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Abstract: Aging women experience hormonal changes, such as decreased estrogen and increased
circulating androgen, due to natural or surgical menopause. These hormonal changes make post-
menopausal women vulnerable to body composition changes, muscle loss, and abdominal obesity;
with a sedentary lifestyle, these changes affect overall energy expenditure and basal metabolic rate.
In addition, fat redistribution due to hormonal changes leads to changes in body shape. In particular,
increased bone marrow-derived adipocytes due to estrogen loss contribute to increased visceral
fat in postmenopausal women. Enhanced visceral fat lipolysis by adipose tissue lipoprotein lipase
triggers the production of excessive free fatty acids, causing insulin resistance and metabolic diseases.
Because genes involved in β-oxidation are downregulated by estradiol loss, excess free fatty acids
produced by lipolysis of visceral fat cannot be used appropriately as an energy source through
β-oxidation. Moreover, aged women show increased adipogenesis due to upregulated expression
of genes related to fat accumulation. As a result, the catabolism of ATP production associated with
β-oxidation decreases, and metabolism associated with lipid synthesis increases. This review de-
scribes the changes in energy metabolism and lipid metabolic abnormalities that are the background
of weight gain in postmenopausal women.

Keywords: estrogen deficiency; energy metabolism; changed body composition; metabolic rate; lipid
metabolic disorder

1. Introduction

Women generally experience natural menopause due to loss of ovarian follicle activity
between the ages of 45 and 55, and surgical menopause is also accompanied by loss
of estradiol (E2) [1,2]. In general, women live longer than men, and life expectancy is
increasing worldwide. The median age of women will reach 82 in developed countries
by 2025 [3]. Thus, about half of a woman’s life is after menopause. It is well known that
hormonal changes are one of the significant physiological effects of menopause. There are
three types of estrogen—estrone (E1), E2, and estriol (E3)—all of which are C18 steroids and
aromatic molecules [4]. Each form has a unique function that matches a woman’s life cycle
characteristics, such as reproductive age, pregnancy, and menopause [5]. Before menopause
and throughout the menstrual cycle, meningeal cells produce androstenedione, which acts
as a metabolic precursor to E1 and testosterone in the ovaries and peripheral tissues [6]. In
granulosa cells, androstenedione is converted to E1 by aromatase activity of CYP 19, after
which E3 is converted to E2, with an average level of total estrogen of 100-250 pg/mL [6]
(Figure 1). By contrast, circulating E2 levels drop sharply to 10 pg/mL in postmenopausal
women [7], meaning that women spend half of their lives in estrogen deficiency.
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With these hormonal changes, menopausal women are more likely to experience
various metabolic disorders such as dysregulated lipid metabolism, fat redistribution,
visceral fat accumulation, and altered fatty acid metabolism [8–10]. Furthermore, they
are readily accompanied by changes in body composition and energy metabolism, loss of
muscle volume and strength, and weight gain [11–13].

To better understand metabolic alterations, it is important to understand recom-
mended body weight, body composition, and the basic concepts of energy metabolism,
including basal metabolism, resting energy expenditure (REE), and metabolic rate. This
review describes the concepts needed to understand energy metabolism, including the
composition of the human body and the components of energy expenditure, and discusses
possible changes in energy metabolism in postmenopausal women. By summarizing
overall energy metabolism, this review provides information for preventing muscle and
bone loss. In addition, it also addresses lipid metabolic changes related to visceral fat
accumulation, lipolysis, fatty acid oxidation, fat redistribution, and weight gain.

2. Menopause Associated Changes in Energy Metabolism
2.1. Composition of the Human Body

The chemical compositions of the male and female human bodies are shown in Table 1,
based on average physical dimensions from the measurements of thousands of subjects
who participated in various anthropometric and nutrition surveys [14]. As seen in Table 1,
the muscles of the reference man account for 44.8% of body weight, compared to 36% for
women. The reference man has 15% total body fat versus the female’s 27%. The reference
woman’s storage fat accounts for 15% of her weight, and essential fat accounts for 12%.
The total amount of our body fat is composed of storage and essential fats. The latter is
present in lipid-rich tissues throughout the central nervous system, bone marrow, heart,
lungs, liver, kidneys, spleen, intestines, and muscles [15]. In females, essential fat also
includes fat in mammary glands and the pelvic region. Fat that accumulates in adipose
tissue is called storage fat, and triglyceride (triacylglycerol) is the typical component, which
accounts for ~86% of body fat [16]. Triglyceride can be broken down into fatty acids and
glycerol by lipase and used to produce ATP for energy metabolism [13]. In other words,
triglyceride can be used as an energy source for heat generation in the human body. Fat
mass is, therefore, the most changeable constituent of the body. In terms of muscle and
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body fat mass, the body compositions of men and women are distinctly different, with
women having more fat and less muscle mass [17].

Table 1. Body compositions of Reference Men and Women [14].

Men Women

Age, years 20–24 20–24

Height, in 68.5 64.5

Weight, lb 154 125

Total fat, lb (% body weight) 23.1 (15.0%) 33.8 (27.0%)

Storage fat, lb (% body weight) 18.5 (12.0%) 18.8 (15.0%)

Essential fat, lb (% body weight) 4.6 (3.0%) 15.0 (12.0%)

Muscle, lb (% body weight) 69 (44.8%) 45 (36.0%)

Bone, lb (% body weight) 21 (14.9%) 15 (12.0%)

Remainder, lb (% body weight) 38.9 (25.3%) 31.2 (25.3%)

Average body density 1.070 g/mL 1.040 g/mL

Changes in Body Composition in Postmenopausal Women

As women age, they tend to have an increased amount of fat tissue in the abdomen
and relatively reduced fat in the hip-thigh area. Changes in body composition are also
involved, including reductions of fat-free mass (FFM) and lean body mass (LBM) [18].
Women who experience natural menopause have changes in body fat mass, such as a
decrease in total leg fat and an increase in abdominal fat [19]. It is likely that these
changes are at least in part due to hormonal changes that occur when women have high
levels of androgens versus E2 after menopause [20]. Several researchers have shown that
menopause itself influences upper body fat distribution independent of aging [21–23].
However, many cross-sectional studies using dual-energy X-ray absorptiometry showed
that postmenopausal women have lower FFM or LBM in the whole body, trunk, and
lower extremities than premenopausal women [24]. In a 6-year follow-up longitudinal
study, natural postmenopausal women lost more FFM than age-matched premenopausal
women while showing increased central adiposity and reduced energy expenditure during
rest and physical activity [25]. Interestingly, one out of five relatively healthy Korean
postmenopausal women aged over 65 years exhibited a decline in muscle mass, and 7.6%
of subjects showed declines in both muscle mass and strength [26]. The study also reported
the intensified loss of skeletal muscle with aging [27].

2.2. Component of Energy Expenditure

Menopausal women are likely to experience changes in lipid metabolism along with
weight gain [8]. To understand why this occurs, it is necessary to know the basic concepts
of energy expenditure that influence body weight and composition, the function of the
basal metabolic rate (BMR), the thermic effect of food, and physical activity. Total energy
expenditure consists of (1) the BMR or REE, (2) the thermic effect of food (TEF), and (3) the
thermic effect of activity (TEA) (Figure 2).

2.2.1. BMR

Basal metabolism is the energy expended by internal processes during a period of
complete rest in a climate-controlled environment at least 10–12 h after consumption
of the most recent meal; that is, the minimum amount of energy needed to sustain life
processes [28]. Typically, 50–65% of total energy expenditure is attributable to the BMR that
is commonly used with REE, which is simply the basal metabolism during a non-active
state in a climate-controlled environment at least 10 to 12 h after the consumption of the
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most recent meal (Figure 2) [29]. However, the most important difference between the BMR
and REE is that a subject does not need to fast to measure REE.
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2.2.2. TEF

The TEF refers to the metabolic reaction of food (i.e., heat generation) due to its
digestion, absorption, processing, and storage [30]. TEF can increase metabolism by more
than 5–15% compared to the BMR when consumed in large portions rather than small
frequent meals, when carbohydrates and protein rather than dietary fat are consumed,
and when a low-fat plant-based diet is followed [31]. Generally, TEF is estimated as 10%
of total energy intake during a particular period (Figure 2) [32]. For example, TEF can
be estimated at 160 kilocalories for an individual who consumes a mixed diet containing
1600 kilocalories over a 24-h period.

2.2.3. TEA

The TEA refers to skeletal muscle activity associated with the maintenance of posi-
tion and posture, as well as skeletal activity during obvious movements such as walking,
running, swimming, climbing stairs, or vacuuming [28]. Thus, TEA is a highly changeable
component. While the contribution of skeletal muscle activity may seem trivial, simply sit-
ting on a chair without back support augments heat generation by 3–5% [28]. This increase
in metabolism is much more significant when standing [33]. Average physical activity
accounts for 20–40% of total energy expenditure, but this depends on the individual’s
physical activity (Figure 2) [34]. Therefore, sedentary people who are less active consume
much less energy and may have lower energy than more physically active people [35].
These results indicate that a sedentary lifestyle before menopause may contribute to a
decrease in total energy expenditure [36].

2.3. Metabolic Rate Difference between Skeletal Muscle and Adipose Tissue

The human body consists of protein, water, minerals, and fat, which can be largely
divided into fat mass and FFM [37]. FFM is often conflated with LBM, which is calculated
by subtracting fat mass weight from total body weight. LBM is the weight of internal organs,
skin, bones, body water, tendons, and muscle mass [38]. The human body is composed of
various tissues and organs, each of which has a specific function and mass, resulting in
a different contribution to the BMR. FFM or skeletal muscle accounts for approximately
60–85% of the body mass; it is regarded as an energy consumer and a major determinant
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of the BMR or REE. Therefore, the metabolic energy rate differs depending on the body
composition ratio [34]. In this regard, it is necessary to consider the difference between
the energy consumptions of skeletal muscle and adipose tissue, which are 13 kcal/kg/day
and 4.5 kcal/kg/day, respectively (Table 2) [39]. The energy expenditure of skeletal muscle
is three times higher than that of adipose tissue, so the BMR is higher for individuals
with high muscle mass, even if they have the same weight as a person with low muscle
mass. During aging, fat increases at the expense of FFM; moreover, the loss of LBM due to
sarcopenia (a decrease in skeletal muscle) and an increase in adipose tissue will result in a
lower BMR [40].

Table 2. Estimated metabolic rates of tissues and percentage contribution to total metabolism [34].

REE MEN WOMEN

kcal/kg/Day % Total REE % Total REE

Liver 200 17 18
Brain 240 19 21
Heart 440 9 8

Kidneys 440 8 8
Skeletal muscle a 13 24 20
Adipose tissue 4.5 4 7

Other b 12 19 18
Total 100 100

REE, resting energy expenditure. a Resting and nonexercised recovery rate; b skeleton, blood, skin, gastrointestinal
tract, lungs, spleen, and other organs.

2.3.1. Changes in Body Composition and Energy Expenditure in Postmenopausal Women

As aging progresses, FFM or skeletal muscle loss occurs, which leads to a decrease
in the BMR [41,42]. Considering that the metabolic rate of skeletal muscle is more than
three times higher than that of adipose tissue, loss of skeletal muscle or FFM may lead
to a decrease in BMR among menopausal period women [43,44]. The decrease in E2,
along with changes in body composition in postmenopausal women, plays an important
role in regulating adipocyte differentiation and distribution. Gavin et al. reported that
ovarian hormone depletion after ovariectomy (OVX) increased the production of bone
marrow-derived adipocytes (BMDAs) in mice visceral fat depots that are gonad adipose
depots [45]. In addition, E2 replacement continued to dampen the accelerated production
of BMDAs. Furthermore, estrogen receptor (ER)α genetic knockdown enhanced BMDA
production in both the gonadal and inguinal depots, which demonstrated that E2 regulates
BMDA production [45]. If this is translatable across species, it suggests that the production
of BMDAs occurs through a mechanism where visceral fat increases in estrogen-deficient
postmenopausal women.

Estrogen plays a pivotal role in systemic energy homeostasis. OVX mice have been
shown to reduce systemic O2 consumption and energy expenditure, leading to the weight
gain associated with increased body fat. On the other hand, exogenous E2 supplementa-
tion increased systemic O2 consumption and energy expenditure, resulting in increased
systemic insulin sensitivity in OVX mice [45]. This provides a mechanism by which E2
supplementation may ameliorate insulin resistance [45]. With regard to energy homeosta-
sis, it was also reported that E2 directly regulates mitochondria membrane biophysical
properties and bioenergetic functions, providing a direct pathway by which E2 states
broadly influence energy homeostasis [46,47]. OVX mice exhibit decreased mitochondrial
respiratory function, cellular redox state, and insulin sensitivity in skeletal muscle [46]. E2
may be a mitochondrial membrane component in many tissues that locally affects bioen-
ergetic activity and energy homeostasis. Additionally, Gavin et al. showed that reducing
endogenous E2 in humans reduced energy expenditure and increased visceral fat [45]. It
was also reported that estrogen deficiency increased BMDA accumulation in the white
adipose tissue of mice and was associated with decreased physical activity in women [48].
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Postmenopausal women may experience body shape changes due to increased loss
of FFM or LBM with high energy metabolisms, while fat tissue increases with low energy
metabolism and increased BDMAs [45]. Because the E2 state has a widespread impact on
energy homeostasis, a decrease in levels of this hormone reduces systemic O2 consumption
and energy consumption. Postmenopausal women’s bodies also consume less energy to
maintain their basic life processes [49]. Collectively, these changes may affect the BMR and
lead to insulin resistance along with weight gain.

2.3.2. Sarcopenia in Postmenopausal Women

In general, skeletal muscle mass and muscle strength peak in the mid-20s and 30s
and then gradually decrease [50]. Sarcopenia refers to the degenerative loss of skeletal
muscle that occurs at a rate of 3–8% every 10 years after the age of 30 years and accelerates
with age [8]. This condition is associated with increased risks of functional disability, falls,
fractures, and overall mortality among the elderly [51]. Women develop sarcopenia earlier
than men, and the decline of skeletal muscle mass and strength accelerates with the onset
of menopause [52,53]. When sarcopenia coexists with osteoporosis, it results in a geriatric
syndrome called “osteosarcopenia,” which increases the risk of weakness, hospitalization,
and death [54]. In a prospective cross-sectional study by Buliana et al., the prevalence of
osteosarcopenia was reported to be high among postmenopausal women with an increased
risk of fracture [55]. Patients in the osteosarcopenia group had a greater risk of frailty
than patients in the osteoporosis-alone group (odds ratio, 2.33; 95% confidence interval,
1.13–4.80; and p = 0.028). According to a retrospective observational study, one-year
mortality of osteosarcopenia (15.1%) was higher than that of other groups (normal, 7.8%;
osteoporosis only, 5.1%; and sarcopenia only, 10.3%) [56]. In postmenopausal women,
insufficient protein and calcium intake and low levels of physical activity appear to be
the most common risk factors for osteosarcopenia [55]. Generally, it is accepted that
menopause is associated with accelerated loss of FFM or skeletal muscle, which further
decreases energy expenditure during rest and physical activity [57]. Thus, body function
impairment originates from muscle loss in menopausal women, leading to difficulties in
carrying out voluntary activities and reducing the quality of life. The most promising
strategy for increasing muscle and bone mass is resistance training, as well as sufficient
amounts of protein, vitamin D, calcium, and creatine to help preserve these tissues during
menopause [53].

3. Background of Weight Gain in Postmenopausal Women
3.1. Lipid Metabolic Abnormality Due to E2 Hormonal Change

Typically, women spontaneously experience menopause between the ages of 45 and
55 because of decreased ovarian follicular activity [1]. Menopause does not happen all
at once; rather, it progresses through a transition period to the postmenopausal stage.
With regard to surgical menopause, bilateral oophorectomy has been shown to cause
dyslipidemia and significant loss of bone density within one year [2]. Around this time,
the female hormones undergo drastic alterations. One of the major physiological changes
associated with menopause is a sharp decrease in E2 that contributes to lipid metabolic
disorders. Notably, women tend to develop more cardiovascular disease after menopause
due to estrogen deficiency and alterations in lipid metabolism [58]. The reason is due
to the unique role of E2 that is synthesized using low-density lipoprotein cholesterol
(LDL-C) in the ovary (Figure 1). Therefore, a decrease in E2 synthesis due to menopause
means that LDL-C is no longer used for synthesizing E2, so it remains in the systemic
circulation (Figure 1). Since postmenopausal women have high LDL-C levels, there is
an increased risk of metabolic syndrome symptoms, including central obesity, insulin
resistance, dyslipidemia, hypertension, and cardiovascular disease [59].
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3.2. Fat Redistribution in Postmenopausal Women

Most women tend to experience changes in the composition of the body as they get
older, and this period almost perfectly coincides with menopause [60]. In premenopausal
women, adipose tissue is predominantly distributed in the gluteal femoral subcutaneous
compartment, whereas postmenopausal women tend to exhibit higher total body fat mass,
fat percentage, and accumulation of central fat [61]. This can be partly explained by
the changes in circulating endogenous sex hormone levels, because estrogen androgen
receptors are expressed in both visceral and subcutaneous adipocytes [62,63]. Estrogens
bind to ERα and ERβ, and androgens bind to the androgen receptor, enabling sex hormones
act on their target cells [64]. Therefore, the reduction of the circulating sex hormones will
change their action in target cells.

Ovarian estrogens induce peripheral fat storage mainly in the gluteal and femoral
subcutaneous regions that express ERα, which mediates lipoprotein lipase activity and
triacylglycerol accumulation in adipocytes [65]. On the other hand, androgens—Primarily
bioavailable testosterones—Augment visceral abdominal fat accumulation [63]. In post-
menopausal women, the concentration of E2 in circulation decreases, so the androgen
to estrogen ratio increases [8]. Therefore, relative androgen excess (a higher baseline
testosterone/E2 ratio) causes weight gain and body fat redistribution in postmenopausal
women [63,66]. According to the longitudinal, community-based, 5-year follow-up Study
of Women’s Health Across the Nation, postmenopausal women showed twice as much
visceral abdominal fat and subcutaneous adipose tissue than premenopausal women [67].
However, testosterone levels were similar among pre-and postmenopausal women [68],
which suggested that fat redistribution may be affected by a marked decrease in estrogen
levels as opposed to testosterone levels. Moreover, it was also observed that the androgen
to estrogen ratio was also elevated in premenopausal women with polycystic ovarian
syndrome [69,70].

3.3. Excessive Visceral Abdominal Fat and Metabolic Alterations

The basic role of adipocytes in lipid metabolism is storing energy in adipose tissue
in the form of triacylglycerol and releasing it as free fatty acids (FFAs) as needed to
provide fuel for working muscles [71]. Adipocytes also control glucose homeostasis by
secreting glycerol and fatty acids, which play critical roles in hepatic and peripheral
glucose homeostasis by mediating the breakdown of triacylglycerol [72,73]. However, as
women experience menopause, dysregulated adipocyte metabolism occurs due to estrogen
reduction, and various metabolic diseases appear [8].

Visceral adipose tissue in both humans and rats is composed of mesenteric, retroperi-
toneal, osteoporosis, and reproductive gland deposits, so rodent models have been widely
used to simulate fat metabolism in the human body [74]. In animal models such as OVX
and ERα knockout mice, loss of ovarian hormones has been demonstrated to increase
BMDA production in the visceral fat depot and gonadal adipose depot [45]. ERα plays
an important role in regulating the de novo synthesis of BMDA, which supports the ob-
servation of increased visceral fat in estrogen-deficient postmenopausal women [45]. In
this setting, visceral fat increases, and abdominal obesity intensifies in obese menopause
women. Since the rate of lipolysis differs throughout the body, abdominal fat has a higher
rate of lipolysis than gluteal fat due to the higher rate of catecholamine-mediated lipolysis
in the abdomen [66,75].

3.4. Alterations in Fatty Acid Metabolism

It is widely known that FFAs are produced by the excessive decomposition of visceral
fat, which promotes hepatic insulin resistance in connection with the increased flow of
FFAs to the liver [76]. Interestingly, in a metabolomic study comparing the evaluation of
fatty acid metabolism between pre-and postmenopausal women, fatty acid metabolites
such as heptanoate, octanoate, and pelargonate were significantly higher in the visceral
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fat but not in the subcutaneous fat of postmenopausal women. This means that increased
lipolysis of visceral fat may trigger an accumulation of fatty acid metabolites [77].

Extensive studies have been conducted on the role of estrogen in various metabolisms,
immunity, and inflammatory processes in rodents and humans [78]. Thanks to more sensi-
tive and accurate proteomic techniques, a number of proteins and pathways in visceral fat
were found in OVX rodent models [79]. Interestingly, Boldarine et al. reported that OVX
induced the upregulation of genes related to lipogenesis and downregulation of genes
related to fatty acid oxidation [10]. It was reported that expression of the adipogenesis-
associated gene all-trans-retinol 13,14-reductase (RETSAT) was increased in OVX mice.
RETSAT is induced during adipocyte differentiation and is positively regulated by the
transcription factor, peroxisome proliferator-activated receptor γ, which means that up-
regulated RETSAT indicates active fat accumulation in OVX mice [80]. Moreover, adipose
tissue lipoprotein lipase (AT-LPL) showed increased expression, indicating a high ability of
retroperitoneal adipose tissue to absorb lipoprotein-derived FFAs. AT-LPL is an enzyme
that decomposes triglyceride into FFAs for absorption and storage by adipocytes, and plays
an important role in fat accumulation and fat storage distribution. Therefore, it can be
expected that increased uptake of lipoprotein-derived FFA in retroperitoneal adipose tissue
due to enhanced expression of AT-LPL could be expected to affect the TG synthesis pool
in OVX mice [72]. Estrogens are also associated with inflammatory responses in women.
Although estrogens are known to enhance autoimmune diseases [81], decreased estrogen
increases susceptibility to infectious diseases, as demonstrated by the defective innate
immune responses against viral infection in OVX mice [82]. In addition, OVX enhanced the
susceptibility of female rats to dyslipidemia with a decrease in innate cytokines, suggesting
impaired metabolic and immune homeostatic responses with the loss of estrogens [83].

A pathway analysis study reported that OVX affected the fatty acid metabolism/
mitochondrial fatty-acid-oxidation pathway and fatty acyl coenzyme A (CoA) biosyn-
thesis pathway in visceral adipose tissue [10]. Fatty acid catabolism mainly occurs in
the mitochondria [84]. Long-chain fatty acids with more than 14 carbons are converted
into fatty acyl-CoA and pass through the mitochondrial membrane [85]. Fatty acid
catabolism begins with acyl-CoA synthetase that adds CoA to fatty acids using ATP in
the cytoplasm [85]. Once it has passed through the mitochondrial membrane, acyl-CoA
begins the beta-oxidation process [85]. FFA activation occurs by bonding with CoA
and is promoted by ligase enzymes, which are important steps in the oxidation and
synthesis of triacylglycerol and other lipids [86]. Fatty acid oxidation is the largest
contributor to ATP production, accounting for 40–60% [87]. Therefore, a decrease in
fatty acid oxidation leads to the accumulation of lipids in a state that the body cannot
efficiently burn as a fuel source, resulting in insulin resistance [10,88].

Taken together, the loss of estrogen and increase in circulating androgens in post-
menopausal women induce changes in body fat distribution, leading to abdominal obesity.
In addition, loss of estrogen increases BMDA production in mice visceral fat depots, which
are gonad adipose depots [45]. As such, obese menopausal women have increased visceral
fat and aggravated abdominal obesity. The rate of lipolysis is higher in abdominal fat
than in gluteal fat [77], which triggers excess FFA production from excessive visceral fat
breakdown, promotes insulin resistance, and leads to metabolic diseases [76]. In the OVX
model, the expression of genes related to β-oxidation and lipogenesis is decreased and
increased, respectively. Therefore, excessive fatty acids produced by the breakdown of
visceral fat cannot be efficiently oxidized as a fuel source in the body through β-oxidation,
which leads to fat accumulation. This can cause unfavorable changes in both fat metabolism
and energy metabolism [10].

4. Conclusions

Both natural and surgical menopause is accompanied by changes in body composition
due to loss of E2 secretion, and various changes can occur in energy and lipid metabolism.
Postmenopausal sarcopenia and increased fat mass change the energy metabolic rate and
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affect the BMR. In addition, postmenopausal women are susceptible to obesity, and weight
loss becomes more difficult. Moreover, fat redistribution caused by hormonal changes
leads to changes in body shape. In particular, as the amount of visceral fat increases, FFAs
also increase due to excessive fat decomposition, which can lead to insulin resistance and
cause metabolic diseases. In addition, excessive FFAs produced by the lipolysis of visceral
fat after menopause are not properly used as energy sources through β-oxidation, which is
because genes related to β-oxidation are downregulated following the loss of E2. In this
review, energy metabolism and lipid metabolic disorders related to menopause have been
comprehensively summarized in relation to the basic concepts of body composition and
energy expenditure. An understanding of overall energy metabolism, osteosarcopenia, and
a recognition of the importance of preventing muscle loss will help to address individual
health needs. This review also systematically organized the background of weight gain due
to E2 loss and lipid metabolic abnormalities. However, we did not discuss physical activity
and nutritional therapy, which are prominent factors influencing metabolic changes. The
relation between menopausal status and overall energy and lipid metabolism, particularly
fatty acid oxidation, must be clarified to prevent the growing problem of obesity-related
disorders, including insulin resistance and metabolic syndrome.
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