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ABSTRACT
Turfgrass investigators have observed that plantings of grass seeds produced in moist
climates produce seedling stands that show greater stand evenness with reduced
disease compared to those grown from seeds produced in dry climates. Grass seeds
carry microbes on their surfaces that become endophytic in seedlings and promote
seedling growth. We hypothesize that incomplete development of the microbiome
associated with the surface of seeds produced in dry climates reduces the
performance of seeds. Little is known about the influence of moisture on the
structure of this microbial community. We conducted metagenomic analysis of the
bacterial communities associated with seeds of three turf species (Festuca rubra,
Lolium arundinacea, and Lolium perenne) from low moisture (LM) and high
moisture (HM) climates. The bacterial communities were characterized by Illumina
high-throughput sequencing of 16S rRNA V3–V4 regions. We performed seed
germination tests and analyzed the correlations between the abundance of different
bacterial groups and seed germination at different taxonomy ranks. Climate
appeared to structure the bacterial communities associated with seeds. LM seeds
vectored mainly Proteobacteria (89%). HM seeds vectored a denser and more diverse
bacterial community that included Proteobacteria (50%) and Bacteroides (39%).
At the genus level, Pedobacter (20%), Sphingomonas (13%), Massilia (12%), Pantoea
(12%) and Pseudomonas (11%) were the major genera in the bacterial communities
regardless of climate conditions. Massilia, Pantoea and Pseudomonas dominated
LM seeds, while Pedobacter and Sphingomonas dominated HM seeds. The species of
turf seeds did not appear to influence bacterial community composition. The seeds
of the three turf species showed a core microbiome consisting of 27 genera from
phyla Actinobacteria, Bacteroidetes, Patescibacteria and Proteobacteria. Differences
in seed-vectored microbes, in terms of diversity and density between high and
LM climates, may result from effects of moisture level on the colonization of microbes
and the development of microbe community on seed surface tissues (adherent paleas
and lemmas). The greater diversity and density of seed vectored microbes in HM
climates may benefit seedlings by helping them tolerate stress and fight disease
organisms, but this dense microbial community may also compete with seedlings for
nutrients, slowing or modulating seed germination and seedling growth.
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INTRODUCTION
Plants bear numerous microbes that influence their nutrition, development, stress
responses and phenotypes (Hardoim et al., 2015; Henning et al., 2016; White et al., 2014,
2018). Plant-associated microbes generally come from the surrounding environment;
however, Johnston-Monje & Raizada (2011) showed that corn seeds vectored a diverse
array of microbes. Further, Johnston-Monje et al. (2016) found that the rhizospheres of
corn seedlings were composed of microbes that originated both from seeds and bacteria
recruited from soils. These seed-vectored bacteria can influence germination and share
a mutualistic association with the host seedlings (Cruz, Yañez-Ocampo &Wong-Villarreal,
2014; Shaik & Thomas, 2019; Somova et al., 2001; Zhu et al., 2017). Without seed-vectored
bacteria, seedlings may lose gravitropic response of roots, fail to develop root hairs, and
are more susceptible to soil-borne pathogens (Verma et al., 2017, 2018).

Some turf grasses possess fungal endophytes of ascomycete genus Epichloë that provide
resistance to pathogens and insects, and increase abiotic stress tolerance in the host (Bultman
& Bell, 2003; Clay, 1990;Meyer, Torres & White, 2012;White, 1987). Turf breeders have long
been employing these environmentally safe endophytes to enhance turfgrass performance
and stress tolerance (Meyer, Torres &White, 2012). Another important microbe resource, the
seed-transmitted bacterial communities of turf grasses, are yet to be fully explored. Many of
these bacteria are vectored on the surfaces of seeds and embedded within dried plant tissues
(paleas and lemmas) that adhere tightly to seed surfaces (White et al., 2019). During seed
germination some of these seed-surface microbes are activated and they externally and
internally colonize seedling roots at the root tip meristems, becoming intercellular and
intracellular endophytes in the emergent seedling roots (Verma et al., 2017, 2018;White et al.,
2018). In this study, we employed Illumina HTS and 16S metagenomic analysis to investigate
the bacterial community associated with cool-season turfgrass seeds produced in low
moisture (LM) and high moisture (HM) climates (Pace et al., 1986; Riesenfeld, Schloss &
Handelsman, 2004). We also evaluated the potential influence of the bacterial community on
seed germination rates and seedling growth rates. The results showed that HM seeds vectored
a denser and more diverse bacterial community than LM seeds. Also, bacterial groups at
different taxonomic ranks correlated with the seed germination rate and time.

MATERIALS AND METHODS
Total DNA extraction from seeds of cool-season turfgrasses
Seeds of 27 cool-season turf cultivars were obtained from DLF Pickseed USA (Table S1).
All varieties were produced from 2011 to 2015 at either Store Hedinge, Denmark or Les
Alleuds, France. Based on the precipitation data collected from The National Oceanic
and Atmospheric Administration, the seeds were classified into LM seeds (annual precipitation
<750 mm) and HM seeds (annual precipitation >750 mm). With this classification, five
samples were classified as LM seeds while 22 samples as HM seeds. A total of 100 mg of seeds
of each turf cultivar were weighed out and washed with water for three times, 30 s each time to
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remove the dirt. The cleaned seeds were then ground into powder with a sterilized mortar and
pestle for total DNA extraction. The DNA extraction was conducted with DNeasy�

PowerSoil� Kit (QIAGEN, Hilden, Germany) following the manufacturer’s instructions.
This PowerSoil� Kit was chosen due to its versatility with diverse sample types.
The concentration of extracted DNA was measured with The NanoDrop� ND-1000
Spectrophotometer and normalized to five ng/µl for the library preparation.

Library preparation and sequencing
The preparation of DNA libraries for each sample followed the Illumina guidelines.
By using 12.5 ng of the normalized DNA from turf seeds as the template, V3–V4
hypervariable regions of bacterial 16S rRNA gene were amplified with the primer pair,
S-D-Bact-0341-b-S-17 (5′-CCTACGGGNGGCWGCAG-3′) and S-D-Bact-0785-a-A-21
(5′-GACTACHVGGGTATCTAATCC-3′) fuzed with Illumina overhang forward
adapters (5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′) and reverse
adapter (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3′), respectively
(Klindworth et al., 2013). PCR clean-ups were conducted to purify the 16S V3–V4
amplicons away from free primers and primer dimers. Nextera XT index primers were
then used for the index PCR and PCR clean-ups were performed again to generate the final
library. The generated 16S V3–V4 region library was paired-end sequenced (2 × 300 bp)
on an Illumina MiSeq platform in the Genome Cooperative Sequencing Facility, School
of Environmental and Biological Sciences at Rutgers.

Bacterial community structure analysis
The collected sequencing data in FASTQ format was processed and analyzed with the
QIIME2 software suite (Caporaso et al., 2010). The raw Illumina reads were imported into
QIIME2 with “Casava 1.8 paired-end demultiplexed fastq” method, and then denoised
and filtered with dada2 pipeline to remove noisy and chimeric sequences, construct
denoised paired-end sequences, and dereplicate them (Callahan et al., 2016). De novo
clustering was then carried out with VSEARCH plugin at 99% identity to generate
Operational Taxonomic Units (OTUs) (Rognes et al., 2016). The taxonomy assignment of
OTUs was performed by using feature-classifier against the SILVA 1.28 database (released
29 September 2016). After removing mitochondria and chloroplast sequences, the
filtered data were aligned with mafft program and fasttree method to generate rooted and
unrooted phylogenetic trees (Price, Dehal & Arkin, 2010). All core metrics used in alpha
and beta diversity analysis were computed based on the rooted phylogenetic tree.
Alpha diversity (intra group diversity) was calculated with the observed OTUs and Faith’s
phylogenetic diversity (Faith, 1992) at the sample depth of 1,000 reads to normalize the
variance and this excluded four samples (three HM samples and one LM sample), leaving
four LM samples and 19 HM samples. The Kruskal–Wallis (pairwise) test was utilized
to assess the statistical significance of alpha diversity. Beta diversity was performed with
both qualitative (Jaccard and unweighted UniFrac) and quantitative (Bray–Curtis and
weighted UniFrac) distance metrics at sample depth of 1,000 reads. In this process,
QIIME2 diversity plugin was employed. Statistical significance among different groups was
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evaluated by permutation-based ANOVA (PerMANOVA) test (Anderson, 2005) with
999 permutations (beta-group-significance command in diversity plugin). Principal
coordinates analysis plots (PCoA) were generated by Emperor tool of QIIME2 to explore
the bacterial community structure. The bar plots showing taxonomy levels were generated
by QIIME2 taxa plugin. The metagenomic analysis workflow is shown in Fig. 1.

The Venn diagram was generated with aWWW-based tool to calculate the intersection(s)
of the list of elements that in this study was represented by the list of genera of bacteria
found in each climate condition and species. The graphical output is in the form of a
Venn/Euler diagram.

Seed germination test
Seeds of 19 cool-season cultivars were placed in Petri dishes containing 25 ml 1.5% agar.
All Petri dishes were kept in a growth chamber at 28 �C. Seed germination was observed

Figure 1 Graphical workflow of metagenomic analysis in our study.
Full-size DOI: 10.7717/peerj.8417/fig-1
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every 24 h until no more seed germinated. Seed germination rates and time for each
sample were calculated and correlation analysis was performed and visualized with
python-based libraries SciPy (V0.19.1), pandas (V0.22.0), seaborn (V0.9.0) and
matplotlib (V2.2.3).

RESULTS
Sequence analysis
In total, 7,405,226 sequences (about 274,368 sequences per sample) were generated by
Illumina MiSeq sequencing and imported into QIIME2 pipeline suite for analysis.
After being denoised and dereplicated with dada2 pipeline, the remaining high-quality
sequences were clustered into 310 OTUs that had an average length of 427 bp, ranging
from 267 bp to 440 bp. After the removal of mitochondrial and chloroplast genomes,
a total of 247 OTUs were used to represent the bacterial profile of turf seeds samples
(Table S2).

Diversity of bacterial endophytes associated with turf seeds from LM
and HM climates
The bacterial community associated with turf seed samples was composed of five phyla,
eight classes, 21 orders, 37 families and 69 genera. The bacterial community vectored by
seeds produced in HM climates covered all discovered taxonomies, with 6,644 sequences/
sample. However, seeds from LM climate only hosted part of them, four phyla, eight
classes, nine orders, 10 families and 15 genera, with 2,821 sequences/sample.

Regardless of the climate and turf species, bacterial communities at phylum level were
dominated by Proteobacteria (51%) and Bacteroidetes (40%). Proteobacteria took 89%
and 50% of the bacterial community on HM and LM climates seeds, respectively.
Bacteroidetes was abundant in HM climate seeds (39%) but not LM climate seeds (2%).
Actinobacteria (6%) and Firmicutes (3%) also comprised a portion of the bacterial
community and exhibited no significant difference between the two climate types.

Both HM and LM seeds shared some of the most abundant bacterial classes, that is,
Actinobacteria, Bacteroidia, Bacilli, Alphaproteobacteria and Gammaproteobacteria
(Fig. 2). Compared to LM seeds, seeds from HM environment was richer in terms of
Faith’s phylogenetic diversity (Fig. 3; Table S3). At class level, Actinobacteria, Bacteroidia
and Bacilli had the same portion as phyla Actinobacteria, Bacteroidetes and Firmicutes,
respectively (Table 1). Alphaproteobacteria and Gammaproteobacteria were the two
classes within phylum Proteobacteria. Alphaproteobacteria took 6% and 18% of the
bacterial community of LM and HM climate seeds, respectively. Gammaproteobacteria
was 83% and 32% for LM and HM climate, respectively.

At genus level, LM seeds harbored a significantly higher percentage of Massilia
(p = 0.013), Pantoea (p = 0.060) and Pseudomonas (p = 0.045) compared to HM seeds
(Table 1). In contrast, HM seeds harbored more of Flavobacterium (p < 0.001),
Chryseobacterium (p < 0.001), Pedobacter (p < 0.001), Sphingomonas (p = 0.035) and
Erwinia (p = 0.122) (Table 1).
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Principal coordinates analysis plots separated bacterial communities associated with
turf seeds by climate (Fig. 4). Also, the PERMANOVA test showed a significant difference
between the two groups (p = 0.002, Table S4). However, no significant correlation was
detected between different species of turf seeds and their bacterial profile (Festuca rubra vs.
Lolium arundinacea, p = 0.101; F. rubra vs. L. perenne, p = 0.109; L. arundinacea vs.
L. perenne, p = 0.204, Table S4).

LM seeds didn’t bear any unique bacteria genus that HM seed didn’t (Fig. 5A; Table S5).
However, HM seeds harbored 55 genera that LM seeds didn’t. Seeds of three turf species
shared four phyla and 27 genera, including five genera that were uncultured or unknown
species from either Bacterioidetes or Patescibacteria (Fig. 5B; Table 2).

Figure 2 Bar plot analysis illustrating the relative abundance and distribution of the OTUs assigned
to class-level taxonomy. LM, low moisture; HM, high moisture.

Full-size DOI: 10.7717/peerj.8417/fig-2
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Correlation of seed germination and bacterial endophyte composition
associated with turf seeds
Bacterial groups at different taxonomic ranks correlated with the seed germination rate
and time (Figs. 6 and 7). Among the five phyla that we discovered through diversity
analysis, Proteobacteria correlated positively with the seed germination rate (p = 0.028)
and negatively with the seed germination time (p = 0.016). Phylum Actinobacteria also
showed a negative correlation with the seed germination time (p = 0.040) but not a
significant correlation with germination rate (p = 0.120). Another phylum, Firmicutes,
showed correlation with germination (p = 0.109) rate and germination time (p = 0.069),
but this was not statistically significant. However, the abundance of Bacteroidetes was
negatively associated with the seed germination rate (p = 0.008), and positively associated
with the seed germination time (p = 0.002).

At class level, Bacilli and Gammaproteobacteria were groups showing exactly the same
correlation as phyla Firmicutes and Proteobacteria, respectively (Figs. 6 and 7). Also, the
abundance of Bacteroidia and Gammaproteobacteria showed a similar correlation to
phylum Bacteroidetes and Proteobacteria.

At family level, seed germination rate was positively related to the abundance of bacteria
from families Microbacteriaceae (p = 0.090), Paneibacillaceae (p = 0.109) and
Pseudomonadaceae (p = 0.138), and negatively associated with the abundance of bacteria
from Rhizobiaceae (p = 0.014), Sphingobacteriaceae (p = 0.005), and Weeksellaceae
(p = 0.033). As expected, seed germination time also correlated negatively with the
abundance of these bacterial families. Seed germination time was positively associated with
Rhizobiaceae (p = 0.004), Sphingobacteriaceae (p = 0.002), and Weeksellaceae (p = 0.008),
but negatively with Microbacteriaceae (p = 0.032) and Paneibacillaceae (0.069) and
Pseudomonadaceae (p = 0.049).

At genus level, the abundance of Rhizobium, Chryseobacterium and Pedobacter was
negatively associated with germination rate (p-value 0.041, 0.033 and 0.004, respectively)

Figure 3 Box plots depicting the Faith’s phylogenetic diversity for different climate conditions (A), different genera (B) and different
species (C). Full-size DOI: 10.7717/peerj.8417/fig-3
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Table 1 Composition of bacterial community from LM and HM climate seeds.

Taxa level Taxa name Average percentage

LM (%) HM (%) Combined (%)

Phylum Actinobacteria** 6 7 6

Bacteroidetes† 2 39 40

Firmicutes** 3 4 3

Patescibacteria – <1 <1

Proteobacteria† 89 50 51

Class Actinobacteria** 6 6 6

Bacteroidia 2 39 40

Bacilli** 3 4 3

Saccharimonadia – <1 <1

Alphaproteobacteria† 6 18 15

Gammaproteobacteria† 83 32 36

Order Micrococcales** 6 5 5

Cytophagales <1 2 2

Flavobacteriales† <1 11 9

Sphingobacteriales† 1 26 21

Bacillales** 3 4 4

Saccharimonadales – <1 <1

Rhizobiales – 3 2

Sphingomonadales† 6 15 13

Betaproteobacteriales† 30 13 17

Enterobacteriales† 24 12 15

Pseudomonadales† 29 6 11

Family Microbacteriaceae** 6 5 5

Hymenobacteraceae <1 1 1

Flavobacteriaceae† <1 3 3

Weeksellaceae† <1 7 6

Sphingobacteriaceae† 1 26 21

Paenibacillaceae** 3 4 4

Rhizobiaceae† – 2 1

Sphingomonadaceae† 6 15 13

Burkholderiaceae† 30 13 17

Enterobacteriaceae† 24 12 15

Pseudomonadaceae† 29 6 11

Genus Curtobacterium** 2 2 2

Hymenobacter <1 1 1

Flavobacterium† <1 3 3

Chryseobacterium† <1 7 6

Mucilaginibacter – <1 <1

Pedobacter† 1 25 20

Paenibacillus** 3 4 4
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but positively with germination time (p-value 0.015, 0.008 and 0.001, respectively). But the
abundance of Pseudomonas was positively related with germination rate (p = 0.138) but
negatively associated with the germination time (p = 0.049), although the correlation was
not significant.

DISCUSSION
A complex bacterial community associated with turf seeds
Compared to LM seeds, HM seeds harbored a more diverse bacterial community with many
more bacterial cells (i.e., a higher bacterial load), as there were more sequences associated
with HM seeds. The more individuals hypothesis, which predicts that communities with
more individuals will have more species (Storch, Bohdalková & Okie, 2018), can explain the
higher diversity associated with HM seeds. This result is similar to previous studies on
soils indicating that moisture controls the structure and function of the soil microbial
community (Brockett, Prescott & Grayston, 2012; Griffiths et al., 2003; Steven et al., 2013).
Water availability in soil controls bacterial composition (Zeglin et al., 2011). Similarly,
relatively HM will favor growth and replication of bacteria on seeds, while LM conditions
will suppress development of the bacterial community associated with seeds.

Both LM and HM seeds vectored a large number of bacteria and shared some groups.
For example, the abundance of Curtobacterium spp. was similar in both LM and HM
seeds (LM 2%, HM 2%). Curtobacterium is a Gram-positive endophytic bacterial genus
in rice seeds (Oryza sativa), field-grown tall fescue (L. arundinacea) and Noccaea
goesingensis (De Los Santos et al., 2015; Mano et al., 2006; Ruiz et al., 2011). Some
Curtobacterium strains provide host growth promotion and pathogen antagonistic effects
(De Los Santos et al., 2015; Ruiz et al., 2011). Paenibacillus was the only genus from phylum
Firmicutes in both LM and HM seeds (LM 3%, HM 4%). Paenibacillus have been isolated
from many plants and shown to produce IAA, solubilize phosphate and inhibit the
growth of phytopathogens (Aswathy et al., 2013; Diaz Herrera et al., 2016; Ruiz et al., 2011;
Rybakova et al., 2015).

Table 1 (continued).

Taxa level Taxa name Average percentage

LM (%) HM (%) Combined (%)

Rhizobium* – 2 1

Sphingomonas† 6 15 13

Duganella† 5 3 3

Massilia† 25 9 12

Erwinia† <1 3 3

Pantoea† 23 9 12

Pseudomonas† 29 6 11

Unassigned <1 <1 <1

Notes:
* Rhizobium group also includes Allorhizobium, Neorhizobium, and Pararhizobium.
** Bacterial groups without significant difference between LM and HM.
† Bacterial groups with significant difference between LM and HM.
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Two of the genera, Mucilaginibacter and Rhizobium, were found in HM seeds but not
LM seeds. Mucilaginibacter spp. can promote plant growth and produce extracellular
polysaccharides (An et al., 2009; Lee et al., 2013;Madhaiyan et al., 2010;Mannisto et al., 2010).

Figure 4 PCoA Emperor plots based on Bray–Cuitis diversity matrix. Samples are scattered con-
cerning their bacterial community. Climates are represented by different colors: red-low moisture;
blue-high moisture. Species were represented by different shapes: ring-Loium arudinacea; sphere-Lolium
perenne; square-Festuca rubra. Full-size DOI: 10.7717/peerj.8417/fig-4

Figure 5 Venn diagrams showing the number of shared bacterial genera between different climate
(A) and among different turf species (B). LM, low moisture; HM, high moisture; Fr, Festuca rubra;
Lp, Lolium perenne; La, Loium arudinacea. Full-size DOI: 10.7717/peerj.8417/fig-5
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Rhizobium together with Allorhizobium,Neorhizobium, and Pararhizobium, composed 2% of
the bacterial community on HM seeds. These genera comprise well-studied bacteria that
promote growth of plants and nodulate legumes to fix nitrogen (Datta & Basu, 2000;
Gutierrez-Zamora & Martınez-Romero, 2001; Kiers et al., 2003; Yanni et al., 1997).

At the phylum level, LM seeds hosted more Gammaproteobacteria than HM seeds.
Several genera within Gammaproteobacteria contributed to these results, that is,
Duganella, Massilia, Pantoea, and Pseudomonas. However, these bacteria were still found
on a large portion of the HM seeds. Duganella spp. can suppress the growth of plant
pathogens (Cretoiu et al., 2013; Haack et al., 2016). Massilia is a root-colonizing bacterial
genus with the ability to degrade chitin (Adrangi et al., 2010; Faramarzi et al., 2009;
Ofek, Hadar & Minz, 2012). Pantoea spp. promote plant growth and tolerance of

Table 2 Seed-vectored bacterial genera shared Loium arudinacea, Lolium perenne, and Festuca
rubra.

Phylum Genus

Actinobacteria Curtobacterium

Sanguibacter

Bacteroidetes Chryseobacterium

Dyadobacter

Flavobacterium

Mucilaginibacter

Pedobacter

Sphingobacterium

Spirosoma

Uncultured Sphingobacteriaceae

Unknown Sphingobacteriaceae

Patescibacteria Uncultured bacterium

Uncultured Sphingobium sp.

Unknown Saccharimonadales

Proteobacteria Rhizobium*

Aureimonas

Brevundimonas

Devosia

Duganella

Erwinia

Massilia

Novosphingobium

Pantoea

Pigmentiphaga

Pseudomonas

Sphingomonas

Verticia

Note:
* Rhizobium group also includes Allorhizobium, Neorhizobium, and Pararhizobium.
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environmental stresses (Chen et al., 2017; Feng, Shen & Song, 2006; Ferreira et al., 2008;
Gond et al., 2015). Pseudomonas contains many endophytic bacterial strains that benefit
hosts by producing IAA, producing biocontrol lipopeptides, and solubilizing phosphate
(Oteino et al., 2015; Prieto & Mercado-Blanco, 2008; Suzuki, He & Oyaizu, 2003).

Some bacterial genera were more abundant in HM seeds than LM seeds, including
Flavobacterium, Chryseobacterium, Pedobacter, Sphingomonas and Erwinia. Most of the
bacteria comprised a very small portion of the bacterial community of LM seeds, but
Sphingomonas made up 6%. Flavobacterium sp. has been found to promote plant
growth and provide biocontrol activity to the hosts (Kolton et al., 2016; Soltani et al., 2010).
Chryseobacterium spp. were also shown to be plant growth promoting bacteria
(Dardanelli et al., 2009; Gutiérrez Mañero et al., 2003). Although Pedobacter has not been
found to promote growth of plants, it can induce the production of antimicrobial
compounds by Pseudomonas fluorescens Pf0-1 (Garbeva et al., 2011). Sphingomonas is an
alphaproteobacterial genus containing strains that produce IAA and provide nutrients to
hosts (Okunishi et al., 2005; Ruiz et al., 2011). Erwinia spp. have also been identified as

Figure 6 Correlation of seed germination rate with abundance of bacteria groups at different
taxonomy levels. (A) and (B) Phylum level. (C) Class level. (D) and (E) Order level. (F)–(H) Family
level. (I)–(K) Genus level. (L) Species level. Full-size DOI: 10.7717/peerj.8417/fig-6
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Figure 7 Correlation of average seed germination time with abundance of bacteria groups at
different taxonomy levels. (A)–(C) Phylum level. (D)–(F) Class level. (G)–(K) Order level. (L)–(P)
Family level. (Q)–(T) Genus level. (U) Species level. Full-size DOI: 10.7717/peerj.8417/fig-7
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endophytes in some plant species (Verma, 2019). However, genus Erwinia is well-known
to contain many plant pathogenic species.

In total, the above genera together comprised 89% and 95% in HM and LM seeds,
respectively. Some of the bacterial genera include plant pathogens, for example, Ewrinia and
Pseudomonas. However, most of the bacteria are known to contain mainly plant growth
promoting rhizobacteria, for example, Paenibacillus, Pseudomonas, Rhizobium, Pantoea.
The seed microbes are important because they stimulate seedling development, increase stress
tolerance in seedlings and protect seedlings from disease (Verma et al., 2017, 2018; White
et al., 2018, 2019). Thus, a more diverse bacterial community on HM seeds may provide hosts
with more microbial resources to utilize for plant development and stress tolerance.

In the study, the samples of LM and HM seeds had unequal sizes (LM: 4; HM: 19),
which could create a bias in our final result. However, HM seeds vectored a more diverse
bacterial community with significantly more bacteria cells (Fig. 3; Table S3). Also, the
different abundances between bacterial groups were statistically significant.

The bacterial community affected seed germination and growth
Seeds from HM climates tended to show slower germination and reduced seedling growth
rates. These seeds vectored a denser and more diverse community of bacteria, which may
benefit seedlings but not without a cost. We hypothesize that the higher microbial load
competes with seedlings, which slows germination and development of the host. This
nutritional cost may result in slower seed germination and seedling development rates. Seed
growers have observed that seed from HM climates seems to establish better with reduced
damping-off disease compared to seed from LM climates (W. Meyer, 2016, unpublished
data). While, seeds with richer and denser microbiomes grow slower initially, they may be
better protected from soil borne pathogens than seeds with less developed microbiomes.

Seeds that have formed in LM situations, or where the natural microbiome has
otherwise been damaged, could be remediated through application of microbes in seed
coatings (Pedrini et al., 2017). Coating formulations with the correct microbes at the
optimal concentrations could result in better fitness of seeds and seedlings.

CONCLUSIONS
We surveyed the bacterial community associated with seeds of several species of
cool-season turfgrasses and identified the dominant bacterial groups of the communities at
different taxonomic levels. Regardless of the moisture level during seed production and
species of seeds, the core bacterial community included many PGPB strains. Seeds
produced in HM conditions maintained a denser and more diverse bacterial community
than seeds produced in LM conditions. This seed microbiome may help seedlings tolerate
stress but may also compete with seedlings for nutrients and slow early seedling growth.
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