| 3956        | Galectin 1 (LGALS1)                             | 95  | 31        | 257      | 301       | 265        | 177       | 188  |
| 3958        | Galectin 3 (LGALS3)                             | 13  | 16        | 31       | 25        | 14         | 16        | 19   |
| 7123        | C-type lectin domain family 3 member B (CLEC3B) | 8   | 3         | 8        | 9         | 10         | 3         | 7    |
| 23654       | Plexin B2 (PLXNB2)                              | 1   |           | 4        | 6         | 2          | 3         | 3    |
| 301         | Annexin A1 (ANXA1)                              | 58  | 72        | 149      | 161       | 58         | 123       | 104  |
| 302         | Annexin A2 (ANXA2)                              | 302 | 250       | 308      | 440       | 284        | 483       | 345  |
| 307         | Annexin A4 (ANXA4)                              | 33  | 41        | 43       | 42        | 52         | 59        | 45   |
| 308         | Annexin A5 (ANXA5)                              | 200 | 207       | 459      | 430       | 385        | 379       | 343  |
| 309         | Annexin A6 (ANXA6)                              | 123 | 123       | 206      | 202       | 184        | 303       | 190  |
| UniProt     |                                                 |     |           |          |           |            |           |      |
| accession   |                                                 |     |           |          |           |            |           |      |
| B4DT77      | Annexin 7 (ANXA7)                               | 4   | 6         | 8        | 15        | 14         | 13        | 10   |
| B4DVE7      | Annexin 11 (ANXA11)                             | 6   | 15        | 14       | 18        | 12         | 17        | 14   |



| ENTREZ GENE              |                                  |                                       |   | P1 fresh | P1 frozen | P2 fresh  | P2 frozen  | P3 fresh  | P3 frozen  | PSM       |             |
|--------------------------|----------------------------------|---------------------------------------|---|----------|-----------|-----------|------------|-----------|------------|-----------|-------------|
| Accession                | rotenname                        |                                       |   | FINESH   | FINOZEN   | F2 ITESI  | FZ IIOZEII | FSTIEST   | F3 1102E11 | mean      |             |
| 2                        | Alpha-macroglobulin (A2M)        |                                       |   | 75       | 46        | 49        | 28         | 87        | 40         | 54        |             |
| 183                      | Angiotensinogen (AGT)            |                                       |   |          | 3         | 3         | 19         | 9         | 8          | 1         | 7           |
| 1476                     | Cystatin B (CSTB)                |                                       |   |          | 9         | 3         | 16         | 11        | 11         | 18        | 11          |
| 3273                     | Histidine-rich glycoprotein (HR  | RG)                                   |   |          | 6         | 10        | 24         | 11        | 9          | 19        | 13          |
| 3697                     | Inter-alpha-trypsin inhibitor h  | eavy chain 1 (ITIH1)                  |   |          | 3         | 1         | 9          | 4         | 7          | 3         | 5           |
| 3698                     | Inter-alpha-trypsin inhibitor h  | eavy chain 2 (ITIH2)                  |   |          | 3         | 2         | 3          | 2         | 1          | 2         | 2           |
| 3700                     | Inter-alpha-trypsin inhibitor he | eavy chain family member 4 (ITIH4)    | ) |          | 8         | 4         | 29         | 20        | 19         | 5         | 14          |
| 5265                     | Serpin family A member 1 (SEF    | RPINA1)                               |   |          | 168       | 76        | 298        | 213       | 344        | 249       | 225         |
| 12                       | Serpin family A member 3 (SEF    | RPINA3)                               |   |          | 8         | 13        | 30         | 28        | 5          | 3         | 15          |
| 5267                     | Serpin family A member 4 (SEF    | RPINA4)                               |   |          |           | 2         | 4          | 2         | 2          | 1         | 2           |
| 1992                     | Serpin family B member 1 (SEF    | RPINB1)                               |   |          | 6         | 1         | 24         | 15        | 14         | 13        | 12          |
| 5269                     | Serpin family B member 6 (SEF    | RPINB6)                               |   |          | 6         | 5         | 77         | 59        | 126        | 43        | 53          |
| 462                      | Serpin family C member 1 (SEF    | RPINC1)                               |   |          | 165       | 113       | 221        | 147       | 184        | 84        | 152         |
| 3053                     | Serpin family D member 1 (SEF    | RPIND1)                               |   |          | 7         | 4         | 21         | 11        | 2          | 2         | 8           |
| 5270                     | Serpin family E member 2 (SER    | RPINE2)                               |   |          | 7         |           | 8          | 11        | 6          | 1         | 7           |
| 5176                     | Serpin family F member 1 (SER    | RPINF1)                               |   |          | 19        | 10        | 47         | 36        | 20         | 14        | 24          |
| 5345                     | Serpin family F member 2 (SER    | RPINF2)                               |   |          | 1         | 2         | 5          | 10        | 2          |           | 4           |
| 871                      | Serpin family H member 1 (SEF    | RPINH1)                               |   |          | 33        | 28        | 28         | 35        | 33         | 47        | 34          |
| 5340                     | Plasminogen (PLG)                |                                       |   |          | 8         | 2         | 7          | 9         | 10         | 5         | 7           |
| 1508                     | Cathepsin B (CTSB)               |                                       |   |          | 5         | 3         | 3          | 1         |            |           | 3           |
| 1509                     | Cathepsin D (CTSD)               |                                       |   |          | 20        | 8         | 18         | 20        | 28         | 22        | 19          |
| 259                      | Alpha-1-microglobulin/bikunir    | n precursor (AMBP)                    |   |          | 1         | 4         | 66         | 22        | 53         | 27        | 29          |
| UniProt                  |                                  |                                       |   |          |           |           |            |           |            |           |             |
| accession                |                                  |                                       |   |          |           |           |            |           |            |           |             |
| B4E1H2                   | Plasma protease C1 inhibitor (   | SERPING1)                             |   |          | 13        | 12        | 31         | 20        | 6          | 7         | 15          |
|                          | · · · · , · · · ·                | · · · · · · · · · · · · · · · · · · · |   |          |           |           |            |           |            |           |             |
|                          |                                  |                                       |   |          |           |           |            |           |            |           |             |
|                          | ECMI regulators                  |                                       |   |          |           |           |            |           |            |           |             |
|                          | Sum of PSM means 715             |                                       |   |          |           |           | 10         |           |            |           |             |
| Secreted f               | actors                           |                                       |   |          |           |           |            |           |            |           |             |
| ENTREZ GENE<br>Accession |                                  | Protein name                          |   |          | P1 fresh  | P1 frozen | P2 fresh   | P2 frozen | P3 fresh   | P3 frozen | PSM<br>mean |

| A         | Protein name                               | P1 fresh | P1 frozen | P2 fresh | P2 frozen | P3 fresh | P3 frozen | FJIVI |
|-----------|--------------------------------------------|----------|-----------|----------|-----------|----------|-----------|-------|
| Accession |                                            |          |           |          |           |          |           | mean  |
| 3054      | Host cell factor C1 (HCFC1)                | 2        |           | 8        | 10        | 4        | 3         | 5     |
| 6277      | S100 calcium binding protein A6 (S100A6)   | 4        | 1         | 14       | 12        | 5        |           | 7     |
| 6282      | S100 calcium binding protein A11 (S100A11) | 12       | 5         | 29       | 31        | 35       | 6         | 20    |
| 6284      | S100 calcium binding protein A13 (S100A13) | 2        |           | 5        | 10        | 11       | 9         | 7     |
|           |                                            |          |           |          |           |          |           |       |
|           | Constant Contract                          |          |           |          |           |          |           |       |
|           | Secreted factors                           |          |           |          |           |          |           |       |
|           |                                            |          |           |          |           |          |           |       |





may connect cells to elastic fibers by providing them with specific cell adhesion features (21); Fibrillin-1 has been shown to provide long-term force-bearing structural support to connective tissues and contains calcium-binding EGF-like domains, integrin-binding Arg-Gly-Asp (RGD) sequences, as well as heparin-binding domains capable of binding cell surface HSPGs (22). The presence of such structural motifs suggests that fibrillin may direct not only cell signaling, but also assembly of elastic microfibers.

Proteins related to meiosis and follicular endowment were also evaluated, namely PCNA and  $\beta$ -catenin as a core molecule of the WNT/ $\beta$ -catenin pathway and major component of cellular junctions involved in cellular communication and signal transduction. Immunohistochemical



FIG. 4. Pie chart of matrisome protein categories.

analysis revealed PCNA-positive cells at the nuclear level in both fresh and frozen samples, as it showed positive  $\beta$ -catenin staining localized in the cell cytoplasm and junctions.

Because glycosaminoglycans are key components of the ECM, ensuring its homeostasis and growth factor sequestering by proteoglycans, their presence was evaluated by alcian blue staining. It revealed their diffuse distribution throughout the ovarian cortex of all patients (Fig. 7).

Western Blotting—Western blotting confirmed detection of two ECM proteoglycans; OGN and IGFALS, in the same samples analyzed by MS (Fig. 8). This is the first time that the presence of these proteins has been reported in human ovarian cortex.

Insulin-like growth factor-binding proteins such as IGFALS are known to play an important role as modulators of insulinlike growth factor (IGF) activity thanks to their high affinity (23). Indeed, they can stimulate or inhibit IGF signaling depending on circumstances by either concentrating IGF close to its receptors or, conversely, hampering sterically their binding (23). This process is of a high importance given the involvement of IGF in follicle growth regulation, selection, atresia, cellular differentiation, steroidogenesis, oocyte maturation, and cumulus expansion evidenced in animal models and humans (24–25).

Western blotting results highlighted the abundance of OGN in ovarian tissue. This protein belongs to a small leucine-rich proteoglycan (SLRP) family, a collagen-associated class of proteins that have an impact on collagen fibrillogenesis and an indirect effect on cell growth. This protein is mainly associated with bone formation and negative regulation of smooth muscle proliferation (26), but its involvement in ovarian tissue is still unknown.

### DISCUSSION

The present study confidently identified 1508 proteins in fresh and frozen human ovarian cortex by 2D-LC/MS. Using bioinformatic tools and data mining analysis, we gained a deeper understanding of the function, cellular distribution and signaling role of these proteins. Although we do not yet fully discern the implication of all of them in the ovarian function, we report the most complete proteomic characterization of human ovarian cortex made to date, including a detailed description of the human ovarian ECM composition, which will lead to a better understanding of the follicle environment.

The technique described can be broadly applied to different tissues of unknown composition to provide a basic understanding of their most abundant proteins and ECM characteristics in one fraction analysis without ECM enrichment. Tissue digestion with Liberase before sample preparation for MS enabled solubilization of major fibrous proteins and thus facilitated analysis of attached molecules and characterization of the ECM. An enzymatic tissue digestion method was chosen because of the high insolubility of ECM proteins, even in strong detergents, which might hinder their detection by MS. Moreover, enzymatic digestion led to rupture of some cellular membranes, which yielded further information on intracellular proteins.

A large panel of proteins was identified within our data set, some of which had only been demonstrated *in vitro* or in animal models, but never in humans. We therefore turned to gene ontology and pathway analysis to better understand their biological role in ovarian tissue, as well as their interactions.

Fundamental cellular biological processes and several oocyte-related events were detected, namely cell communication pathways involving ECM-receptor interaction, focal adhesion and gap junctions, emphasizing the primordial functional importance of ovarian cell interaction and communication. Focal adhesion proteins made up the second largest group. Proteins included in this category were considered important for ovarian function, because focal adhesion is a key means by which cells sense and respond to the extracellular environment. Conformation of these proteins can vary in response to physical forces, and hence their function (27). This fact can be correlated with the importance of biomechanical regulation mechanisms within the ovary and the impact of the mechanical properties of scaffolds used in 3D culture on ovarian cell fate in vitro (28-29). Thus, greater awareness of ovarian focal adhesion proteins might provide more insights into ovarian cell communication and implication in reproduction. Gap junction channels, another detected protein category, allow direct cell-cell communication and diffusion of fundamental nutrients and chemical cues essential for follicular development (30). Their assembly is promoted by the WNT/*β*-catenin pathway of gap junction proteins, wherein B-catenin, a protein documented in our MS data and immu-



Fig. 5. Fresh and frozen sample comparison showing the overlap of shared and unique proteins among analyzed samples from the three patients. *A*, Overlap of fresh samples. *B*, Overlap of frozen samples. *C*, Overlap of all fresh and frozen samples. The comparison was made based on the 1508 confidently identified proteins.

nohistochemical results, plays a key role in reproduction by influencing estradiol synthesis and adversely affecting follicular development (31–32) (Fig. 7*D*).

Other pathways of interest were also detected, such as cyclic GMP-protein kinase G (cGMP/PKG) (supplemental Data S1*B*) implicated in oocyte meiotic arrest (33), and the renin-angiotensin system (RAS) that is presumed to regulate oocyte maturation and quality. Up to day, RAS involvement in hormonal regulation remains unclear because of significant differences between species (34). Hence, by means of our data set acquired by MS, we hope to contribute to the elucidation of unexplored proteins in the RAS pathway in the human ovary (supplemental Data S1*C*).

Numerous coagulation- and angiogenesis-related proteins were identified and further elucidated by KEGG pathway analysis, such as coagulation factors (e.g. fibrinogen, prothrombin and plasminogen), as well as those linked to the coagulation and platelet-associated regulatory system (e.g. antithrombin, von Willebrand factor, platelet-activating factor acetylhydrolase IB and serpins), revealing their potential function in reproduction. In 2014, Bódis *et al.* suggested the role of the platelet-associated regulatory system (PARS) in regulating

activity of the hypothalamo-hypophyseal ovarian system and its function in inducing and stimulating follicular and oocyte maturation and steroid hormone secretion in the ovary (35). In the light of recent discoveries, coagulation proteins in the ovary appear to occupy new roles beyond plugging blood leakage that go as far as stem cell awakening in the ovary and ovarian rejuvenation (36–37), clearly requiring further investigation.

Although pro-angiogenic factors have been widely explored in the ovary, mainly vascular endothelial growth factor (VEGF), anti-angiogenic factors are still under-investigated. Among identified growth factors, we report detection of pigment epithelium-derived factor (PEDF), a glycoprotein known to have potent physiologic anti-angiogenic activity that negates VEGF action (38), and thus plays a potential anti-tumoral role (39). PEDF may also function as a gonadal protectant thanks to its anti-inflammatory and anti-oxidative abilities (40-41), which are two important functions in reproduction, considering that oxidative stress and inflammation have been correlated with infertility in women (38). Moreover, high levels of PEDF secreted before ovulation may induce apoptosis in ovarian sur-



Fig. 6. Comparison of matrisome proteins in fresh and frozen-thawed ovarian cortex samples. *A*, Representation of the average abundance (PSMs) of each matrisome protein in both fresh and cryopreserved samples. *B*, Representation of  $\log(PSM \text{ fresh}+1) - \log(PSM \text{ frozen}+1)$  per protein in terms of  $\log(PSM+1)$  mean in both samples as an abundance indicator. The extent of point deviation from the Y = 0 axis translates the difference in protein presence between fresh and frozen samples.



Fig. 7. Immunohistochemical staining in fresh and cryopreserved ovarian cortex. *A*, Desmin and  $\alpha$ SMA were chosen as muscle contraction markers in the ovary. Emilin-1 and fibrillin-1, both ECM proteins, were selected as elasticity markers. *B*, Collagen VI, the dominant collagen type in ovarian cortex as demonstrated by MS, was analyzed to confirm proteomic results and compared with collagen IV, the most widely characterized collagen type in ovarian cortex in the literature. *C*, GAGs were stained by alcian blue at pH = 2.5 to identify carboxylated and sulfated proteoglycans. *D*, PCNA and  $\beta$ -catenin staining in ovarian cortex are essential proteins for meiosis and cell proliferation.



Fig. 8. Western blotting for MS result confirmation. Some proteins were detected for the first time in ovarian cortex during this study by MS, namely OGN and IGFALS. Western blotting was used to confirm their detection.

face epithelium cells surrounding the follicle to facilitate release of oocyte (42).

Other rarely explored proteins in human ovaries were documented in our data set, namely 14-3-3 protein isoforms delta and epsilon, which are among the top 50 most abundant proteins. 14-3-3 proteins are known to be central mediators modifying cell-signaling processes, including cell cycle regulation and apoptosis (43–46). It has been suggested that these proteins are involved, at least in the *Xenopus* genus, in maintaining prophase I arrest in germinal vesicle-intact oocytes by sequestering the key phosphatase, in meiosis resumption M-phase inducer phosphatase 2 (CDC25B), in an inactive state (47).

In view of the lack of knowledge of the follicular environment, particularly ECM proteins, this study provides the most comprehensive description available of healthy human ovarian ECM. ECM protein recognition in raw MS data was achieved by comparison of confidently detected proteins with the Matrisome Project data set (13), an in silico identified ECM protein set, founded on the characteristic domain-based organization of ECM proteins (48). Hence, we were able to define not only the ovarian ECM, but also the matrisome: an extended definition of the ECM and associated proteins. The dominant collagen type in the ovaries was revealed to be collagen VI, which we showed to be ubiquitously expressed throughout the ECM by immunohistochemistry. It is a basement membrane-anchoring molecule that interacts with collagen IV and may have additional cytoprotective and regulatory functions (18). In addition, it has been suggested that type VI collagen microfibrils are resistant to MMPs but are susceptible to degradation by serine proteases, which are enzymes secreted by granulocytes and neutrophils and known to be present in the ovary during the inflammatory phase preceding ovulation (49).

Within the category of glycoproteins, we identified laminin, fibrillin and thrombospondin, fundamental proteins of the basement membrane, of key importance for cellular attachment, cell proliferation and ECM organization. Most importantly, however, they share EGF-like intrinsic domains, which might bind to EGF receptors and modulate its signaling following their release by ECM proteolysis. Within the category of proteoglycans, perlecan (HSPG2) was of interest. Like many proteoglycans, HSPG2 is able to bind growth factors and cytokines and sequester them in the ECM and may be crucially important in the action of basic fibroblast growth factor (bFGF), a key growth factor with pro-angiogenic and anti-apoptotic effects in the ovary. Localized in the basement membrane, HSPG2 provides a barrier, which is both size- and charge-selective, and promotes cell adhesion, endothelial cell growth and regeneration. In the ovary, it has been identified as a major estrogen-binding protein in follicular fluid (50).

Another proteoglycan that was unexpectedly detected is OGN, also known as osteoglycin. Its down-regulation in vascular smooth muscle cells results in an increased cell proliferation (51), which can provide insights into possible vascular stimulation of the ovarian tissue grafting site by controlling OGN expression.

In osteoblasts, bone morphogenetic protein 2 (BMP-2) increases OGN expression, whereas in the ovary, the same protein is implicated in primordial follicle assembly during fetal life (52), which might suggest the possible involvement of OGN in ovarian fetal remodeling and follicular assembly under the action of BMP-2. Further research is nevertheless needed to elucidate its function in the ovary, especially in adult life.

In the ovary, enzymatic ECM degradation is required to allow activated follicle expansion. However, to protect surrounding cells from proteolysis, different protease inhibitors appear to be secreted in the ovary, such as protein AMBP, alpha-2-macroglobulin and serpins. The latter is the most widely detected ECM regulator protein family and its expression is closely related to ovarian function (53). Indeed, folliculogenesis stage-specific expression of serpins seems to participate in the growth and atresia of follicles (54), as it may control ECM remodeling (55).

Most of ECM-affiliated proteins have seldom been studied, especially in the human ovary, where we detected galectin-1 and galectin-3. Galectins are a family of  $\beta$ -galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. In 2004, Walzel H et al. demonstrated the inhibitory effect of galectin-1 on the steroidogenic activity of granulosa cells, interfering with hormone-receptor interaction and resulting in decreased responses to FSH stimulation in pigs (56). Although galectin-3 has similar functions to galectin-1, it has been associated with loss of progesterone synthesis in the mouse ovary, showing increased presence in atretic preantral follicles and the later stages of luteolysis (57). This protein been described in a variety of tissues, but not explicitly in healthy human ovarian cortex. It plays a role in diverse biological events, such as embryogenesis, angiogenesis, adhesion, cellular proliferation, apoptosis and modulation of immunity and inflammatory processes (58). Overexpression of both galectins is related to ovarian carcinoma; therefore, unraveling the regulatory mechanisms might provide therapeutic solutions.

The third category of matrisome-associated proteins includes ECM-secreted factors. Proteins in this group were the least abundant, as expected, but several S100 proteins emerged as the most abundant protein type in this category. In fact, binding of calcium to the S100 protein causes structural rearrangement, exposing a target-binding surface. Target-binding results in a range of responses, from inflammation (S100A13) and cytoskeletal reorganization (S100A10), to cell growth control (S100A9) and tumor suppression (59–60). However, little is known about the action of these calciumbinding proteins in the ovary.

To our knowledge, this is the first time that fresh human ovarian cortex has been analyzed by MS and compared with frozen tissue cryopreserved using the protocol that has so far generated 13 live births after transplantation in our hospital. This comparison demonstrates the suitability of cryopreserved tissue to accurately represent the proteomic composition of fresh tissue, proving that it can be used to conduct more extended MS analyses.

In conclusion, our study provides an accurate first draft map of human ovarian cortex, with identification of its ECM proteins. It represents the first step in human ovary characterization, essential for development of a biomimetic artificial ovary and greater understanding of fertility in women.

Acknowledgments—We thank Olivier Van Kerk and Gaëtan Herinckx for their technical assistance, and Lieven Desmet for his advice on biostatistical evaluation. We also thank Mira Hryniuk, BA, for reviewing the English language of the manuscript.

#### DATA AVAILABILITY

Raw MS proteomic data were deposited in the Proteome-Xchange Consortium database via the PRIDE partner repository with the data set identifier PXD008183 (https://www. ebi.ac.uk/pride/archive/projects/PXD008183).

 $^{\star}$  This study was supported by grants from the Fonds National de la Recherche Scientifique de Belgique (FNRS) (C. A. Amorim is a Research Associate, FRS - FNRS; grant M 4/1/2/5 awarded to C. A. Amorim; grant 5/4/150/5 awarded to M.-M. Dolmans).

S This article contains supplemental material.

|| To whom correspondence should be addressed: Pôle de Recherche en Gynécologie, Université Catholique de Louvain, 52 Avenue Mounier, Bte. B1.52.02, 1200 Brussels, Belgium. Tel.: +322-764-5237; E-mail: christiani.amorim@uclouvain.be.

Authors' mailing addresses: Emna Ouni: emna.ouni@uclouvain.be; Didier Vertommen: didier.vertommen@uclouvain.be; Maria Costanza Chiti: maria.chiti@uclouvain.be; Marie-Madeleine Dolmans: mariemadeleine.dolmans@uclouvain.be; Christiani A. Amorim: christiani. amorim@uclouvain.be.

#### REFERENCES

1. World report on disability. (2011) Lancet, 377, 1977

2. Vogel, C., and Marcotte, E. M. (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. *Nat. Rev. Genet.* **13**, 227–232

- Ghaemmaghami, S., Huh, W. K., Bower, K., Howson, R. W., Belle, A., Dephoure, N., O'Shea, E. K., and Weissman, J. S. (2003) Global analysis of protein expression in yeast. *Nature* 425, 737–741
- Jarkovska, K., Martinkova, J., Liskova, L., Halada, P., Moos, J., Rezabek, K., Gadher, S. J., and Kovarova, H. (2010) Proteome mining of human follicular fluid reveals a crucial role of complement cascade and key biological pathways in women undergoing in vitro fertilization. *J. Proteome Res.* 9, 1289–1301
- Ambekar, A. S., Kelkar, D. S., Pinto, S. M., Sharma, R., Hinduja, I., Zaveri, K., Pandey, A., Prasad, T. S., Gowda, H., and Mukherjee, S. (2015) Proteomics of follicular fluid from women with polycystic ovary syndrome suggests molecular defects in follicular development. *J. Clin. Endocrinol. Metab.* **100**, 744–753
- Angelucci, S., Ciavardelli, D., Di Giuseppe, F., Eleuterio, E., Sulpizio, M., Tiboni, G. M., Giampietro, F., Palumbo, P., and Di Ilio, C. (2006) Proteome analysis of human follicular fluid. *Biochim. Biophys. Acta.* 1764, 1775–1785
- He, H., Teng, H., Zhou, T., Guo, Y., Wang, G., Lin, M., Sun, Y., Si, W., Zhou, Z., Guo, X., and Huo, R. (2014) Unravelling the proteome of adult rhesus monkey ovaries. *Mol. Biosyst.* **10**, 653–662
- Wang, L., Zhu, Y. F., Guo, X. J., Huo, R., Ma, X., Lin, M., Zhou, Z. M., and Sha, J. H. (2005) A two-dimensional electrophoresis reference map of human ovary. *J. Mol. Med.* 83, 812–821
- Heeren, A. M., van Iperen, L., Klootwijk, D. B., de Melo Bernardo, A., Roost, M. S., Gomes Fernandes, M. M., Louwe, L. A., Hilders, C. G., Helmerhorst, F. M., van der Westerlaken, L. A., Chuva de Sousa Lopes, S. M. (2015) Development of the follicular basement membrane during human gametogenesis and early folliculogenesis. *BMC Dev. Biol.* **15**, 4
- Rodgers, R. J., Irving-Rodgers, H. F., and Russell, D. L. (2003) Extracellular matrix of the developing ovarian follicle. *Reproduction* **126**, 415–424
- Vanacker, J., Camboni, A., Dath, C., Van Langendonckt, A., Dolmans, M. M., Donnez, J., Amorim, C. A., (2011) Enzymatic isolation of human primordial and primary ovarian follicles with Liberase DH: protocol for application in a clinical setting. *Fertil. Steril.* 96, 379–383.e3
- Amorim, C. A., Van Langendonckt, A., David, A., Dolmans, M. M., and Donnez, J. (2009) Survival of human pre-antral follicles after cryopreservation of ovarian tissue, follicular isolation and in vitro culture in a calcium alginate matrix. *Hum. Reprod.* 24, 92–99
- Naba, A., Clauser, K. R., Ding, H., Whittaker, C. A., Carr, S. A., and Hynes, R. O. (2016) The extracellular matrix: Tools and insights for the "omics" era. *Matrix Biol* 49, 10–24
- Quintarelli, G., and Dellovo, M. C. (1965) The chemical and histochemical properties of alcian blue. IV. Further studies on the methods for the identification of acid glycosaminoglycans. *Histochemie* 5, 196–209
- Smith, R. M., Woodruff, T. K., and Shea, L. D. (2010) Designing follicleenvironment interactions with biomaterials. *Cancer Treat. Res.* 156, 11–24
- Woodruff, T. K., and Shea, L. D. (2007) The role of the extracellular matrix in ovarian follicle development. *Reprod. Sci.* 14, 6–10
- 17. Irving-Rodgers, H. F., and Rodgers, R. J. (2005) Extracellular matrix in ovarian follicular development and disease. *Cell Tissue Res.* **322**, 89–98
- Cescon, M., Gattazzo, F., Chen, P., Bonaldo, P., and Collagen, V. I. (2015) at a glance. J. Cell Sci. **128**, 3525–3531
- Zhang, H., Apfelroth, S. D., Hu, W., Davis, E. C., Sanguineti, C., Bonadio, J., Mecham, R. P., and Ramirez, F. (1994) Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. J. Cell Biol. 124, 855–863
- The UniProt Consortium. (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169
- Danussi, C., Petrucco, A., Wassermann, B., Pivetta, E., Modica, T. M., Del Bel. (2011) Belluz, L., Colombatti, A., Spessotto, P., EMILIN1-alpha4/ alpha9 integrin interaction inhibits dermal fibroblast and keratinocyte proliferation. *J. Cell Biol.* **195**, 131–145
- Theocharis, A. D., Skandalis, S. S., Gialeli, C., and Karamanos, N. K. (2016) Extracellular matrix structure. *Adv. Drug Deliv. Rev.* 97, 4–27
- Bach, L. A. (2015) Insulin-like growth factor binding proteins 4–6. Best Pract. Res. Clin. Endocrinol. Metab. 29, 713–722
- Sirotkin, A. V. (2011) Growth factors controlling ovarian functions. J. Cell. Physiol. 226, 2222–2225
- Wandji, S. A., Gadsby, J. E., Simmen, F. A., Barber, J. A., and Hammond, J. M. (2000) Porcine ovarian cells express messenger ribonucleic acids for the acid-labile subunit and insulin-like growth factor binding protein-3

during follicular and luteal phases of the estrous cycle. Endocrinology 141, 2638-2647

- Funderburgh, J. L., Funderburgh, M. L., Mann, M. M., Corpuz, L., and Roth, M. R. (2001) Proteoglycan expression during transforming growth factor beta -induced keratocyte-myofibroblast transdifferentiation. *J. Biol. Chem.* 276, 44173–44178
- Wu, C. (2007) Focal adhesion: a focal point in current cell biology and molecular medicine. *Cell Adh. Migr.* 1, 13–18
- Wood, C. D., Vijayvergia, M., Miller, F. H., Carroll, T., Fasanati, C., Shea, L. D., Brinson, L. C., and Woodruff, T. K. (2015) Multi-modal magnetic resonance elastography for noninvasive assessment of ovarian tissue rigidity in vivo. *Acta Biomater.* **13**, 295–300
- West, E. R., Xu, M., Woodruff, T. K., and Shea, L. D. (2007) Physical properties of alginate hydrogels and their effects on in vitro follicle development. *Biomaterials* 28, 4439–4448
- McGinnis, L. K., and Kinsey, W. H. (2015) Role of focal adhesion kinase in oocyte-follicle communication. *Mol. Reprod. Dev.* 82, 90–102
- DaganWells, Z. H. a., Molecular aspects of follicular development. In *Principles and Practice of Fertility Preservation*, Cambridge University Press: Cambridge, 2011; pp 114–128
- Parakh, T. N., Hernandez, J. A., Grammer, J. C., Weck, J., Hunzicker-Dunn, M., Zeleznik, A. J., and Nilson, J. H. (2006) Follicle-stimulating hormone/ cAMP regulation of aromatase gene expression requires beta-catenin. *Proc. Natl. Acad. Sci. U.S.A.* **103**, 12435–12440
- Vaccari, S., and Weeks, J. L. (2009) 2nd; Hsieh, M., Menniti, F. S., Conti, M., Cyclic GMP signaling is involved in the luteinizing hormone-dependent meiotic maturation of mouse oocytes. *Biol. Reprod.* 81, 595–604
- Herr, D., Bekes, I., Wulff, C. (2013) Local Renin-Angiotensin system in the reproductive system. *Front. Endocrinol.* 4, 150
- Bodis, J., Papp, S., Vermes, I., Sulyok, E., Tamas, P., Farkas, B., Zambo, K., Hatzipetros, I., and Kovacs, G. L., (2007) "Platelet-associated regulatory system (PARS)" with particular reference to female reproduction. *J. Ovarian Res.* 7, 55
- Bukovsky, A. (2015) Novel methods of treating ovarian infertility in older and POF women, testicular infertility, and other human functional diseases. *Reprod. Bio.I Endocrinol.* **13**, 10
- Hirota, Y., Osuga, Y., Yoshino, O., Koga, K., Yano, T., Hirata, T., Nose, E., Ayabe, T., Namba, A., Tsutsumi, O., and Taketani, Y. (2003) Possible roles of thrombin-induced activation of protease-activated receptor 1 in human luteinized granulosa cells. *J. Clin. Endocrinol. Metab.* 88, 3952–3957
- Chuderland, D., Ben-Ami, I., Bar-Joseph, H., and Shalgi, R. (2014) Role of pigment epithelium-derived factor in the reproductive system. *Reproduction* 148, R53–R61
- Cheung, L. W., Au, S. C., Cheung, A. N., Ngan, H. Y., Tombran-Tink, J., Auersperg, N., and Wong, A. S. (2006) Pigment epithelium-derived factor is estrogen sensitive and inhibits the growth of human ovarian cancer and ovarian surface epithelial cells. *Endocrinology* 147, 4179–4191
- 40. Yamagishi, S., Nakamura, K., Ueda, S., Kato, S., and Imaizumi, T. (2005) Pigment epithelium-derived factor (PEDF) blocks angiotensin II signaling in endothelial cells via suppression of NADPH oxidase: a novel antioxidative mechanism of PEDF. *Cell Tissue Res.* **320**, 437–445
- Wang, J. J., Zhang, S. X., Mott, R., Chen, Y., Knapp, R. R., Cao, W., and Ma, J. X. (2008) Anti-inflammatory effects of pigment epithelium-derived factor in diabetic nephropathy. *Am. J. Physiol. Renal Physiol.* 294, F1166–F1173
- Auersperg, N., Wong, A. S., Choi, K. C., Kang, S. K., and Leung, P. C. (2001) Ovarian surface epithelium: biology, endocrinology, and pathology. *Endocr. Rev.* 22, 255–288

- Pozuelo Rubio, M., Geraghty, K. M., Wong, B. H., Wood, N. T., Campbell, D. G., Morrice, N., and Mackintosh, C. (2004) 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. *Biochem. J.* 379, 395–408
- 44. Aitken, A. (2006) 14-3-3 proteins: a historic overview. Semin. Cancer Biol. 16, 162–172
- Morrison, D. K. (2009) The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. *Trends Cell Biol.* 19, 16–23
- Freeman, A. K., and Morrison, D. K. (2011) 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression. Semin. Cell Dev. Biol. 22, 681–687
- Duckworth, B. C., Weaver, J. S., and Ruderman, J. V. (2002) G2 arrest in Xenopus oocytes depends on phosphorylation of cdc25 by protein kinase A. *Proc. Natl. Acad. Sci. U.S.A.* 99, 16794–16799
- Naba, A., Clauser, K. R., Hoersch, S., Liu, H., Carr, S. A., Hynes, R. O. (2012) The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. *Mol. Cell. Proteomics* **11**, M111.014647
- Iwahashi, M., Muragaki, Y., Ooshima, A., Nakano, R., and Type, V. I. (2000) collagen expression during growth of human ovarian follicles. *Fertil. Steril.* **74**, 343–347
- Bentov, Y., Jurisicova, A., Kenigsberg, S., and Casper, R. F. (2016) What maintains the high intra-follicular estradiol concentration in pre-ovulatory follicles? *J. Assist. Reprod. Genet.* 33, 85–94
- Deckx, S., Heggermont, W., Carai, P., Rienks, M., Dresselaers, T., Himmelreich, U., van Leeuwen, R., Lommen, W., van der Velden, J., Gonzalez, A., Diez, J., Papageorgiou, A. P., and Heymans, S. (2017) Osteoglycin prevents the development of age-related diastolic dysfunction during pressure overload by reducing cardiac fibrosis and inflammation. *Matrix Biol.* 66, 110–124
- Chakraborty, P., and Roy, S. K. (2015) Bone morphogenetic protein 2 promotes primordial follicle formation in the ovary. Sci. Rep. 5, 12664
- Ny, T., Wahlberg, P., and Brandstrom, I. J. (2002) Matrix remodeling in the ovary: regulation and functional role of the plasminogen activator and matrix metalloproteinase systems. *Mol. Cell. Endocrinol.* 187, 29–38
- Hayashi, K. G., Ushizawa, K., Hosoe, M., and Takahashi, T. (2011) Differential gene expression of serine protease inhibitors in bovine ovarian follicle: possible involvement in follicular growth and atresia. *Reprod. Biol. Endocrinol.* 9, 72
- Law, R. H., Zhang, Q., McGowan, S., Buckle, A. M., Silverman, G. A., Wong, W., Rosado, C. J., Langendorf, C. G., Pike, R. N., Bird, P. I., and Whisstock, J. C. (2006) An overview of the serpin superfamily. *Genome Biol* 7, 216
- Walzel, H., Brock, J., Pohland, R., Vanselow, J., Tomek, W., Schneider, F., and Tiemann, U. (2004) Effects of galectin-1 on regulation of progesterone production in granulosa cells from pig ovaries in vitro. *Glycobiology* 14, 871–881
- Nio, J., and Iwanaga, T. (2007) Galectins in the mouse ovary: concomitant expression of galectin-3 and progesterone degradation enzyme (20alpha-HSD) in the corpus luteum. *J Histochem Cytochem* 55, 423–432
- Devouassoux-Shisheboran, M., Deschildre, C., Mauduit, C., Berger, G., Mejean-Lebreton, F., Bouvier, R., Droz, J. P., Fenichel, P., and Benahmed, M. (2006) Expression of galectin-3 in gonads and gonadal sex cord stromal and germ cell tumors. *Oncol. Rep.* **16**, 335–340
- Donato, R. (2001) S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. *Int. J. Biochem. Cell Biol.* 33, 637–668
- Santamaria-Kisiel, L., Rintala-Dempsey, A. C., and Shaw, G. S. (2006) Calcium-dependent and -independent interactions of the S100 protein family. *Biochem. J.* **396**, 201–214