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Turner syndrome is a genetic disorder that results from an abnormal or missing X chromosome in females
and is typically associated with impairments in visuospatial, but not verbal, information processing. These
visuospatial processing impairments may be exacerbated with increased task demands, such as those engaged
during working memory (WM). While previous studies have examined spatial WM function in Turner syn-
drome, none have directly compared the neural correlates of spatial and verbal WM processes across the
encoding, maintenance and retrieval phases. We employed both neurocognitive assessments and functional
MRI (fMRI) to examine the neural circuitry underlying both verbal and visuospatial WM functions in indivi-
duals with Turner syndrome and normal controls. We furthermore examined the vulnerability of task-related
fMRI activation to distracters presented duringWMmaintenance. Fifteen healthy female volunteers and eight
individuals with Turner syndrome performed a delayed-response WM task during fMRI scanning. Neurocog-
nitive tests revealed impaired performance across both verbal and spatial domains in Turner syndrome, with
greater impairment on tasks with WM demands. Frontoparietal regions in controls showed significantly sus-
tained levels of activation during visuospatial WM. This sustained activation was significantly reduced in the
group with Turner syndrome. Domain-specific activation of temporal regions, in contrast, did not differ
between the two groups. Sensory distraction during the WM maintenance phase did not differentially alter
frontoparietal activation between the two groups. The results reveal impaired frontoparietal circuitry recru-
itment during visuospatial executive processing in Turner syndrome, suggesting a significant role for the
X chromosome in the development of these pathways.
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Introduction
Turner syndrome is a genetic disorder that affects �1 in

2500 live-born girls (Lippe, 1996; Saenger, 1996; Ranke

and Saenger, 2001) and results from an abnormal or missing

second sex (i.e. X) chromosome. Individuals with Turner

syndrome typically demonstrate an uneven profile of

cognitive strengths and weaknesses, with greater difficulties

in visuospatial processing accompanied by relative preserva-

tion of verbal skills (McCauley et al., 1987), suggestive of right

hemisphere syndrome (Rovet, 1995; Buchanan et al., 1998).

Cognitive deficits in Turner syndrome appear to become
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most pronounced under high task demand conditions, such

as working memory (WM), particularly in visuospatial

domains (Buchanan et al., 1998). These deficits may reflect

a selective impairment in the engagement of higher-order

executive control regions, such as the prefrontal cortex,

with parietal regions during processing of visuospatial

information.

Structural imaging studies have provided evidence of pre-

frontal and parietal pathology associated with higher-order

visuospatial processing in Turner syndrome. Reduced parie-

tal, parietal-occipital (Murphy et al., 1993; Reiss et al., 1995)

and prefrontal volumes have been reported in Turner syn-

drome (Ross and Zinn, 1999). Furthermore, impaired per-

formance on higher-order cognitive tasks in individuals

with Turner syndrome, such as arithmetic calculation, has

recently been linked to selective structural pathology in the

intraparietal sulcus (Molko et al., 2003). Functional imaging

studies using PET and functional MRI (fMRI) methods have

also reported reduced activation in parietal regions both at

rest (Clark et al., 1990) and during abnormal engagement

of parietal and prefrontal areas in more challenging tasks

(Tamm et al., 2003; Kesler et al., 2004). Haberecht et al.

(2001) found that subjects with Turner syndrome showed

decreased activation in the dorsolateral prefrontal cortex,

caudate and inferior parietal lobes during the high-load,

but not low-load, condition of a visuospatial WM task.

The consistent abnormalities across functional and struct-

ural neuroimaging studies suggest deficient engagement of

frontoparietal circuits in association with visuospatial execu-

tive dysfunction in Turner syndrome.

In the present study, we employed multiple assessment

strategies to determine the integrity of WM functions in

individuals with Turner syndrome when compared with a

control group. Neurocognitive measurement and fMRI

were used to determine the integrity of visual discrimination,

visuospatial functions and working memory. For the fMRI,

we employed a visuospatial delayed-recognition task to

examine haemodynamic responses during the encoding,

maintenance and retrieval phases of WM, both with and

without distraction. As previous studies have suggested

more significant deficits in visuospatial than verbal proces-

sing domains, we also designed a verbal WM task with a

distracter condition to enable comparison of processing

domains. We hypothesized that subjects with Turner syn-

drome would perform less capably than controls on the

visuospatial tasks across assessment methods. We further

hypothesized that differential activations between the

group with Turner syndrome and controls would be demon-

strated during the visuospatial, but not verbal, WM task, and

that these differences would involve the frontoparietal circui-

try. Finally, given the postulated executive function impair-

ments in Turner syndrome, we predicted that the differences

between the groups would become more pronounced in the

presence of distracters. The distracter condition requires the

ability to suppress task-irrelevant perceptual information

that interferes with WM maintenance.

Material and methods
Subjects
Ten females with monosomic (45,X) Turner syndrome (age

range 14–29 years, mean = 21.4 years, all right-handed) and 15

control female subjects (age range 19–26 years, mean = 22.3 years,

14 right-handed) were recruited for this study. All individuals

with Turner syndrome were recruited through the UNC Pediatric

Endocrinology Turner Syndrome Clinic. All participants with

Turner syndrome had begun oestrogen replacement therapy. Volun-

teers with Turner syndrome were excluded if they had a karyotype

other than 45,X. Individuals with Turner syndrome were also

excluded from participation if they had a history of a significant

neurological disorder or injury, a history of drug or alcohol abuse

disorders, an estimated verbal IQ less than 85 as measured by the

Wechsler Abbreviated Scales of Intelligence (WASI) Vocabulary

Subtest (The Psychological Corporation, 1998) or a major medical

condition not typically associated with Turner syndrome. For the

fMRI, one participant with Turner syndrome was excluded because

of excessive head motion (>5 mm) during the scan, and one addi-

tional participant with Turner syndrome was excluded owing to

artefact from a metal dental appliance. Therefore, eight volunteers

with Turner syndrome participated in the fMRI portion of the

study. All participants included in the fMRI analyses had average

head movement displacement values within one voxel (4 mm in

either direction). All 10 volunteers with Turner syndrome partici-

pated in the neurocognitive assessments, in addition to 10 healthy

controls. Female control subjects were excluded for a history of a

significant neurological disorder or injury, estimated verbal IQ less

than 85, history of treatment for a major psychiatric illness, history

of chronic drug or alcohol abuse or a significant, chronic medical

condition. This study was approved by the Duke University

Medical Center Institutional Review Board and the University of

North Carolina at Chapel Hill Committee on the Protection of

the Rights of Human Subjects. All participants provided informed

consent according to the Declaration of Helsinki.

Stimuli and tasks
Neurocognitive assessment
Visual processing was assessed in all subjects with a battery of

tasks with demonstrated reliability and validity. Tasks were selected

to determine the integrity of visual discrimination functions, visuo-

spatial functions and WM. In addition to providing evidence for

the presence of the characteristic phenotypical presentation in

Turner syndrome, these tasks were selected to provide a clinical

correlate to measures employed in the fMRI paradigm.

Visual discrimination ability was tested using the Benton Face

Recognition Test, which tests the subject’s ability to identify faces,

while visuospatial functions were tested using the Benton Judgment

of Line Orientation Test (Benton et al., 1983). Visuospatial WM

was assessed using the Wechsler Memory Scale—III Spatial Span

Subtest, which consists of a board with nine blocks attached to it

in no clear identifiable pattern (The Psychological Corporation,

1998). The examiner pointed to a sequence of blocks starting

from a span of two, and then instructed the individual to point

to the same blocks in the same order. If successful, the spans

increased by one block each time. If not successful, a second trial

of the same span was administered. Testing was discontinued if

both trials at any particular span length failed. For standardization

purposes, both the forward and backward recall conditions of
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the Spatial Span Subtest were assessed in this study, but only the

backward recall Spatial Span component was employed as the

measure of WM, given the increased demands on visual WM and

executive functions.

Verbal WM was assessed using the Woodcock–Johnson-III

Numbers Reversed Subtest, in which participants were asked to

repeat a series of increasingly longer digit sequences in reverse

order. The score was the total number of correct responses

(Woodcock et al., 2001). The backwards digit span test measures

the ability to encode a series of verbally presented digits, maintain

them in WM, transform the order of the items and recall them.

Recalling the digits in backwards order demands a greater WM load

than in the forward recall condition, requiring an additional execu-

tive component. This verbal WM test provides a complementary

measure to the spatial WM component of the spatial span task.

In addition, the Vocabulary Subtest from the WASI was admi-

nistered to estimate verbal IQ. This measure was used to screen

participants with low verbal IQ, in accordance with our inclu-

sion/exclusion criteria, and was examined as a possible covariate

in subsequent analyses.

Functional MRI working memory task
Following Jha and McCarthy (2000), a delayed-response task was

developed in which a visual stimulus array (S1) was presented for

4 s, followed by a delay interval of 17 s, followed then by a probe

stimulus (S2) presented for 4 s, to which the subject responded

with a button press. A total of 10 S1–S2 trials were presented in

each run, lasting �8 min. The inter-trial interval (ITI), as measured

from the end of the S2 period to the beginning of the S1 period in

the following trial, was 18.5 s. An experimental session consisted of

eight runs and lasted no longer than 2 h.

Stimuli were presented using an LCD projector and were back-

projected upon a 10-inch wide screen located within the magnet

bore directly behind the subject’s head. All stimuli were presented

using the CIGAL display environment (Vovyodic, 1999) and were

viewed using mirrored glasses. Responses were acquired using a

fibre-optic button box. Accuracy and reaction times (RTs) were

recorded by the experimental control software. Within each experi-

mental session, both the neural correlates of spatial and verbal

WM function (manipulation of domain specificity) and the effects

of distracters on the maintenance period activity (manipulation of

distractibility) were assessed.

Domain specificity of WM was manipulated using a delayed-

response design by presenting two different types of stimuli to be

remembered: verbal and spatial. In condition 1 (verbal WM), four

5-letter words were presented at S1 for 1 s each (Fig. 1). S2 consisted

of a single 5-letter word presented for 4 s that was, or was not,

present in the S1 memory set. Using a forced response paradigm,

subjects indicated whether the S2 stimulus was present in the S1

memory set by pressing a button on the response box. Words were

chosen that could not be easily associated with a visual or object

representation. In condition 2 (spatial WM), S1 was composed of

4 squares presented for 1 s each, appearing randomly in 1 of 12

possible locations (Fig. 1). At S2, the square was presented for 4 s

and appeared in 1 of the 12 possible locations. Subjects indicated

by button press whether the S2 stimulus appeared in one of the same

locations as the S1 stimuli.

We also examined the effects of distractibility upon verbal and

spatial WM. Distracters occurred on half of the trials and were

randomly distributed. The tasks were identical to those described

above as conditions 1 and 2, with the addition of distracters pre-

sented during the maintenance period. Accordingly, condition 3

(verbal distracters) was identical to condition 1, with the addition

of a series of briefly presented words appearing on the screen during

the delay interval. A total of nine distracters were presented for

a duration of 1 s each, with 500 ms interstimulus intervals. Subjects

were asked to simply monitor the words and were not required to

produce a response (perceptual interference). In condition 4 (spatial

distracters), subjects were presented with squares that appeared in a

series of random locations on the screen during the delay period.

Again, the goal of the secondary monitoring task presented during

the maintenance interval was to introduce a perceptual distractibility

or interference condition.

Neurocognitive data analysis
The neurocognitive testing procedures were obtained on 20 of the

subjects, 10 with Turner syndrome and 10 controls. Two individuals

with Turner syndrome were included in these neurocognitive

testing results, but not in the fMRI analyses, because of excessive

head motion and artefacts. Group differences in age, race and voca-

bulary were examined, and subsequent univariate analyses were

performed to examine group differences on the four neurocognitive

measures.

Imaging behavioural data analysis
RT and accuracy (% correct) measures were obtained from all 8 sub-

jects with Turner syndrome and from 14 control subjects. Repeated-

measures analysis of variance (ANOVA) tests were run on RT and %

Fig. 1 Verbal and spatial delayed-response tasks. The memory
array (S1) was presented for 4 s, and a delay of 17 s ensued,
followed by a probe stimulus (S2) for 4 s. On half of the trials,
distracters were presented during the delay period.
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correct measurements to assess the effects of domain, distraction and

group (control versus Turner syndrome).

Functional MRI acquisition and analyses
The scans were performed on a General Electric 1.5 T NVi system.

Imaging began with the acquisition of a T1-weighted sagittal loca-

lizer series to identify the anterior (AC) and posterior commissures

(PC) and to prescribe contiguous oblique slices parallel to the

AC–PC plane. These series were followed by the acquisition of

68 slices of high-resolution T1-weighted structural images [repeti-

tion time (TR) = 12.3 ms, echo time (TE) = 5.4 ms, field of view

(FOV) = 24 cm, 256 · 256 matrix, slice thickness 1.9 mm], oriented

parallel to the AC–PC. Thirty-four contiguous functional images

sensitive to BOLD contrast were acquired at the same slice loca-

tions as the structural images (TE = 30 ms, 24 cm FOV, 64 · 64

image matrix, 90� flip angle, TR = 1.5 s, slice thickness = 3.8 mm,

yielding 3.8 mm3 isotropic voxels).

The time courses of the voxels in each slice were realigned with the

onset of the TR, in order to compensate for the interleaved slice

acquisition order. Images were preprocessed using SPM99 (http://

www.fil.ion.ucl.ac.uk/spm). Volumes were spatially aligned to a

reference volume using translation and rigid rotation, in order to

correct for head movements. Individual subjects’ functional images

were co-registered with their high-resolution anatomical images.

The data were normalized to standard Talairach coordinates, using

the standard SPM/MNI T1 template image. Images were resampled

using sinc interpolation and smoothed with an 8 mm Gaussian

kernel to improve the signal-to-noise ratio.

For the voxel-based analysis, epochs beginning 4 time points prior

to S1-onset and continuing for 29 time points following S1 were

excised from the continuous time series of non-normalized

co-registered raw images for each condition. Signal averaging was

performed on these excised epochs with separate average epochs

created for each experimental condition. The average MR signal

values were then converted to per cent signal change relative to a

pre-S1 baseline, defined as the four time points preceding S1. These

time course analyses were performed on the raw, TR-aligned func-

tional data that had not undergone smoothing or normalization.

For the anatomical regions of interest (ROI) analysis, selected

structures in frontoparietal and frontotemporal regions associated

with functional and structural abnormalities in Turner syndrome

were drawn by a single observer on each individual subject’s high-

resolution structural MRIs (see Supplementary Fig. 1S available at

Brain online). Selected ROIs included the left and right middle

frontal gyri (MFG), inferior frontal gyri (IFG), intraparietal sulci

(IPS) and inferior temporal gyri (ITG). ROIs were drawn using a

three-dimensional interactive image segmentation program (IRIS/

SNAP) (Ho et al., 2002) using landmarks from the Duvernoy’s

Human Brain Atlas (1999). All ROI analyses were performed on

individual subjects’ non-normalized brains. No ROIs were found to

differ significantly in size (i.e. number of voxels) between controls

and the group with Turner syndrome.

Using custom MATLAB software, ROIs were interrogated with a

function that returned the number of voxels within the selected ROI

that correlated significantly with an ideal haemodynamic response

waveform (t > 1.96, P < 0.05) (Jha and McCarthy, 2000). This

measurement of per cent activated voxels reflected the spatial extent

of activation relative to ROI size. Relative per cent signal change was

calculated for each ROI, by interrogating them with a function that

returned the average time-varying signal change of the voxels within

the selected regions. Differences between the waveforms evoked

by the four different experimental conditions were tested by mea-

suring the signal over particular time periods, allowing for the sepa-

rate assessment of condition and population effects in the S1 period,

delay period and S2 period. The per cent signal change at four

different latencies in each epoch (time points 9, 12, 18 and 24 relative

to epoch onset) were selected as measures of peak haemodynamic

responses associated with the encoding (time points 9 and 12),

maintenance (time point 18) and retrieval (time point 24) phases

of the WM trials.

Repeated-measures ANOVAs were performed on the peak ampli-

tudes at the selected time points to examine group, anatomical

structure, hemisphere and experimental condition differences.

Quantitative statistical analyses were performed on the dependent

measure (% signal change) with group as a between-subjects vari-

able, and task phase (encode, maintain and retrieve) and hemisphere

as within-subject repeated measures. Post hoc analyses were then

conducted to assess the direction and pairwise effects at each

level. Repeated-measures ANOVAs were used to identify group

differences in the peak measures.

Results
Neurocognitive testing results
Initial group comparisons indicated that individuals with

Turner syndrome and controls had significantly different

verbal IQs [t(18) = 6.97, P < 0.0001], with the controls having

a higher level of vocabulary (Turner syndrome mean

T-score = 54.20, SD = 5.88; controls mean T-score =

68.40, SD = 5.60). No significant differences were found

for age (Turner syndrome mean = 19.8, controls mean =

22.9) or race, although there was a strong trend for the Turner

syndrome group to be younger [t(18) = 2.05, P < 0.06]. Given

these findings, subsequent analyses were co-varied for esti-

mated IQ and chronological age.

Univariate ANCOVAs (analysis of covariance), controlling

for estimated IQ and age, revealed that the group with Turner

syndrome performed more poorly than controls on every task

except for Facial Recognition (Table 1). On the Judgment

of Line Orientation Test, WJ-III Numbers Reversed and

WMS-III Spatial Span Reversed, the Turner syndrome

group performed significantly lower than the control

group. Effect sizes were moderate to large, ranging from

0.63 for WMS-III Spatial Span Reversed to 0.72 for WJ-III

Numbers Reversed. These findings suggest that while visuo-

spatial processing may be disrupted in Turner syndrome,

consistent with the classic Turner syndrome phenotype,

WM functions—both verbal and visuospatial—may also be

significantly impaired.

Imaging behavioural results
ANOVA tests were performed on the dependent variables of

accuracy (% correct) and RT, to assess the between-subject

factor of group (controls versus Turner syndrome) and the

within-subject factors of domain (verbal versus spatial)

and distraction. Behavioural results for accuracy and RT

are displayed in Fig. 2A and 2B. Participants with Turner
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syndrome were less accurate (83% correct, SD = 15.69) than

controls [91% correct, SD = 10.88, F(1,21) = 13.39; P < 0.002]

and had slower response times (1865 ms, SD = 465 ms) than

controls [1349 ms, SD = 442 ms, F(1,21) = 14.36; P = 0.001].

For both groups, accuracy was better for the verbal WM

condition (96% correct, SD = 5.22) than the spatial condition

(79% correct, SD = 13.47), and RTs were faster for the verbal

(1267 ms, SD = 434 ms) than the spatial WM conditions

(1807 ms, SD = 440 ms) [domain effect on accuracy, F(1,21)

= 48.1; P < 0.0001, and RT, F(1,21) = 55.23; P < 0.0001].

Although the individuals with Turner syndrome were less

accurate in the spatial WM task than in the verbal WM

task, this effect did not reach significance [group by domain

interaction, F(1,21) = 2.49; P = 0.13]. There was also no

significant group by domain interaction in the RT data

[F(1,21) = 0.3; P = 0.59].

Distraction had a significant overall effect on RT [F(1,21) =

8.0; P = 0.01], but had no significant effect on accuracy. No

significant interactions were found between group and dis-

traction for either accuracy or RT. Accuracy on the spatial

task was more vulnerable to distraction than the verbal task

[domain by distracter interaction, F(1,21) = 4.8; P < 0.04]. In

addition, RTs on the spatial task were more vulnerable to

distraction than the verbal task [domain by distracter inter-

action, F(1,21) = 4.98; P = 0.037].

Functional MRI results
We performed time-course analyses on the significantly acti-

vated voxels in each ROI to compare the haemodynamic

changes between groups and conditions throughout the

WM trials. Group and condition effects were assessed for

the encoding (time points 9 and 12), maintenance (time

point 18) and retrieval (time point 24) phases of the trials

for each ROI. All significant statistics for each time point,

including the effects of group and domain are displayed in

Table 2, with hemispheric laterality effects displayed in Table 3

(see Supplementary Figs 2S and 3S for group average

activation maps). Statistics for the distracter condition are

displayed in Supplementary Table 1S.

Intraparietal sulcus
Consistent with posterior parietal cortex involvement in spa-

tial processing, the IPS was activated significantly more

strongly by the spatial domain than by the verbal domain

at all time points (domain effect, Table 2), with significantly

greater right-hemisphere dominance during the spatial task

(hemisphere effect, Table 3). The average time course of

activation in the IPS during each WM task is displayed in

Fig. 3, for both the control and Turner syndrome groups.

Table 1 Performance on neurocognitive tests

Turner syndrome Normal controls

Tasks Mean SD Mean SD F(3, 15) Effect size

Facial recognition 22.22 2.64 24.70 1.49 2.90 0.37
Judgement of line orientation 20.67 7.43 26.70 2.26 11.75*** 0.70
WMS-III spatial span reverse 5.56 2.13 9.50 1.84 8.50** 0.63
WJ-III numbers reversed 14.11 5.58 24.30 4.17 12.77*** 0.72

Comparisons of the Turner syndrome group versus the control group on the neurocognitive measures controlling for age and estimated
verbal IQ (**P < 0.01, ***P < 0.0001). All scores are reported as raw scores.

Fig. 2 Behavioural results for spatial and verbal WM, with and
without distraction (Dist versus NoDist). (A) Mean per cent
correct with standard error bars. (B) Mean RT with standard
error bars.

Visuospatial executive function in TS Brain (2006), 129, 1125–1136 1129



As reflected in the time-course graph of the controls’

activation of the IPS (Fig. 3A), during the visuospatial

WM task, they displayed highly sustained levels of activation

throughout the maintenance period. The maintenance-phase

activation in the group with Turner syndrome, in contrast,

was significantly decreased relative to controls (Fig. 3B).

During the verbal WM condition, however, the two

groups showed similar patterns of haemodynamic change

throughout the task. The two groups activated the IPS

differentially according to domain during the maintenance

phase, as measured by time point 18 activation (group

by domain interaction, Table 2). Consistent with our

hypothesis, the group with Turner syndrome therefore

showed different parietal activation patterns on the spatial,

but not verbal, task.

Controlling for age had no effect on the group by domain

interaction in the IPS [F(1,20) = 6.5; P = 0.02], but when

accuracy was controlled for, the interaction did not reach

significance [F(1,17) = 2.22; P = 0.15], suggesting that

group differences in IPS maintenance levels were partially

explained by their differences in performance. Contrary to

our hypothesis that group differences would be enhanced in

the presence of distracters, no group by distracter interactions

were found.

Middle frontal gyrus
The MFG was activated significantly more strongly by the

spatial task than the verbal task (domain effect, Table 2) at

time points 12 and 24, with significantly greater right-

hemisphere dominance during the spatial task (Table 3).

The average time course of activation in the MFG during

each WM task is displayed in Fig. 4 for both groups. Controls

displayed sustained activation during the maintenance phase

of the spatial WM task, while activation during the verbal

WM task returned to baseline between the encoding and

retrieval phases (Fig. 4A). In the group with Turner syn-

drome, the MFG showed less differentiation in activation

related to domain, and showed slightly greater activation

during verbal WM maintenance compared with the spatial

task (Fig. 4B). The two groups therefore activated the MFG

differentially according to domain during the maintenance

Table 2 Effects of group and domain on fMRI per cent signal change

9 12 18 24

Test ROI F P F P F P F P

Group ITG 5.71 0.026 6.56 0.018
IPS 5.9 0.024

Domain ITG 9.41 0.006 4.87 0.039
IPS 44.45 <0.0001 44.04 <0.0001 21.77 <0.0001 84.06 <0.0001
MFG 9.1 0.007 8.16 0.009

Group by domain IPS 7.27 0.014
MFG 6.71 0.017 6.4 0.019 4.25 0.052
IFG 6.36 0.02 15.78 0.0007 4.71 0.042

F and P values for the encode (time point 9 and 12), maintain (time point 18) and retrieve (time point 24) periods of the task, for significantly
active voxels in each ROI. ROIs that were not active for a given test at any time point are not displayed.

Table 3 Hemispheric effects on fMRI per cent signal change

9 12 18 24

Test ROI F P F P F P F P

Hemisphere ITG 4.39 0.048 4.21 0.053
IPS 14.76 0.001
MFG 13.8 0.001
IFG 14.03 0.001

Hemisphere by group ITG 5.54 0.028 7.21 0.014 6.53 0.018 4.28 0.051
IFG 5.13 0.034

Hemisphere by domain ITG 24.04 <0.0001 22.85 <0.0001 8.97 0.007
IPS 14.74 0.001
MFG 16.14 0.001 18.03 0.0004 10.96 0.003
IFG 39.71 <0.0001 22.65 <0.0001 5.25 0.032 5.94 0.024

Laterality effects: F and P values for the encode (time point 9 and 12), maintain (time point 18) and retrieve (time point 24) periods of the
task, for significantly active voxels in each ROI. ROIs that were not active for a given test at any time point are not displayed. Only those
interactions that were significant at any time point are displayed.
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and retrieval phases (group by domain interaction at time

points 12, 18 and 24, Table 2).

No significant effects of age or performance were found on

MFG activation. Also, no significant group by distracter

interactions were found.

Inferior frontal gyrus
The IFG did not show overall significantly different activation

patterns depending on the task domain (Table 2). The aver-

age time course of activation in the IFG during each WM task

is displayed in Fig. 5 for both groups. While controls showed

a more similar pattern of activation for both verbal and

spatial tasks, with slightly greater activation to the spatial

task (Fig. 5A), the individuals with Turner syndrome showed

larger activation to the verbal task relative to the spatial task

(Fig. 5B). Although controls and subjects with Turner syn-

drome did not differ in their overall IFG activation levels, the

two groups activated the IFG differentially according to

domain for time points 12, 18 and 24 (group by domain

interaction, Table 2).

No significant effects of age or performance were found on

IFG activation. A significant group by distraction effect was

found (see supplementary Table 1S). Finally, the IFG activa-

tion patterns indicated that controls showed more right-

lateralized activation at encoding, whereas subjects with

Turner syndrome showed more left-lateralized activation

(hemisphere by group interaction, Table 3).

Inferior temporal gyrus
Consistent with temporal cortex involvement in verbal pro-

cessing, the ITG activated more strongly to the verbal than

spatial task for both groups at encoding (Table 2), and

showed significantly greater left-hemisphere dominance dur-

ing the verbal task (hemisphere by domain, Table 3). The

average time course of activation in the ITG during each WM

task is displayed in Fig. 6 for both groups. The group with

Turner syndrome showed overall greater activation in the

ITG compared with controls (group effect, Table 2). Both

the controls and individuals with Turner syndrome showed

greater activation at encoding to the verbal task, but the

Intraparietal sulcus (IPS)

Fig. 3 Mean per cent signal change within active voxels for the intraparietal sulcus in (A) controls and (B) Turner syndrome. Grey lines
indicate onset of S1 and S2 periods. Asterisks indicate those tested time points (i.e. 9, 12, 18, 24) that had significant group by domain
interactions.
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group with Turner syndrome showed a larger increase in this

encoding-related verbal activation (Fig. 6A and B). Despite

the greater activation during the verbal task in subjects with

Turner syndrome relative to controls, the group by domain

interaction did not reach significance.

No significant effects of age or performance were found on

ITG activation. A significant group by distraction effect was

found, which differed by task domain (see Supplementary

Table 1S). Hemispheric effects showed a bias in the ITG at

encoding and maintenance during the verbal WM task for

both groups, but the subjects with Turner syndrome showed

significantly greater left-side bias on the verbal task relative to

controls (hemisphere by group interaction, Table 3).

Discussion
In the present study, we examined neurobehavioural corre-

lates of verbal and spatial WM processes in healthy controls

and in individuals with Turner syndrome, with further

examination of vulnerability to distraction in both groups.

Our results produced the classic phenotypical profile of

visuospatial weaknesses that has been proliferated in the lit-

erature on children and adults with Turner syndrome. How-

ever, our findings also revealed significant WM differences

suggestive of executive dysfunction across methods of mea-

surement that may co-exist with or underlie the visuospatial

weaknesses in this population. More specifically, our findings

demonstrated changes in prefrontal and posterior parietal

function in Turner syndrome, which were particularly pro-

nounced during the period of visuospatial WM maintenance.

The patterns of activation in frontoparietal regions indi-

cated that the subjects with Turner syndrome engaged these

regions to a lesser degree, particularly during spatial WM

performance, whereas they were able to engage these regions

normally during verbal WM. Several additional studies have

similarly found deficient engagement of these regions in

Turner syndrome during spatial WM (e.g. Haberecht et al.,

2001; Kesler et al., 2004). The data in the current study

suggests that the inability of individuals with Turner syn-

drome to engage prefrontal and posterior parietal regions

may be primarily explained by dysfunction within the main-

tenance phase, whereas these regions may function normally

Middle frontal gyrus (MFG)

Fig. 4 Mean per cent signal change within active voxels for the middle frontal gyrus in (A) controls and (B) Turner syndrome. Grey lines
indicate onset of S1 and S2 periods. Asterisks indicate those tested time points that had significant group by domain interactions.
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in Turner syndrome during WM encoding and retrieval pro-

cesses. Although the present study is limited by the relatively

small sample size of participants with Turner syndrome, this

lack of sustained engagement of posterior parietal regions was

observed consistently across individuals in the Turner syn-

drome group. Within the group with Turner syndrome, only

2 out of 8 individuals activated posterior parietal regions

above baseline levels during the WM delay, whereas 13 out

of 15 control participants showed sustained activity. While

additional studies will certainly be needed to support these

findings of abnormal spatial WM delay activity, this pattern

showing lack of parietal engagement appears to be relatively

robust across individuals.

Because the participants with Turner syndrome performed

more poorly than controls on the WM tasks, it is possible that

group differences in brain activation may be partially

explained by task performance. Indeed, a covariance analysis

of our data indicated that WM performance significantly

predicted activation in the intraparietal sulcus, although it

did not predict activation in the other ROI. Analyses com-

paring correct versus incorrect trials indicated that while the

group with Turner syndrome was able to adequately engage

parietal regions during their correct trials in a similar manner

to controls, their incorrect trials were associated with abnor-

mally low levels of delay period activation during the spatial

WM delay phase. Posterior parietal dysfunction during spa-

tial WM maintenance in Turner syndrome may therefore be

an important factor underlying their visuospatial cognitive

difficulties. As there is considerable cognitive variability

among individuals with Turner syndrome, future studies

may further clarify the relationship between individual

visuospatial abilities and the degree to which these parietal

mechanisms are engaged.

Analyses of the behavioural results indicated that although

the individuals with Turner syndrome showed the expected

differences on the spatial neurocognitive tasks and on the

spatial WM task completed in the fMRI scanner, the

group with Turner syndrome also had lower estimated verbal

IQ and concomitant weaker verbal WM. On the surface, these

findings would seem to contrast with the Turner syndrome

literature that typically characterizes their deficits as primarily

in the visuospatial domain. A potential reason for this finding

could be that our sample of participants with Turner syn-

drome was biased towards having greater verbal deficits than

Inferior frontal gyrus (IFG)

Fig. 5 Mean per cent signal change within active voxels for the inferior frontal gyrus in (A) controls and (B) Turner syndrome. Grey lines
indicate onset of S1 and S2 periods. Asterisks indicate those tested time points that had significant group by domain interactions.
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controls, related to the sample size. However, these deficits

would support the presence of higher-order executive

dysfunctions (e.g. working memory) that may in turn con-

tribute to the significantly poorer verbal performance in the

group with Turner syndrome when compared with controls.

Other studies of Turner syndrome have indeed found retrie-

val impairments during verbal fluency tasks with relatively

large executive demands (Temple, 2002), and poorer perfor-

mance on verbal executive tasks requiring cognitive flexibility

and WM (Kirk et al., 2005). It is possible therefore that a

global executive function deficit in Turner syndrome may be

responsible for poorer performance on a multitude of cogni-

tively demanding tasks that require planning, attention shift-

ing and WM. This executive dysfunction in Turner syndrome

may explain multiple aspects of the neurocognitive profile,

such as arithmetic deficits (e.g. Rovet et al., 1993), attentional

abilities (e.g. Romans et al., 1998) and inhibitory control

(Tamm et al., 2003). The executive function deficit in Turner

syndrome may therefore only be apparent on tasks with suf-

ficient complexity to engage prefrontal mechanisms.

We directly manipulated executive requirements of our

task by including a distracter condition where irrelevant sti-

muli were presented during the WM delay. However, con-

trary to our hypotheses, our results indicated that the

presence of distracters on both tasks did not significantly

affect performance in either group, nor did the distracters

largely affect the Turner syndrome group’s activation pat-

terns more than controls. It is possible that because the dis-

tracters involved passive viewing of perceptual stimuli, they

may not have provided significant interference to require the

engagement of the executive attention component of WM.

While lower level sensory processing mechanisms may be

intact in Turner syndrome, it is possible that increasing

the executive load of the task to a level sufficient to interfere

with WM rehearsal could lead to greater sensitivity in Turner

syndrome.

In addition to frontoparietal dysfunction in the group

with Turner syndrome, our results also revealed a pattern

of over-engagement of inferior frontal and temporal regions

in subjects with Turner syndrome compared with controls,

Inferior temporal gyrus (ITG)

Fig. 6 Mean per cent signal change within active voxels for the inferior temporal gyrus in (A) controls and (B) Turner syndrome. Grey lines
indicate onset of S1 and S2 periods.
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suggesting that the neurophysiological differences in Turner

syndrome may not be restricted to frontoparietal regions.

Several structural imaging studies have found specific tem-

poral lobe abnormalities in Turner syndrome, such as altera-

tions in temporal lobe fibre tracts (Molko et al., 2004) and

larger superior temporal gyri, suggesting the disruption of

neural pruning mechanisms during development (Kesler

et al., 2003). These temporal lobe abnormalities have been

suggested to possibly underlie deficits in language tasks

such as semantic fluency in Turner syndrome (Rae et al.,

2004), which may require greater executive demand than

reading tasks where individuals with Turner syndrome

have been found to perform normally (Temple and

Carney, 1996). Structural and functional changes may there-

fore be apparent in multiple brain regions in Turner syn-

drome, which may possibly underlie some of their executive

deficits or potentially reflect compensatory mechanisms.

Because of the observed changes in brain structure and

function in Turner syndrome, the X chromosome has been

proposed to play a particularly significant role in the devel-

opment of circuitry underlying visuospatial and executive

function (Skuse, 2005). It has been hypothesized that the

brains of individuals with Turner syndrome develop abnor-

mally during gestation, as a result of missing genetic material

responsible for neural pruning mechanisms (Rae et al., 2004).

The cognitive deficits in Turner syndrome may arise from a

reduced dosage of a gene or genes on the X chromosome

(Buchanan et al., 1998), as evidenced by studies showing that

individuals with a higher percentage of normal 46,XX cells

perform better on visuospatial processing tasks than those

with the 45,X karyotype (Murphy et al., 1993). Furthermore,

mapping of deletions using molecular markers has shown

that a 2 Mb critical region of the X chromosome is associa-

ted with visuospatial deficits in Turner syndrome (Ross et al.,

2000). Cognitive assessments of women with fragile X syn-

drome have also suggested specific deficits in visuospatial

ability and executive function (Bennetto et al., 2001), affect-

ing the development of complex cognitive functions

(Cornish et al., 2004). Future studies combining neuroima-

ging with molecular genetic techniques will help in elucidat-

ing the relationships between neurobiological and genetic

markers of the cognitive deficits associated with X chromo-

some abnormalities.

Our findings support the characteristic phenotypic

description of visuospatial dysfunction in Turner syndrome

found in the literature, but they also extend this description

by providing evidence of frontal-temporal and frontal-

parietal involvement as well, thus contributing to the com-

plex pathophysiology inherent in Turner syndrome. The

results suggest that executive function impairments in Turner

syndrome may affect a multitude of cognitive tasks that

have a sufficient level of complexity or difficulty. However,

the frontoparietal circuitry may be particularly vulnerable to

dysfunction during visuospatial WM in Turner syndrome

and is characterized by a relative lack of sustained engage-

ment during the maintenance of spatial information.

Supplementary material
See supplementary material available at Brain online.
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