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Abstract
Epigenetic processes are known to have powerful roles in organ development
across biology. It has recently been found that some of the chromatin
modulatory machinery essential for proper development plays a previously
unappreciated role in the pathogenesis of cardiac disease in adults.
Investigations using genetic and pharmacologic gain- and loss-of-function
approaches have interrogated the function of distinct epigenetic regulators,
while the increased deployment of the suite of next-generation sequencing
technologies have fundamentally altered our understanding of the genomic
targets of these chromatin modifiers. Here, we review recent developments in
basic and translational research that have provided tantalizing clues that may
be used to unlock the therapeutic potential of the epigenome in heart failure.
Additionally, we provide a hypothesis to explain how signal-induced crosstalk
between histone tail modifications and long non-coding RNAs triggers
chromatin architectural remodeling and culminates in cardiac hypertrophy and
fibrosis.
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Introduction
Advances in the pharmacologic management of serum lipid  
levels and surgical, device-aided, and pharmacologic abatement 
of myocardial ischemia/reperfusion injury have conspired 
with increases in obesity to exacerbate the epidemic of heart  
failure across the developed world. The syndrome of heart  
failure encompasses a spectrum of symptoms with variable  
manifestation in different people: impaired ability to meet the 
oxygen demands of the body are accompanied by impaired  
contractile function of the heart, myocyte hypertrophy, fibrotic 
deposition and fibroblast to myofibroblast transformation, 
and/or metabolic derangements. The scale of the heart failure 
clinical problem—7 million affected in the United States  
alone1—combined with the multifarious nature of the pathologic 
mechanisms make novel molecular mechanisms of cardiac  
dysfunction a major target for ongoing basic and translational  
research.

Heart failure is a progressive condition, wherein the cumulative 
effects of stress to the heart are integrated to alter the function 
of the organ. While some aspects of cardiac dysfunction can be  
mitigated by targeting risk factors (e.g. blood pressure control),  
cellular and molecular insults change the function of the heart 
in a more lasting and, presently, from a drug development  
standpoint, intractable manner. To develop the next class of  
therapeutic targets for heart failure, we need to dissect the  
influence of pathologic stress on (a) the major classes of cells in 
the heart and (b) the molecular substrate for persistent cell and 
organ dysfunction. Towards the latter goal, emerging evidence  
indicates that chromatin regulatory mechanisms are mobilized  
following injury to establish and entrench diseased transcrip-
tomes and phenotypes. The families of histone-modifying  
enzymes that write, read, and erase marks on these proteins 
in a signal-responsive and locus-specific manner establish the  
differential accessibility that allows the same genome to encode 
different cell types. Linking transcription with chromatin  
regulation, long noncoding RNAs (lncRNAs) have been revealed 
to exert powerful effects on cardiac cell phenotype through 
the regulation of gene expression. Together, these and other  
epigenetic mechanisms impart structure and regulation to  
chromatin between distinct cell types in the healthy and diseased 
setting. In this essay, we identify epigenomic regulation of  
specialized cardiac cell types like myocytes and fibroblasts as  
promising targets for therapeutic development.

Targeting histone acetylation for heart failure: HAT, 
HDAC, and BET inhibitors
Lysine is a versatile amino acid target for post-translational 
modifications, including methylation, acyl modifications 
(e.g. acetylation, crotonylation, and succinylation), and small  
protein isopeptide bonds (e.g. ubiquitination, NEDDylation, and  
SUMOylation)2. For the purposes of this review, we focus on 
the acetylation of ε-amino groups of lysine residues within  
nucleosomal histone tails. This post-translational modification 
is mediated by histone acetyltransferase (HAT) enzymes and has  
historically been linked to gene activation, with the charge  
neutralization provided by acetylation promoting a more  
permissive environment for transcription by weakening histone:
DNA associations and altering histone:histone interactions.

Findings with genetically engineered mice have suggested  
important roles for the p300 HAT in the control of pathological 
cardiac remodeling. Heterozygous deletion of p300 was shown 
to suppress cardiac hypertrophy in response to pressure overload,  
and overexpression of p300 triggered pathological hypertrophy  
and heart failure3,4. Unfortunately, efforts to advance HAT  
inhibitors as a therapeutic strategy for heart failure have been  
hampered by the lack of potent and selective pharmacological 
inhibitors of p3005. However, a recent virtual screening and  
medicinal chemistry optimization campaign yielded A-485, 
an orally bioavailable small molecule inhibitor that is highly  
selective for p300 and the related HAT, CREB-binding  
protein (CBP)6,7. The drug-like properties of A-485 provide an 
excellent opportunity to assess the efficacy of HAT inhibition 
in pre-clinical models of pathological cardiac remodeling and 
thereby determine the translational potential of p300 catalytic  
activity inhibition for the treatment of heart failure in humans.

A bromodomain, which is an acetyl-lysine binding motif, in  
p300 is required for chromatin targeting of the HAT8,9. CBP112 
and CBP30 have been developed as small molecules that  
target the p300 bromodomain and function as acetyl-lysine  
competitive inhibitors10,11. An impactful recent study employed  
proteomics and transcriptomics to quantify acetylation and 
mRNA and protein abundance in mouse embryonic fibrob-
lasts after cellular p300 inhibition with A-485 versus CBP11212. 
Interestingly, gene expression changes triggered by CBP112 
were modest compared to those observed upon catalytic inhibi-
tion of p300 with A-485, illustrating that the bromodomain of 
the HAT is required for the regulation of only a subset of target 
genes. It will be interesting to compare the effects of A-485 and  
CBP112 in cardiac myocytes to determine the relative contribu-
tions of p300 catalytic activity and bromodomain function in  
the control of pathologic gene expression.

In contrast to HAT inhibitors, a multitude of potent and  
selective HDAC inhibitors are available13. Most HDAC inhibitors 
possess a tripartite structure consisting of a zinc-binding group 
that binds the active site, a linker that mimics the lysine side  
chain, and a surface recognition cap that confers specificity 
of the compounds for HDAC enzymes. Distinct genes encode 
the 18 mammalian HDAC isoforms, which are either zinc  
dependent (HDACs 1-11) or NAD+ dependent (SirT1–7)14.  
The original demonstration that HDAC inhibitors could be  
beneficial in the heart was based on the use of trichostatin A  
(TSA), a Streptomyces metabolite that acts as a pan-inhibitor 
of zinc-dependent HDACs but does not affect the activity of  
NAD+-dependent sirtuins15–18. Subsequently, additional natural 
products as well as synthetic HDAC inhibitors were shown 
to be efficacious in animal models of heart failure, blocking  
pathological cardiac hypertrophy, fibrosis, and inflammation, and 
improving systolic and diastolic function19.

Remarkably, our understanding of the functions of HDACs in 
the control of epigenetic regulation of gene expression in heart  
failure is still extremely limited. A genome-wide evaluation of 
the impact of HDAC inhibition on one epigenetic mark in normal  
and stressed hearts was described20. Mice were subjected to  
left ventricular pressure overload and were administered TSA 
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or vehicle control for four weeks. ChIP-seq of whole heart  
homogenates with an anti-acetyl-H3K9/K14 antibody revealed 
that pressure overload broadly altered histone acetylation  
throughout the genome, and these changes were reversed by 
TSA. A paradoxical finding from this study was the profound  
ability of TSA to also reduce H3 acetylation at many loci.  
These findings suggest the possibility that HDAC activity  
controls HAT genomic targeting, expression, and/or function 
in the heart. This mode of crosstalk could explain the seemingly  
counterintuitive finding that inhibiting enzymes that either 
add (HAT) or remove (HDAC) acetyl groups can suppress  
pathogenic processes that contribute to the development 
of heart failure. Taking this a step further, it is our strong  
belief that HDACs mediate extensive interplay between diverse 
epigenetic regulators, including lncRNAs, and coordinate  
complex remodeling of chromatin architecture in response to 
pathological stress in cardiac myocytes and fibroblasts, thereby 
promoting hypertrophy, fibrosis, and ventricular dysfunction  
(Figure 1).

Another way to pharmacologically target histone acetylation 
is through the use of BET protein inhibitors. The most well- 
characterized family of proteins that ‘read’ acetyl-lysine  
marks, without also containing catalytic domains for epige-
netic modifying activity (e.g. HATs), are the bromodomain and  
extraterminal domain-containing (BET) proteins (BRD2, BRD3, 
BRD4, and BRDT). BRD4 and BRDT (testis-specific) harbor 

a unique carboxy-terminal domain that is able to activate RNA 
polymerase II (Pol II) by recruiting CDK9, a kinase component of 
the P-TEFb complex; CDK9 phosphorylates serine-2 of the tail of 
Pol II, leading to transcription elongation21–23.

A developing function for BET proteins, in particular BRD4, 
is the creation of dynamic, cell state-specific enhancers called  
super-enhancers (SEs). The association of BRD4 with acetyl-
H3K27-containing SEs, the signaling of which to proximal  
promoters is believed to stabilize BRD4-containing coactiva-
tor complexes close to transcription start sites, enables P-TEFb- 
mediated Pol II phosphorylation and transcription elongation.  
JQ1, which is a small molecule inhibitor that is selective for  
BET bromodomains, was shown to effectively prevent and reverse 
cardiac hypertrophy, fibrosis, and ventricular dysfunction, in part, 
by suppressing the association of BRD4 with SEs associated 
with pro-hypertrophic and pro-fibrotic genes in the heart24–28. 
The extent to which BRD4 genomic targeting in the heart is  
controlled by distinct HDAC and HAT isoforms has not been  
determined, nor has the role of BRD4 in coupling to pathogenic 
lncRNAs and coordinating chromatin architecture remodeling in 
response to cardiac stress.

The notion of using small molecule inhibitors of epigenetic  
regulators to treat a chronic condition such as heart failure is  
often met with doubt, since the regulators to be targeted are  
widely expressed and mediate fundamental transcriptional  
mechanisms in many cell types. Nevertheless, there are four  
FDA-approved HDAC inhibitors, two approved DNMT  
inhibitors, and several other epigenetic modifying therapies 
in clinical development for oncologic and non-oncologic  
indications29. Thus, the feasibility of using ‘epigenetic therapies’  
to treat human diseases has been validated, and we believe that  
this approach has tremendous potential for patients suffering  
from the complex syndrome of heart failure.

This is also an exciting time to employ chemical biology to  
elucidate novel epigenetic pathways that control heart failure. 
No longer are we solely reliant on natural product inhibitors 
of epigenetic regulators, which often lack selectivity. Exhaustive 
and sophisticated medicinal chemistry programs in industry 
and academia have led to the development of highly selective 
and potent inhibitors of a wide array of epigenetic targets, 
and many of the compounds are available to the scientific  
community through programs such as the Structural Genomics 
Consortium30. Coupling the use of these compounds with well- 
validated phenotypic assays, such as cell-based assays of  
cardiomyocyte hypertrophy or fibrosis31, has the potential to  
rapidly uncover novel roles for epigenetic regulators in the 
control of heart failure and thus provide crucial mechanistic  
insights.

Long non-coding RNAs
lncRNAs are a class of RNA transcripts recently identified to be 
widely expressed in all tissues. Unlike several functionally and 
structurally well-defined species of non-coding RNAs, such as 
rRNA, miRNA, snoRNA, and piRNA, the very definition of 
lncRNAs remains arbitrary and is often applied to any RNA  

Figure 1. A model for integrating histone marks, long noncoding 
RNAs (lncRNAs), and chromatin architecture in heart failure. 
The epigenomic regulation of cardiac phenotype occurs at multiple 
interacting scales. Histone isoforms, post-translational modification, 
and nucleosome distribution influence local transcription. lncRNAs 
have emerged as powerful regulators of gene expression, interacting 
with chromatin-modifying enzymes and influencing their histone 
targets. Together with other chromatin regulatory proteins, histone 
modifications and lncRNAs establish local chromatin accessibility 
and global chromatin architecture, facilitating short- and long-range 
regulatory interactions that enable cell type-specific transcriptomes 
in healthy and diseased conditions.
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transcripts that have no coding capacity and are more than  
200 nucleotides in length32. Recent progress in transcriptome  
profiling using next-generation RNA sequencing methods has 
begun to uncover the enormous scale of the lncRNA products 
within the cardiac transcriptome and the scope of their con-
tribution to the overall transcriptome reprogramming under  
physiological and pathological conditions33–37. In addition to lack 
of protein coding capacity, common features of cardiac lncRNAs  
also include low abundance in expression (with notable excep-
tions) and a lower degree of sequence conservation33. They can 
be produced from intergenic regions of the genome (intergenic  
lncRNAs) or from different parts of known genes, such as  
enhancers, promoters, and exon or intron regions in either sense 
or anti-sense directions38. It is clear that the transcriptomic  
complexity of lncRNAs matches, if not surpasses, that of coding 
mRNAs in the heart.

Because of the scale and complexity of cardiac lncRNAs,  
physiological or pathological functions for the vast majority of  
them still remain to be determined. However, recent evidence 
shows that many cardiac lncRNAs do play important roles in 
gene regulation during cardiac development and pathophysiol-
ogy, particularly via epigenomic modulations, as showcased 
by the prototypic lncRNA H19 in the regulation of Igf2 gene  
imprinting39,40.

In the past 5 years, there has been an explosion of new  
discoveries of epigenomic regulatory lncRNAs, also referred to 
as epi-lncRNAs, in cardiac development and diseases41,42. For  
example, Mhrt and Chaer are reported to regulate chromatin  
modifications by direct interactions with histone modifiers, such 
as Brg1 and PRC2 complexes, respectively. The epigenomic  
impact of such interactions can be either local or more global. 
For example, Upperhand is a lncRNA that regulates neighboring  
hand2 gene expression in the developing heart in an allele- 
specific and cis-regulatory manner43. In contrast, Chaer modu-
lates global histone modifications as an epigenetic check-point 
for a large number of hypertrophic genes44. Ultimately, the func-
tional outcome of these epi-lncRNAs affects chromatin accessi-
bility for transcription factors, Pol II, and other RNA-processing  
machinery. In addition to these relatively well-characterized  
epigenetic modulatory lncRNAs, lncRNAs are also reported 
to modulate RNA splicing, transportation, and translation38.  
For example, CHRF and Miat can regulate cardiac gene  
expression and hypertrophy by binding to and interfering with 
miRNA functions, serving as so-called miRNA sponges45,46.

Given the role for lncRNAs in cardiac epigenetic regulation, 
interfering with lncRNA expression and function can have a  
significant impact on cardiac pathophysiology. For example, 
Mhrt expression can block, while Chaer and CHRF inactivation  
attenuates, pathological cardiac hypertrophy. Manipulation of 
the expression of the Wisper, Meg3, and MIAT lncRNAs also  
affects cardiac fibrosis and pathological remodeling47–49. Tissue  
and plasma lncRNAs have been identified as potential biomark-
ers to predict the disease outcome for heart failure32,50–52. These 
studies highlight the therapeutic potential for lncRNA-targeted  
treatment for heart failure.

LncRNAs are clearly central to the epigenomic network in the heart. 
However, many challenging issues remain with regard to under-
standing lncRNA-mediated cardiac epigenetic regulation and trans-
lating lncRNA-targeted therapies to the clinic. First, given the fact 
that the vast majority of lncRNA species have not been functionally 
annotated, new high-throughout phenotypic screening approaches 
will be needed to systematically identify functionally important 
lncRNA species in heart diseases. Second, the mechanisms of 
lncRNA-mediated epigenetic regulation are extremely diverse and 
much remains to be discovered. Other than a few exceptions, the 
structural basis of lncRNA function is still poorly understood53,54. 
The detailed molecular processes involved in lncRNA-mediated 
regulation of histone modifications are largely unknown. In par-
ticular, the molecular link between lncRNA function and patho-
physiological signaling is still elusive. Finally, many lncRNAs are 
species specific, leaving concerns about the translational relevance 
of studies conducted in rodents or other animal models55,56. There-
fore, there are pressing needs to develop novel analytic tools using 
integrated approaches combined with human datasets to identify 
and characterize functionally important lncRNAs and to develop 
novel experimental approaches to characterize lncRNA function 
in epigenomic regulation by revealing the hidden code of lncRNA 
structure and identifying the intersections between lncRNAs and 
epigenomic modulators.

Chromatin architecture
To get the same genome to behave differently in the presence of 
identical transcriptional machinery, the hundreds of cell types in 
mammalian systems must change the interface between these  
tiers of molecules (i.e. between DNA and everything that  
regulates it). One manner in which this interface is altered is via 
structure and accessibility (two separate concepts) of chromatin, 
in large part through the actions of histone-modifying enzymes  
as discussed in the first part of this essay. Recent technologies  
that enable direct measurements of accessibility and structure of 
the genome reveal how these features are modified in a global,  
coordinated manner and implicate changes in chromatin  
architecture as a fundamental driver of disease.

Global changes in histone marks have been observed in  
multiple studies of animal models of heart failure, including a 
general trend of increased euchromatic marks and/or decreased  
heterochromatic marks (early observations from human hearts 
supported a similar trend57). In mouse models of pressure  
overload, ChIP-seq has been used to map global deposition 
of various histone marks associated with transcriptional acti-
vation, repression, and enhancer formation in the basal and 
hypertrophied heart58. Human57,59 and mouse60 studies of DNA  
methylation, which is associated with gene expression and 
may participate in chromatin structure, have also revealed  
widespread changes during the development of heart failure, 
with specific localization around genes involved in the disease’s  
pathogenesis and related to chromatin structural features, such 
as topologically associated domains61. Chromatin accessibility— 
that is, the local density of nucleosomes (i.e. how many occupy 
a fixed region of DNA) and the decoration of nucleosomes with  
post-translational modifications that facilitate (such as lysine 
acetylation in particular) or inhibit (such as trimethylation of  
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histone H3 K9 or K27, for instance) transcriptional activity— 
can be globally assayed by various techniques, which report on 
the cumulative effects of multiple histone modifications, DNA  
modifications, and other protein binding rather than being  
dependent on assumptions based on ChIP-seq data for any  
single modification. Accessibility is a prerequisite for protein  
binding and hence transcription. Although it is beyond the  
scope of this review to comprehensively address this concept, 
there are scores of histone-modifying enzymes that modulate  
chromatin in any given cell type while, at the same time, DNA  
itself is modified, most notably through methylation and 
hydroxymethylation. These processes do not exist in isolation,  
and indeed some aspects of DNA methylation can be influenced 
by chromatin structure, as has been recently reported in cardiac  
myocytes62. Indeed, the shift at specific loci across the genome 
between hydroxymethylation and methylation at cytosines has 
been shown to play a role in pathologic transcriptional changes 
in cardiac hypertrophy and failure63. Furthermore, heart failure 
is associated with changes in DNA methylation, which appear to  
coordinate with chromatin features defined by histone modifica-
tions in both mice and humans57,60.

Chromatin structure, on the other hand, is a three-dimensional 
problem that incorporates localization within the nucleus (i.e. 
how close a given region of the genome is to nuclear features 
such as membranes, nucleoli, or transcription factories), nearness  
to other regions of the same or different chromosomes (in  
particular for the actions of transcriptional enhancers, which can 
act at a distance to regulate transcription during heart failure), 
and local architectural features that insulate against aberrant  
transcription while facilitating the appropriate variety. Recent 
investigations have shown cardiomyocyte chromatin to undergo 
selective, locus-specific, and highly tuned structural reorganiza-
tion in the setting of pressure overload hypertrophy in animal  
models64. Different cardiac cell genes exhibit distinct temporal 
schemes of chromatin remodeling after pathologic stress58,65, 
which have been attributed to underlying chromatin features, 
such as gene looping, in addition to the actions of enhancer  
elements. Histone modifications (and the suite of proteins that 
add, remove, and read these modifications, as well as ATP- 
dependent chromatin remodelers, which consume ATP to repo-
sition nucleosomes along the genome) and chromatin-binding 
proteins such as CTCF and high mobility group proteins all  
contribute to chromatin structure by influencing nucleosome  
positioning, although a clear rubric for how nucleosome  

positioning and histone modification directly influence the  
folding of the genome remains to be determined (the highest 
resolution studies of chromatin structure across cell types reveal  
minor differences but reflect that topologically associating  
domains are largely conserved between lineages66). Indeed, 
how local chromatin modifications determine local and global  
epigenomic structure is a fascinating frontier of basic and  
translational chromatin research. The most compelling evidence 
for lncRNA-mediated chromatin organization comes from the 
field of X chromosome inactivation, where the lncRNA Xist has 
been shown to govern inactivation-associated folding of the 
X chromosome based on its interaction with key sites on the  
chromosome and the recruitment of inactivated histone modifiers 
and DNA methylation machinery67,68.

Concluding remarks
New classes of therapeutic targets for heart failure require an  
appreciation of both the multicellular nature of the disease and 
the distinct pathophysiological mechanisms underpinning the  
diversity of symptoms in afflicted human populations. As put 
forth in this essay, we identify the interface among lncRNAs,  
histone modifications, and chromatin architecture as a key  
nodal point at which heart failure processes intersect, thus 
representing a ripe target for novel pharmacologic targeting.  
Challenges that remain include dissecting the roles of these  
different epigenetic regulators in different cell types in the heart 
and determining the optimum chromatin targets for a range of  
clinical heart failure phenotypes.
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