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ABSTRACT: The chemical process industry has become the backbone of the global economy. The complexities of chemical
process systems have been increased in the last two decades due to online sensor technology, plant-wide automation, and
computerized measurement devices. Principal component analysis (PCA) and signed directed graph (SDG) are some of the
quantitative and qualitative monitoring techniques that have been widely applied for chemical fault detection and diagnosis (FDD).
The conventional PCA-SDG algorithm is a single-scale FDD representation origin, which cannot effectively solve multiple FDD
representation origins. The multiscale PCA-SDG wavelet-based monitoring technique has potential because it easily distinguishes
between deterministic and stochastic characteristics. This study uses multiscale PCA-SDG to detect, diagnose the root cause and
identify the fault propagation path. The proposed method is applied to a continuous stirred tank reactor system to validate its
effectiveness. The propagation route of most process failures is detected, identified, and diagnosed, which is well-aligned with the
fault description, demonstrating a satisfactory performance of the suggested technique for monitoring the process failures.

1. INTRODUCTION

With the advent of the fourth industrial revolution (IR 4.0),
conventional industrial processes have been autonomous. Many
modern industrial processes have well-developed sensors that
collect process-related data to detect failures and process system
monitoring. Careful monitoring, including process control and
appropriate corrective measures, is required to ensure process
efficiency. It improves and proceeds to the industrial environ-
ments with complete equipment and process automation.1−3

Fault detection and diagnosis (FDD) systems have seen an
increased demand for process safety, dependability, and product
quality within process engineering systems. Fault detection and
diagnostic methods have been proposed to characterize typical
variations in a process plant and detect abnormal deviations.
Early detection and diagnosis are always challenging yet needed
to prevent process disruptions, shutdowns, or even process
failures. It has become a crucial feature due to the advanced and
complicated processes involving several variables.4 For example,
defective events, like disabling a catalyst, valve obstruction, or
compressor failure, are unavoidably and regularly present.5

Therefore, early detection and diagnosis increase process safety

and productivity and minimize the process defectivity.6,7 The
process industry might save up to millions of dollars if precise
FDD systems are implemented correctly.8

Generally, FDD approaches are classified into model-based,
knowledge-based, and process methods based on history. Exact
and highly dependable process system models are used in
model-based techniques. However, accurate primary model
expansions are more challenging and almost unachievable for
specific processes in modern process systems. The procedures
for developing the knowledge models are based on the process
conduct and plant operator experience. The accumulation of
long-term development of the process knowledge base and
expert experience is always in-demand. Instead, the process
models and expert’s knowledge are unnecessary for approaches
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that rely on the process history.9 Furthermore, most process
systems employ a distributed control system, and enormous
amounts of data can be saved. The process data mining systems
can be used for this information. This development in data
extracting technology contributed to developing methods based
on process history, which are also considered methods based on
data. Therefore, most FDD applications are focused on data-
driven methodologies in the process industry.10−13

The methodology of a signed directed graph (SDG)-based
fault diagnostics has improved significantly over the last three
decades. An SDG model identifies the flow of information and
the effect direction (increase and decrease). The SDG for the
modeling of chemical processes was initially introduced by Iri et
al.14 Recently, Maurya et al.15 introduced the SDG algorithm
and diagram for various system types to predict initial and stable
system variables for deviations from their nominal fault
diagnosis value on external variables and provided techniques
for SDG analysis. In the 1980s, SDG-based fault diagnostics
were only studied with qualitative system information, and their
relationships with the cause/effects were retrieved by some
researchers as expert rules.16,17 In 1989, the concept of defect
revealing time was initially presented, and the diagnosis of faults
was made online with time data.18 In the 1990s, different
researchers modified the SDG model to address the multifault
diagnostic problem.19 The diagnostic method based on the
simultaneously specific and quantifiable methodologies was
coupled with the SDG.20,21 Since 1999, there has been a strong
interest in other techniques, including fuzzy-SDG,22 PCA-
SDG,23 PLS-SDG,24 and QTA-SDG.25

The PCA-based contribution plots are well-known ap-
proaches for diagnosing faults.26 In general, contribution plots
indicate the effect of each variable on the statistical index T2 or
squared prediction error (SPE) from the PCA. The leading
causes of the failure are the factors with the most contributions.
However, the contribution from the root origin variable is
extended to other variables, which may not be the root cause of
the failure due to the quick interaction between process
variables. Vedam and Venkatasubramanian proposed a PCA-
SDG method, where the SPE statistic from PCA is used to
determine node thresholds and find a consistent SDG model
path.23 However, the contribution can be propagated among
variables with fault spreads, making the root cause of the failure
hard to locate. These algorithms lead to inaccurate or no
diagnosis in the presence of multiple failures. To select the
measurable variables for SDG-based diagnosis, the number of
thresholds required is decreased to one. Root causes of multiple
faults are difficult to identify, reducing the operator number of
control actions. The SDG-based fault diagnosis method has an
insufficient diagnostic resolution. The standard SDG fault
diagnostic methodology originates from a single-scale fault
representation and cannot effectively address various roots of
fault representation. It causes erroneous representations because
of the qualitative nature of the SDG.
Bakshi introduced the MSPCA framework by combining

wavelet transforms (WT) with PCA to address these
challenges.27 A specified wavelet family was used to break
down each variable individually in this framework. The PCA
model was applied to the coefficients at each scale to highlight
pertinent events. Furthermore, various multiscale extensions
have developed multiscale FDD frameworks in recent
years.28−31 A multiscale approach based on wavelet transform
is a crucial technique. It offers several advantages over standard

single-scale approaches as deterministic and stochastic proper-
ties differ from the interim measurement of the process.
This study proposes a multiscale PCA-SDG approach to

diagnose and identify process failure paths in a continuous
stirred tank reactor (CSTR). Its vital contribution is introducing
a process monitoring method based on multiscale PCA-SDG.
Fault diagnostic techniques based on multiscale PCA-SDG are
effective for convenient accuracy and easy diagnosis, and it
allows operators to respond to strange events at an early stage.32

The multiscale PCA-SDG diagnostics framework leads to early
identification and diagnosis of unusual circumstances that may
react to measured variable contribution changes in correlation
information.
The rest of the paper is structured as follows. Section 2

thoroughly explains the theory, methods, and algorithms such as
PCA, wavelet transforms, and the SDG. Section 3 focuses on the
proposed MSPCA-SDG-based process monitoring and fault
diagnosis framework. Section 3.4 describes the CSTR system
used as a case study. The presented framework results are shown
in Section 4 followed by the conclusion in Section 5.

2. METHODOLOGY
2.1. Principal Component Analysis. PCA is the multi-

variate statistical modeling methodology proposed by Pearson33

and Hotelling34 that identifies directions of considerable data
variance by generating variable combinations. PCA has an
excellent performance on feature extraction and dimension
reduction.
Consider the matrix data set X, with n variables and the

number of m observations.
The matrix of data is standardized with unit variance and zero

means and interpreted through a single-value decomposition
(SVD) into a new matrix35,36

=X UDVT (1)

where, U and V reflected the orthogonal matrixes and D
expressed the diagonal matrix with positive real values.

=X TPT (2)

where T and P constitute the principal components (PCs) and
loading vectors, respectively. These data sets are composed of
the eigenvectors related to X’s covariance data matrix.
The covariance data matrix can be computed accordingly

Figure 1. PCA-based monitoring framework.
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Σ =
−

= Λ = =
n

X X P P PP P P I
1

1
withT T T T

n (3)

where Λ represents the eigenvalue diagonal matrix for m PCs
and In represents the identity matrix.
The PCA model includes an optimal number of PCs as the

model reliability depends on the number of PCs used. The
numbers of suitable PCs for model development are determined
using several techniques. These techniques include cross-
validation using cumulative percent variance (CPV),37,38 scree
plots,39,40 and profile likelihood.41 This work uses the CPV-
based methodology to select the dominating PCs, and it may be
computed as follows.38

λ
λ

=
∑
∑

×=

=
lCPV( ) 100i

l
i

i
m

i

1

1 (4)

If l is the lowest range of PCs according to the specified
percent of the total variance, then, in that case, the input data
matrix can be displayed after determining the retained number
of PCs.37

= = [ ̂ ̃ ][ ̂ ̃]X TP TT PPT T (5)

where the matrices T̂and T̃ comprise the number of principal
components retained and ignored.
Meanwhile, the matrices P̂ and P̃ contain both retained and

eigenvectors, respectively. Now X refers to the given equation.37

= ̂ ̂ + ̃ ̃ = ̂ ̂ + − ̂ ̂X TP PT XPP X I PP( )
T T T

m
T

(6)

In the above equation, XP̂P̂T = X̂ and X(Im− P̂P̂T) = E are the
matrices that represent modeled variation of X and variations
that correspond to the process noise, respectively.
In establishing the PCA model, the two monitoring control

charts, T2 and (SPE), are used to determine the model and the
residual variation in space, respectively.
The T2 statistic can be calculated accordingly.42

= Λ−x P P xT T T2 1 (7)

The T2 threshold can be determined as follows:

= −
− α−

l m
m l

FT
( 1)

l mlim
2

, 1, (8)

where Fisher distributions represented by Fl, m − 1, α, l, and (m −
l) are the degrees of freedom, whereas the significance level is
shown by α
The SPE is determined as follows:42

= = −r r I PP xSPE ( )T T (9)

where the residual vector is denoted by r; the SPE threshold is
calculated as

φ
φ

φ
φ

φ
= + +

−αh c h h
SPE

2
1

( 1)
h

lim 1
0 2

1

2 0 0

1
2

1/ 0Ä

Ç
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Ö
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where φ λ= ∑ = +j l
n

j1 1
1, φ λ= ∑ = +j l

n
j2 1
2, φ λ= ∑ = +j l

n
j3 1
3, and

= − φ φ

φ
h 10

2

3
1 3

2
2 . The value cα deduced from the significant

standard classification. An abnormality is indicated by T2 and
SPE values being over the threshold. The PCA-based
monitoring framework is illustrated in Figure 1. First, a PCA
model is built using process data collected under normal
operating conditions. Then, the T2 and SPE-based monitoring
control charts are calculated on the faulty database. When the
control chart of T2 and SPE surpasses the threshold boundary, as
predicted during the model building phase, the processing
system has a fault.

2.2. Wavelet Transforms. Multiscale process monitoring
decomposes the original process data into multiscale compo-
nents using wavelet transform (WT). According to the
properties of the time-frequency locations, the tendency to
accurately differentiate approximation function, reflecting
deterministic characteristics, and the detailed function showing
stochastic characteristics.43,44 This enables the process
phenomena to be more appropriately interpreted in their
temporal frequency bands.45 A mother wavelet ψ(λ)provides all
essential functions ψa, b(λ)inside WT through dilating and by
translating processes

ψ λ ψ λ= −−a
b

a
a b( ) ,a b,

1/2 i
k
jjj

y
{
zzz

(11)

where a and b are the discrete parameters, respectively, of scale
and orientation. Multiscale displays consist of a low pass and a
high pass filter that transmit the signal in various scales. The

Figure 2. Level three wavelet decomposition.

Figure 3. Typical SDG model.
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original primary signal is projected orthonormal as the deployed
scaled version

φ φ= −− −t t s( ) 2 (2 )ij
j j/2 /2

(12)

Details and approximation coefficients of the several wavelet
functions represented by each level are generated via the signal
projection as

ψ ψ= −− −t t s( ) 2 (2 )ij
j j/2 /2

(13)

The original primary signal is generated and indicated by
merging the final deployed scaled signal with all the detailed
signals

∑ ∑ ∑φ ψ= +
= = =

− −

x t a d t( ) ( )
k

n

Jk Jk
j

J

k

n

jk jk
1

2

1 1

2j j

(14)

where J and n are, respectively, the decomposition level and
length of the original signal.
Figure 2 shows that wavelet transformation decomposes the

signal at several levels (L = 3) followed by the PCA-SDG
approach to develop a qualitative multiscale model.

2.3. SignedDirected Graph.An SDG represents the causal
relationship of the processes, which represents process variables
as graph nodes and causal relationships as directed arcs. The
node states in the SDG are “0”, “+”, and “−”, which represent the
typical values of a stable state. The arc pointing to a node of
cause, which might indicate the effect in the same or opposite
directions, is either a solid line as positive or a dotted line as
negative. The positive arc sign is “+”, while the negative arc sign
is “−”. As seen in Figure 3, the cause node “A” and the effect
node “B” in the arc (solid line) are both “+”, showing that nodes
“A” and “B” are in the same way.14

The circle nodes are measurable process variables in the SDG
model for fault diagnostics. All the abnormal factors lead to a
change in the next node. Various nodes of the reason might hold
various sources of the fault. All nodes of reason are root nodes.
At least one arc connects a root node with an effect node. An arc
is said to be consistent when sign (arc) × sign (effect node) ×
sign (cause node) = “+”. The valid path is a cause node, effect
nodes, and consistent arc.
The SDG-based approach of fault diagnosis was initially

presented and characterized as follows for chemical processes:46

Figure 4. Multiscale PCA-SDG methodology.
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φ ψ=G V E( , , , ) (15)

where V = {ν1, ν2, . . ...νn} is a collection of node sets,
representing the root cause faults, in which E = {e1, e2, . . ...em} is a
set of branches, describing the causality of the relationship
between various nodes, andφ : E→ { + ,− },φ(ek)(ek∈ E) is the
sign of the branch ek; “+” represents a positive impact, and on the
contrary, “−” represents a negative impact. ψ : V→ { + ,0, − },
ψ(νj)(νj∈ V)means the νjnode sign, expressing the node status,
and a divergence of the value xνj projected node value x̅νj, as
indicated in eq 16, determines the status of that node47

ψ ν

ε

ε

ε

=

| − ̅ |<

+ − ≥̅

− − ≥̅

ν ν ν

ν ν ν

ν ν ν

x x

x x

x x

( )

0, if

,if

,if

j

j j j

j j j

j j j

l

m
ooooooo

n
ooooooo (16)

3. MULTISCALE PCA-SDG-BASED PROCESS
MONITORING AND FAULT DIAGNOSIS
3.1. Multiscale PCA-SDG Methodology Framework. A

multiscale approach for the chemical process is the primary

target of the proposed framework. This work proposed and
developed a multiscale process monitoring and fault diagnosis
technique using theWT and PCA-SDGmodel characteristics, as
shown in Figure 4. When an abnormal situation is monitored,
the contribution of observed data to predicted model failure is
posted and provided as information to the SDG model for
process fault diagnosis.23 After the fault is detected and the next
step is to identify the correlated variables of the fault, the

contribution plot approach is employed. Then, contribution
plots are compared to identify the fault-correlated variables
effectively and determine the fault propagation paths. When the
correlated variables to the problem have been identified, they
follow entry into the SDG model developed from the process
knowledge to determine the root cause and the fault propagation
path.
The significance of the proposed multiscale PCA-SDG-based

process monitoring and fault diagnostic technique amplifies the
accuracy and quick fault search efficiency. It provides operators
with additional time to respond to abnormal occurrences. The
frequency of thresholds necessary to detect measured variable
variances for SDG-based diagnosis has been decreased to one,
and the measurable variable contributions reflect the change in
correlation values.
It can be indicated that the proposed developed multiscale

PCA-SDG framework is more appropriate and accurate than the
conventional PCA-SDG framework. In fault detection, when a
fault occurs, the MSPCAmodel detects faults more immediately
and effectively than conventional PCA. In fault identification,
some variables show misleading and inaccurate representations
due to this single FDD nature of the PCA. The WT-based
contribution plots followed by detailed functions (D1, D2, and
D3) and approximation (A3) show the fault-correlated variables’
correct identification. The conventional PCA-SDG fault
diagnostic algorithm is a single-scale fault representation origin
and cannot efficiently address the issue of actual fault
representation roots. The conventional PCA-SDG creates
inaccurate and misleading interpretations of fault nodes. The
multiscale PCA-SDG framework-based results represent the
actual propagation of the fault. The proposed technique shows
more efficient fault detection, identification, and diagnosis
performance than the conventional PCA-SDG technique. The
expressed approach is relatively valuable and adaptable, and it
may be applied to any chemical process system.

Figure 5. Jacketed CSTR system with cascade control.

Table 1. CSTR System Variables

system variables for process monitoring

Sr.
no

process
variables variable description

1 h height of CSTR
2 C reactant A concentration in the reactor
3 T the temperature in the reactor
4 Tc the temperature of the coolant in the jacket
5 Fi feed stream flow rate
6 F the flow rate of the outlet stream
7 Ci reactant A initial concentration in the feed
8 Ti the temperature of the feed stream
9 Tci cooling liquid feed temperature in the cooling jacket
10 Fc cooling liquid flowrate in the cooling jacket

Table 2. Simulated Faults in the CSTR System

fault
no. description variable type of fault

1 ramp
change

reactant A concentration in the
reactor, C

sensor bias

2 step change feed stream flowrate, Fi process
disturbance

3 ramp
change

the temperature in the reactor, T sensor bias
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3.2. Process Monitoring. Process monitoring involves the
model development phase and fault detection and identification
phase.
3.2.1. Model Development Phase. The presented MSPCA

model is classified into phases. First of all, the methodology uses
the normal working conditions of fault-free training data.
Step 1: A fault-free normal data set is obtained. Then, the

training data using zero mean and unit variance is normalized.
After the normalization, every element in the database is
decomposed individually using wavelet transformation into
wavelet coefficients. After decomposition, the approximations
and detail matrices are standardized with mean and standard
deviation.
Step 2: Using the approximation (A3) and detail matrices (D1,

D2, and D3) obtained after normalization, the PCA model is
developed. Then, the control limits of the monitoring charts are
determined based on T2 and the SPE.
3.2.2. Fault Detection and Identification Phase. Detection

and identification of faulty data follow model development. The
faulty data set may include irregularities that may potentially
contribute to the unexpected monitoring system operations.
Step 1: First, the faulty data sets are collected. Faulty database

information with zero mean and unit variance is normalized.
Every element in the faulty database is degraded into wavelet
coefficients individually using wavelet transformation. After
decomposition of the faulty data set, approximations and detail
matrices are normalized with the mean and standard difference,
determined in the development phase of the model in step 1.
Step 2: In this stage, the T2 and SPE-based monitoring

control charts are calculated on the test database. When the
control chart of T2 and the SPE surpasses the threshold
boundary, as predicted during the model building phase, the
processing system has a fault. The contribution plots are
ultimately deployed to find the faulty variable in both control
charts.
3.3. Fault Diagnosis. Many researchers discuss diagnostic

algorithms based on the SDG. All algorithms use a backtracking
search for overall potential routes explaining the impact.19,48−50

Two alternative techniques of deducing faulty candidates are, as
mentioned by Maurya et al.,15 as follows:

1. The search for the backward method is based on a non-
zero-qualitative value of a measured node to gain the
possible quality of the subsequent nodes.When there is an
additional measurement of any projected node value, the
related signal derived from the backpropagation compares
with the previous one. This search path is discontinued if

the two values disagree through the other pathways.
When all nodes in the measured node are validated, the
backward search is accomplished.

2. When reversing, propagation is happening as specified
above combined with backward and forward search.
Then, forward propagation is started from any potential
fault candidate until all non-zero qualitative measures
have been acknowledged. Again, the corresponding fault
possibility is dismissed if any discrepancy is detected.

SDG uses a single-variable statistical method to establish the
node thresholds, in which correlations between variables are not
considered. Thresholds (2m) shall be established where m
indicates a variable number of procedures. Because of the
performance of the PCA in the multivariable statistics, the
threshold can be computed based on the variable contribution to
the SPE, which is a remarkable residual space statistic. It requires
only one threshold to be set, and the calculation can be
significantly reduced.23 It can be shown that the variables with
significant contribution rates change with time. It determines a
threshold of variable nodes in the SDG model to discover
problematic propagation channels. Since the contribution from
one variable transfers to all variables, the difference in the
contribution plot for each sample grows considerably more
significant as the fault spreads.51,52 Furthermore, the previously
indicated method of determining the threshold using the SPE
statistic based on PCA yielded variable results across samples,
perhaps failing to eliminate nodes that are not the root cause of
the fault.

3.4. Case Study: Continuous Stirred Tank Reactor
(CSTR) System. In this section, the multiscale PCA-SDG
process monitoring and fault diagnosis approach are illustrated
in the CSTR case study. An irreversible exothermic reaction of
first order occurs in the CSTR system with cascade control
shown in Figure 5. As mentioned below, reactant A enters, and
product B comes out from the reactor.

→A B (17)

The jacketed refrigeration fluid dissipates heat from the
exothermic impact. The reactor temperature and liquid level are
regulated by the refreshing and outflow of the coolant
correspondingly. The CSTR system models can be explained
using the given equations.

=
−h

t
F F

A
d
d

i
(18)

Figure 6. Fault detectionmonitoring charts of the fault in the reactant A concentration in the reactor based on PCA. (a)Monitoring chart of T2 and (b)
monitoring chart of the SPE.
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The system variables of the CSTR system are displayed in
Table 1. CSTR simulation system details are available from
Kaisare’s work.53 All simulations and programming are
performed using the appropriate toolboxes in the MATLAB/
Simulink environment.
The process data has been generated using the CSTR

Simulink model for fault-free and faulty operating circum-
stances. One thousand samples with normal disorders of the
faultless process data have been recorded. In addition, three
relevant fault situations were simulated, and 1000 fault pattern
samples were recorded. The simulated fault situations, including
the sensor biases and process faults, are described in Table 2.

Figure 7. Fault detectionmonitoring charts of the fault in the reactant A concentration in the reactor based onMSPC. (a)Monitoring chart of T2 based
on D2 and (b) monitoring chart of the SPE based on D2.

Figure 8. Fault detection monitoring charts of the fault in the reactant A concentration in the reactor based on MSPCA. (a) Monitoring chart of T2

based on D3 and (b) monitoring chart of the SPE based on D3.

Figure 9. Fault detection monitoring charts of the fault in the reactant A concentration in the reactor based on MSPCA. (a) Monitoring chart of T2

based on A3 and (b) monitoring chart of the SPE based on A3.
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4. RESULTS AND DISCUSSION

This section discusses the conventional single-scale PCA-SDG
and multiscale PCA-SDG framework’s outcomes depending on
approximation (A3) and detailed functions (D1, D2, and D3).
The detailed function (D1) in this study is not included because
it solely contains noises. Therefore, using the proposed
methodology and other comparative techniques does not
observe fault detection in D1. Monitoring charts based on T2

and the SPE with a confidence level of 99% are generated for all
simulations. Confidence limits and statistical values are
indicated as solid red and blue lines, respectively.

4.1. Fault 1 - Ramp Change in the Reactant A
Concentration in the Reactor. In this case, a sensor-biased
fault has been inducted at 500 sample points into the reactant
concentration in the reactor. Figures 6−9 illustrate the
monitoring results of PCA and multiscale PCA. The scenario
of the fault detection technique based on PCA, T2, and SPE
monitoring charts detects confined faults, as illustrated in Figure
6a,b. In this scenario, the fault detection technique based on
MSPCA followed by detailed functions (D2 and D3) shows that
there is still limited detection of the fault presence onmonitoring
charts. In particular, the statistical monitoring data are still below
the control boundary while the fault is persistent, as shown in

Figure 10. PCA-based contribution plots of the fault in the reactant A concentration in the reactor. (a) T2 contribution and (b) SPE contribution.

Figure 11.MSPCA-based contribution plots of the fault in the reactant A concentration in the reactor. (a) T2 contribution based on D2 and (b) SPE
contribution based on D2.

Figure 12.MSPCA-based contribution plots of the fault in the reactant A concentration in the reactor. (a) T2 contribution based on D3 and (b) SPE
contribution based on D3.
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Figures 7 and 8. Similarly, when a fault occurs at the 500th
sample point, the MSPCA model followed by approximation
(A3) detects the fault immediately, as shown in Figure 9a,b. The
MSPCA fault detection results show that all the statistical
monitoring data over the confidence limits and monitoring
charts efficiently detect faults.
Figures 10−13 show the contribution plot results of PCA and

MSPCA. First, to identify the correlated variables of the fault, the
contribution plot approach is employed. Then, contribution

plots at the 500th sample are compared to identify the fault-
correlated variables effectively. Figure 10a,b shows that the
PCA-based contribution plots identify the five variables taking
part in the fault. The conventional PCA algorithm is a single-
scale FDD representation origin. It cannot effectively solve
multiple FDD representation origins, which affect the variables
in the same direction because of low FDD resolution. Due to this
single-scale FDD nature of the PCA, variable three (temperature
in the reactor, T) shows misleading and inaccurate representa-
tions. The WT-based contribution plots followed by detailed
functions (D2 and D3) and approximation (A3) are shown in
Figures 11−13 at the 500th sample and compared to identify the
fault-correlated variables, as shown in Table 3. MSPCA-based
contribution plots identify the four variables that take part in the
fault. They are then chosen and entered in the SDG model to
help determine the fault propagation path. It is worth noting that
the results are consistent in D2, D3, and A3. It suggests that
selecting the findings at one of these plots to determine the fault
propagation is reliable.
Since the correlated variables to the problem have been

identified, they follow entry into the SDGmodel developed from
the process knowledge to determine the root cause. As
previously stated, the SDG model of the CSTR system is
based on process knowledge. Figure 14a,b shows the fault
diagnosis result. The fundamental reason for this failure is the

Figure 13.MSPCA-based contribution plots of the fault in the reactant A concentration in the reactor. (a) T2 contribution based on A3 and (b) SPE
contribution based on A3.

Table 3. Results of Variable Selection by the Contribution Plot Approach

Figure 14. Fault propagation root of the fault in the reactant A
concentration in the reactor. (a) Conventional PCA-SDG and (b)
multiscale PCA-SDG based on the detailed functions (D2 and D3) and
approximation function (A3).
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manipulated variable reactant concentration in the reactor (C),
indicated by a red node. The blue nodes show the factors that
fluctuate with the fault spread, while the yellow node represents
the outcome of the fault. Figure 14a shows that the conventional
PCA-SDG fault diagnostic algorithm is a single-scale fault
representation origin and cannot efficiently address the issue of
actual fault representation roots. The conventional PCA-SDG
creates inaccurate and misleading interpretations of fault node
temperature in the reactor (T), while the system component
undergoes a non-single transformation. Figure 14b shows the
multiscale PCA-SDG fault diagnostic results that represent the
actual propagation of the fault. The fault (1) description causes a
problem with the feed stream temperature (Ti) to verify the

diagnosis’s conclusion. It states that it may isolate the root cause
and identify the channel of propagation of the CSTR system by
the proposed fault monitoring and diagnostic approach.

4.2. Fault 2 - Step Change in the Feed Stream
Flowrate. In this case, a process-disturbed fault has been
inducted at 500 sample points into the feed stream flowrate (Fi).
Figures 15−18 show the monitoring results of PCA and
multiscale PCA. The scenario of the fault detection technique
based on PCA, T2, and SPE monitoring charts detects confined
faults, as illustrated in Figure 15a,b. The scenario of the fault
detection technique based on MSPCA followed by detailed
functions (D2 and D3) shows that there is still limited detection
of the fault presence on monitoring charts. In particular, the

Figure 15. Fault detection monitoring charts of the fault in feed stream flowrate based on PCA. (a)Monitoring chart of T2 and (b) monitoring chart of
the SPE.

Figure 16. Fault detection monitoring charts of the fault in feed stream flowrate based on MSPCA. (a) Monitoring chart of T2 based on D2 and (b)
monitoring chart of the SPE based on D2.

Figure 17. Fault detection monitoring charts of the fault in feed stream flowrate based on MSPCA. (a) Monitoring chart of T2 based on D3 and (b)
monitoring chart of the SPE based on D3.
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statistical monitoring data are still below the control boundary
while the fault is persistent, as shown in Figures 16 and 17.
Similarly, when a fault occurs at the 500th sample point, the
MSPCAmodel followed by approximation (A3) detects the fault
immediately, as shown in Figure 18a,b. The MSPCA fault
detection results show that all the statistical monitoring data
over the confidence limits and monitoring charts efficiently
detect faults.
Figures 19−22 show the contribution plot results of PCA and

MSPCA. First, to identify the correlated variables of the fault, the
contribution plot approach is employed. Then, contribution
plots at the 500th sample are compared to identify the fault-

correlated variables effectively. Figure 19a,b shows that the
PCA-based contribution plots identify the four variables taking
part in the fault. The conventional PCA algorithm is a single-
scale FDD representation origin. It cannot effectively solve
multiple FDD representation origins, which affect the variables
in the same direction because of low FDD resolution. Due to this
single-scale FDD nature of the PCA, variable nine (temperature
of the coolant in the jacket,Tci) showsmisleading and inaccurate
representations. The WT-based contribution plots followed by
detailed functions (D2 and D3) and approximation (A3) are
shown in Figures 20−22 at the 500th sample and compared to
identify the fault-correlated variables shown in Table 4.

Figure 18. Fault detection monitoring charts of the fault in feed stream flowrate based on MSPCA. (a) Monitoring chart of T2 based on A3 and (b)
monitoring chart of the SPE based on A3.

Figure 19. PCA-based contribution plots of the fault in feed stream flowrate. (a) T2 contribution and (b) SPE contribution.

Figure 20.MSPCA-based contribution plots of the fault in feed stream flowrate. (a) T2 contribution based on D2 and (b) SPE contribution based on
D2.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06839
ACS Omega 2022, 7, 9496−9512

9506

https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig18&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig19&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig19&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig19&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig19&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig20&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig20&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06839?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


MSPCA-based contribution plots identify the three variables

that take part in the fault. They are then chosen and entered in

the SDG model to help determine the fault propagation path. It

is worth noting that the results are consistent in D2, D3, and A3. It

suggests that selecting the findings at one of these plots to

determine the fault propagation is reliable.

Since the correlated variables to the problem have been
identified, they follow entry into the SDGmodel developed from
the process knowledge to determine the root cause. As
previously stated, the SDG model of the CSTR system is
based on process knowledge. Figure 23a,b shows the fault
diagnosis result. The fundamental reason for this failure is the
manipulated variable feed flow rate in the reactor (Fi), indicated

Figure 21.MSPCA-based contribution plots of the fault in feed stream flowrate. (a) T2 contribution based on D3 and (b) SPE contribution based on
D3.

Figure 22.MSPCA-based contribution plots of the fault in feed stream flowrate. (a) T2 contribution based on A3 and (b) SPE contribution based on
A3.

Table 4. Results of Variable Selection by the Contribution Plot Approach
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by a red node. The blue nodes show the factors that fluctuate
with the fault spread, while the yellow node represents the
outcome of the fault. Figure 23a shows that the conventional
PCA-SDG fault diagnostic algorithm is a single-scale fault
representation origin and cannot efficiently address the issue of
actual fault representation roots. The conventional PCA-SDG
creates inaccurate and misleading interpretations of the fault
node feed temperature of the coolant in the jacket (Tci), while
the system component undergoes a non-single transformation.
Figure 23b shows the multiscale PCA-SDG fault diagnostic
results that represent the actual propagation of the fault. The
fault (2) description causes a problem with the flow rate of the
outlet stream (F) that can verify the diagnosis’s conclusion. It
states that it may isolate the root cause and identify the channel
of propagation of the CSTR system by the proposed fault
monitoring and diagnostic approach.
4.3. Fault 3 - Ramp Change in Temperature in the

Reactor. In this case, a sensor-biased fault has been inducted at
500 sample points into the temperature in the reactor (T) that
explains the monitoring results of PCA and multiscale PCA.
Although the case 3 detection monitoring results efficiently
detect faults similarly to the previously mentioned cases 1 and 2,
they are not illustrated in this scenario. Only the contribution
plots based on PCA and multiscale PCA are discussed here.
Figures 24−27 show the contribution plot results of PCA and

MSPCA. First, to identify the correlated variables of the fault, the
contribution plot approach is employed. Then, contribution
plots at the 500th sample are compared to identify the fault-
correlated variables effectively. Figure 24a,b shows that the
PCA-based contribution plots identify the five variables taking
part in the fault. The conventional PCA algorithm is a single-

scale FDD representation origin. It cannot effectively solve
multiple FDD representation origins, which affect the variables
in the same direction because of low FDD resolution. Due to this
single-scale FDD nature of the PCA, variable nine (temperature
of the coolant in the jacket,Tci) showsmisleading and inaccurate
representations. The WT-based contribution plots followed by
detailed functions (D2 and D3) and approximation (A3) are
shown in Figures 25−27 at the 500th sample and compared to
identify the fault-correlated variables, as shown in Table 5.
MSPCA-based contribution plots identify the four variables that
take part in the fault. They are then chosen and entered in the
SDG model to help determine the fault propagation path. It is
worth noting that the results are consistent in D2, D3, and A3. It
suggests that selecting the findings at one of these plots to
determine the fault propagation is reliable.
Since the correlated variables to the problem have been

identified, they follow entry into the SDGmodel developed from
the process knowledge to determine the root cause. As
previously stated, the SDG model of the CSTR system is
based on process knowledge. Figure 28a,b shows the fault
diagnosis result. The fundamental reason for this failure is the
manipulated variable temperature in the reactor (T), indicated
by a red node. The blue nodes show the factors that fluctuate
with the fault spread, while the yellow node represents the
outcome of the fault. Figure 28a shows that the conventional
PCA-SDG fault diagnostic algorithm is a single-scale fault
representation origin and cannot efficiently address the issue of
actual fault representation roots. The conventional PCA-SDG
creates inaccurate and misleading interpretations of the fault
node feed temperature of the coolant in the jacket (Tci), while
the system component undergoes a non-single transformation.
Figure 28b shows the multiscale PCA-SDG fault diagnostic
results that represent the actual propagation of the fault. The
fault (3) description causes a problem with the temperature of
the coolant in the jacket (Tc) that can verify the diagnosis’s
conclusion. It states that it may isolate the root cause and
identify the channel of propagation of the CSTR system by the
proposed fault monitoring and diagnostic approach.

5. CONCLUSIONS
This study proposes a new and effective multiscale PCA-SDG-
based process monitoring and fault diagnosis framework that
improves fault search efficiency and diagnosis accuracy. This
work implements, tests, and compares the process monitoring
and fault diagnosis algorithm based on conventional single-scale
PCA-SDG and multiscale PCA-SDG in the CSTR system and

Figure 23. Fault propagation root of the fault in feed stream flowrate.
(a) Conventional PCA-SDG and (b) multiscale PCA-SDG based on
the detailed functions (D2 and D3) and approximation function (A3).

Figure 24. PCA-based contribution plots of the fault in temperature in the reactor. (a) T2 contribution and (b) SPE contribution.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.1c06839
ACS Omega 2022, 7, 9496−9512

9508

https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig23&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig23&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig23&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig23&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig24&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig24&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig24&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.1c06839?fig=fig24&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.1c06839?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


their intricate causal representation between process variables.
The results show that the proposed multiscale PCA-SDG
framework is more appropriate and accurate than the conven-
tional single-scale PCA-SDG framework. The multiscale PCA
fault detection results illustrate that the MSPCA model detects
faults more immediately and effectively than conventional PCA
when a fault occurs. All the monitoring statistics exceed the
confidence threshold, and both monitoring charts efficiently
detect faults and reduce noise and disturbance. In fault
identification, some variables show misleading and inaccurate
representations due to the single FDD nature of the PCA. The

contribution plot results based on correlated variable selection
by multiscale PCA-SDG followed by WT-based detailed (D2

and D3) and approximation (A3) functions consistently show
the correct fault-correlated variable identification. However, the
conventional PCA-SDG framework is a single-scale fault
representation origin that illustrates the false and imprecise
interpretations of the propagation path of the fault. It cannot
efficiently address the issue of actual fault representation roots.
The conventional PCA-SDG creates inaccurate and misleading
descriptions of fault nodes. The multiscale PCA-SDG frame-
work results represent the actual propagation of the fault. It can

Figure 25.MSPCA-based contribution plots of the fault in temperature in the reactor. (a) T2 contribution based onD2 and (b) SPE contribution based
on D2.

Figure 26.MSPCA-based contribution plots of the fault in temperature in the reactor. (a) T2 contribution based onD3 and (b) SPE contribution based
on D3.

Figure 27.MSPCA-based contribution plots of the fault in temperature in the reactor. (a) T2 contribution based on A3 and (b) SPE contribution based
on A3.
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correctly identify active process correction and efficiently specify
deterministic and stochastic functions.
Hence, the proposed multiscale PCA-SDG technique shows

more efficient fault detection, identification, and diagnosis
performance than the conventional PCA-SDG technique. The
expressed approach is relatively valuable and adaptable, and it
can be applied to any chemical process system. It can provide
powerful fault search efficiency, high detection and diagnostic
resolution, and accurate fault propagation roots and offer a new
approach to ensure process safety.
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