
J Physiol 598.19 (2020) pp 4405–4419 4405

Th
e

Jo
u

rn
al

o
f

Ph
ys

io
lo

g
y

Maternal sildenafil impairs the cardiovascular adaptations
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Key points

� Fetal growth restriction induces a haemodynamic response that aims to maintain blood flow
to vital organs such as the brain, in the face of chronic hypoxaemia

� Maternal sildenafil treatment impairs the hypoxaemia-driven haemodynamic response and
potentially compromises fetal development.

Abstract Inadequate substrate delivery to a fetus results in hypoxaemia and fetal growth
restriction (FGR). In response, fetal cardiovascular adaptations redirect cardiac output to essential
organs to maintain oxygen delivery and sustain development. However, FGR infants remain at
risk for cardiovascular and neurological sequelae. Sildenafil citrate (SC) has been examined as
a clinical therapy for FGR, but also crosses the placenta and may exert direct effects on the
fetus. We investigated the effects of maternal SC administration on maternal and fetal cardio-
vascular physiology in growth-restricted fetal sheep. Fetal sheep (0.7 gestation) underwent sterile
surgery to induce growth restriction by single umbilical artery ligation (SUAL) or sham surgery
(control, AG). Fetal catheters and flow probes were implanted to measure carotid and femoral
arterial blood flows. Ewes containing SUAL fetuses were randomized to receive either maternal
administration of saline or SC (36 mg I.V. per day) beginning 4 days after surgery, and continuing
for 20 days. Physiological recordings were obtained throughout the study. Antenatal SC treatment
reduced body weight by 32% and oxygenation by 18% in SUAL compared to AG. SC did not
alter maternal or fetal heart rate or blood pressure. Femoral blood flow and peripheral oxygen
delivery were increased by 49% and 30% respectively in SUALSC compared to SUAL, indicating
impaired cardiovascular adaptation to chronic hypoxaemia. Antenatal SC directly impairs the fetal
haemodynamic response to chronic hypoxaemia. Consideration of the consequences upon the
fetus should be paramount when administering interventions to the mother during pregnancy.
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Introduction

Fetal growth restriction (FGR) complicates �5–10% of
all pregnancies(MacHado Nardozza et al. 2012) and is
defined as the failure of a fetus to reach their genetic
growth potential (Nardozza et al. 2017). FGR increases
the risk of stillbirth 20-fold and is a principal cause
of perinatal death (Figueras & Gratacós, 2014). Infants
born growth-restricted have an increased risk of both
short-term (Sehgal et al. 2016) and long-term neurological
and cardiovascular sequelae (Sehgal et al. 2013), compared
to their appropriately grown (AG) counterparts (Malhotra
et al. 2019). FGR most commonly occurs secondary to
placental insufficiency, resulting in reduced delivery of
nutrients and oxygen to the fetus, which compromises
normal fetal growth and organ development (Nardozza
et al. 2017).

Impaired oxygen transfer across the placenta causes
chronic fetal hypoxaemia and hypoxia. The physiological
response of the fetus to chronic hypoxaemia has been well
documented, including cardiac output redistribution in an
effort to maintain perfusion of key organs (brain, heart,
adrenal glands) at the expense of organs such as the gut
and periphery; this adaptation is termed ‘brain-sparing’
(Giussani, 2016). Brain sparing is induced by detection of
hypoxaemia within the fetal circulation by chemoreceptors
which stimulate an increase in peripheral vasoconstriction
(Giussani et al. 1993), concurrent with vasodilatation in
the vital organs to maintain adequate oxygen delivery.
This process is mediated by the release of adenosine,
nitric oxide and prostanoids (Giussani, 2016). However,
while brain-sparing and subsequent growth restriction
ensure fetal survival, it does not ensure normal postnatal
development, with growth-restricted newborns being at
an increased risk of death as well as cardiovascular and
neurological deficits compared to AG infants (Thornton
et al. 2004; Walker et al. 2011; Miller et al. 2016; Malhotra
et al. 2019).

Placental insufficiency commonly occurs due to
abnormally high placental vascular resistance, and thus
placental vasodilatation is a key target for therapeutic
intervention to increase placental blood flow. Sildenafil
citrate (SC) inhibits phosphodiesterase (PDE) 5, causing
vasodilatation and increased blood flow (McCullough,
2002). The placenta is rich in PDE5 and there has
been considerable interest in targeting this pathway
to improve blood flow in pregnancies complicated by
placental insufficiency (Dastjerdi et al. 2012; Panda et al.
2014; Perez & Laughon, 2015). Indeed, promising results
from animal preclinical and case-control clinical studies
have underpinned the initiation of the multinational,
multicentre randomized placebo-controlled Sildenafil
TheRapy in Dismal prognosis Early-onset fetal growth
Restriction (STRIDER) trial (Dilworth et al. 2013; Panda
et al. 2014). This set of four trials within the STRIDER

Consortium examined the effect of maternal SC (25 mg
oral tablets, three times daily) on fetal growth and
gestational length (Ganzevoort et al. 2014) in pre-
gnancies complicated by severe placental insufficiency
and FGR. Results from the STRIDER trial have been
mixed. The UK and New Zealand/Australian arms of
the trial demonstrated no positive benefit of antenatal
SC on birth weight and gestational length, but also no
harm (Sharp et al. 2017; Groom et al. 2019). In contrast,
the Netherlands consortium of the STRIDER trial was
prematurely halted due to an interim analysis which
found evidence of potential harm. In this cohort, SC
administration increased rates of persistent pulmonary
hypertension and neonatal death (non-significant)
in newborns (Pels et al. 2019). Subsequently, the
STRIDER Consortium recommended the cessation of SC
treatment for women with placental insufficiency and
growth-restricted fetuses (Groom et al. 2018). The cause
of neonatal demise following antenatal SC has not yet been
characterized.

SC crosses both the human and the sheep placenta
(Russo et al. 2018; Inocencio et al. 2019) and PDE5
receptors are found in the developing fetus (Luong et al.
2011). We have previously shown that SC administration
to fetal vessels ex vivo can alter vascular tone (Polglase
et al. 2016; Inocencio et al. 2019), and therefore antenatal
SC treatment may have direct effects on fetal blood
vessels (Francis & Corbin, 2005). We propose that it
is important to consider the haemodynamic effects of
SC in the developing fetus given its strong vasodilator
actions. Accordingly, in this study, we investigated the
effects of maternal SC administration on maternal and
fetal cardiovascular physiology in growth-restricted fetal
sheep. We hypothesized that antenatal SC administration
would induce peripheral vasodilatation in the developing
FGR fetus, altering the cardiovascular adaption to chronic
hypoxaemia.

Materials and methods

Experiments were approved by the Monash Medical
Centre Animal Ethics Committee A (MMCA2016/01)
under guidelines established by the National Health and
Medical Research Council of Australia code of practice for
the care and use of animals for scientific purposes (8th

Edition, 2013).

Animals

Singleton bearing Border-Leicester pregnant ewes were
sourced from Monash Animal Research Platform (n = 20).
Each ewe underwent sterile surgery on day 105 of
pregnancy (term 148–150 days of gestation, d GA) to
induce FGR via single umbilical artery ligation (SUAL), as
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previously described (Alves de Alencar Rocha et al. 2017b).
Briefly, sedation of ewes was initiated via I.V. injection
of sodium thiopentone (20ml Pentothal I.V.; Boehringer
Ingelheim Australia, North Ryde, NSW, Australia). Ewes
were then intubated and anaesthesia was maintained via
gaseous isoflurane. (1.5–2.5% in 10/30% O2/N2O; Bomac
Animal Health, Hornsby, NSW, Australia). Ewes were
randomly allocated for surgery or sham surgery where the
umbilical cord of control fetuses was exposed and handled
but not ligated (control, AG). SUAL results in placental
atrophy, and subsequent disruption of placental function
with fetal chronic hypoxaemia, and brain-sparing (Alves
de Alencar Rocha et al. 2017b).

All fetuses were instrumented with a right femoral
artery catheter, threaded 7.5 cm into the artery to enable
blood gas sampling and pressure recording from within
the descending aorta. Additionally, a jugular vein catheter
was also implanted to enable administration of antibiotics
[1.52 mm outer diameter (OD), 0.86 mm inner diameter
(ID)]. Flow probes (Size 3, Transonic Systems, Ithaca,
NY, USA) were placed around the left femoral and right
carotid arteries for measurement of arterial blood flow.
An amniotic catheter (2.70 mm OD, 1.50 mm ID) was
also secured to the hindquarters of the fetus for access
to the amniotic cavity for antibiotic administration and to
correct fetal pressure recordings. The fetus was returned to
the uterus and catheters and flow probes were exteriorized
through the right flank of the ewe.

Catheters were inserted into the maternal jugular vein
for administration of antibiotics and SC treatment, and the
maternal carotid artery for blood sampling and pressure
recording (2.70 mm OD, 1.50 mm ID). Fetal, maternal
and amniotic catheters were filled with heparinized saline
(0.9% NaCl; 25,0000 IU heparin/L).

Experimental procedures

Ewes were placed into mobile cages and, following
recovery, were fed twice daily with lucerne chaff and water
was available ad libitum. Antibiotics were administered
to the ewe (Engemycin 5ml I.V.; Coopers, Macquarie,
NSW, Australia) via the maternal jugular vein catheter and
the fetus (ampicillin 1 ml: 1 g/5 mL heparinised saline;
Austrapenics; CSL, Victoria, Australia) via the jugular
vein and an amniotic catheter (ampicillin 4 ml: 1 g/5 ml
heparinised saline). Additionally, oral paracetamol (1 g
Panadol, GSK, Australia) was administered to the ewe for
pain relief 3 days after surgery.

Recording of maternal physiology and fetal
in utero physiology

On day 4 after surgery, prior to initiation of SC treatment,
fetal and maternal mean arterial pressure (DTX Plus
Transducer; Becton Dickinson, Singapore) as well as fetal

femoral and carotid blood flows (Transonic Systems)
were monitored and recorded (AD Instruments, Sydney,
Australia) for 2 h. Fetal and maternal heart rate were
derived from the arterial signal. Physiological recordings
were conducted from 09.00 to 12.00 h from days 4 to 9
after surgery and thereafter on alternate days until the fetus
was 125 d GA. Ewes had constant access to food and water
during the recording period.

Maternal sildenafil/saline administration

On day 4 after surgery, ewes with an SUAL fetus were
randomized to receive either SC: (36 mg/day) or saline
infusion via a pump (CADD-Legacy 1 Pump; Smiths
Medical, Australia) connected to the maternal jugular vein
catheter and fastened to the back of the ewe under netting.
Thereafter, the groups of interest were: SUAL with SC
treatment (SUALSC, n = 7), SUAL with saline (SUAL,
n = 7) and appropriately grown with saline (AG, n = 6).
SC and saline administration occurred continuously for
20 ± 1 days until post-mortem (125 d GA). This treatment
regime was chosen to reflect the dose of SC in the STRIDER
trial (Ganzevoort et al. 2014) where the oral dose has a 50%
bioavailability (Jaillard et al. 2006).

Fetal blood samples

Fetal arterial blood samples (�200 µl) were collected at
the beginning of each recording day for the assessment
of fetal pH, haematocrit (Hct), oxygen saturation
(SaO2 ), the partial pressure of arterial oxygen (PaO2 ),
the partial pressure of arterial carbon dioxide (PaCO2 ),
lactate and glucose. Whole blood was used for analysis
and temperature-corrected (39°C) to account for the
ewe’s body temperature (ABL800 FLEX, Radiometer,
Copenhagen, Denmark).

Post-mortem

At 125 d GA, ewes and fetuses from all groups were killed
via pentobarbital sodium overdose to the ewe (100 mg/kg
I.V. Valabarb; Jurox, Rutherford, Australia). Fetuses were
exteriorized for measurement of brain, lung and fetal body
weight and biparietal diameter, abdominal circumference,
and crown rump and lower limb length.

Data analysis

Data are presented as mean ± SD unless otherwise stated.
Mean carotid blood flow was corrected for brain weight

and femoral blood flow was corrected for body weight over
gestation. Estimates of gestational weights were calculated
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via the equation:

Estimated Fetal weight

= Linear Regression Slope

× (
Gestational Age − Y Intercept

)

determined from brain and body weights collected at
80 and 95 d GA (historical data, not shown) and at
post-mortem.

Femoral oxygen delivery was calculated via the
following equation: blood flow × mean daily femoral
arterial oxygen content. Normality of data was assessed
and normalized as required via GraphPad Prism (Prism 7,
GraphPad Software, La Jolla, CA, USA). Data analysis was
performed using SigmaStat (Systat Software Inc., San Jose,
CA, USA). Mean data were analysed in two epochs; weeks
1 (Week 1) and 2 (Week 2) after SC administration. When
no difference was seen between treatment weeks, data are
presented as total time following SC administration. Fetal
weight, biometry and mean physiological parameters were
analysed using a one-way ANOVA. Blood gas parameters
and mean daily physiological data over the duration of
the experiment were analysed using a two-way repeated
measures ANOVA, and Tukey’s post hoc test was used
to compare between groups. Significance was accepted at
P � 0.05.

Results

Fetal characteristics

Table 1 summarizes the fetal characteristics at post-
mortem. There was no difference in the numbers of males
and females per group. At 125 d GA, body weight in the
SUAL group was 11% lighter than in AG fetuses (not
significant). Treatment with SC following SUAL resulted in
a 32% reduction in birthweight compared to the AG group
(P = 0.003) and by 23% compared to SUAL (P = 0.01).
Brain/body weight ratio was not different between the

SUAL and AG groups, but was increased in SUALSC

compared to both AG (P = 0.007) and SUAL (P = 0.02).
Lung/body weight ratio was not different between groups.
Crown–rump length was decreased in SUALSC compared
to AG (P = 0.04) but was not different to SUAL. No
significant differences were seen in any other measure of
fetal biometry (biparietal diameter, crown–rump length,
abdominal circumference, lower limb length).

Fetal pH, partial pressure of carbon dioxide
and arterial saturation

Fetal pH, partial pressure of CO2 and arterial saturation
over the �2.5-week duration of the experiment are shown
in Fig. 1. pH (Fig. 1A and B) was not different between
groups throughout the experimental period. Mean PaCO2

over the 2-week treatment period was greater in SUAL
compared to AG and SUALSC (Fig. 1D; P = 0.001 and
0.01 respectively). Twenty-four hours after SUAL (106 d
GA), SaO2 was lower in SUAL and SUALSC fetuses (Fig. 1E;
P = 0.004 and P = 0.01) compared to AG fetuses. SUAL
and SUALSC fetuses remained hypoxic with lower arterial
saturations compared to AG at 112 d GA (Fig. 1E; P=0.006
and P = 0.02 respectively) and 117 d GA (Fig. 1E; P = 0.007
and P = 0.04 respectively). Mean SaO2 over the 2-week
treatment period was lower in SUAL and SUALSC fetuses
compared to AG fetuses (Fig. 1F; P = 0.001 and 0.01
respectively).

Fetal arterial partial pressure of oxygen

The fetal arterial partial pressure of O2 (PaO2 ) over
the �2.5 weeks of the experiment is shown in Fig. 2.
Twenty-four hours after SUAL (106 d GA), PaO2 was
decreased in SUAL and SUALSC fetuses (Fig. 2A: P = 0.05
and 0.02) compared to AG fetuses. PaO2 recovered to
control values in both SUAL groups by the time SC
treatment began. At 123 d GA, PaO2 was lower in SUALSC

Table 1. Characteristics of fetal sheep at post-mortem delivery

AG FGR FGRSC

Male/total births 5/6 3/7 4/7
Birth weight (kg) 3.4 ± 0.3 3.0 ± 0.3 2.3 ± 0.5∗#

Brain/body weight (g/kg) 14.2 ± 0.8 16.0 ± 1.2 19.7 ± 3.2∗#

Lung/body weight(g/kg) 31.8 ± 4.1 32.1 ± 5.1 38.1 ± 4.9
Liver/body weight (g/kg) 35.7 ± 3.1 29.1 ± 1.2 27.2 ± 2
Biparietal diameter (cm) 11.1 ± 1.3 10.1 ± 0.3 10.3 ± 0.9
Crown–rump length (cm) 43.6 ± 2.9 41.1 ± 2.3 37.5 ± 4.3∗

Abdominal circumference (cm) 33.3 ± 1.9 32.5 ± 1.1 28.8 ± 4.8
Lower limb length (cm) 17.4 ± 3.1 14.8 ± 3.5 13.1 ± 2.9

Weights and biometry data are given as are mean ± SD of appropriately grown lambs (AG), fetal growth restricted lambs treated with
saline (FGR) and fetal growth restricted lambs treated with sildenafil (FGRSC). ∗Significant difference to AG; # significant difference
to FGR (P = 0.05). Data were analysed using a one-way ANOVA.

C© 2020 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.
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(Fig. 2A, P = 0.005) compared to AG and SUAL fetuses.
Mean PaO2 after 1 week of saline/SC treatment was lower
in both SUAL and SUALSC compared to AG (Fig. 2B;
P = 0.001) and no difference in PaO2 was seen between
SUAL and SUALSC fetuses. After 2 weeks of saline/SC
treatment, PaO2 remained lower in SUAL and SUALSC

compared to AG (Fig. 2B; P = 0. 01), however at this time
PaO2 was lower in SUALSC compared to SUAL (Fig. 2B;
P = 0. 04).

Fetal glucose and lactate

SUAL and SUALSC fetuses were hypoglycaemic compared
to AG fetuses at 107 and 108 d GA (Fig. 3A; P < 0.05).
SUALSC fetuses were hypoglycaemic at 112 and 121 d GA
(Fig. 3A; P < 0.05) compared to AG, but not SUAL fetuses.
Mean fetal glucose over the 2-week treatment period was
not different between SUAL and SUALSC fetuses, but both
were lower than AG fetuses (Fig. 3B; P < 0.0001). Lactate
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Figure 1. Fetal pH, partial pressure of
CO2, arterial saturation and
haemoglobin in response to growth
restriction and sildenafil treatment
Data are shown as daily mean ± SD. A, C, E
and H, pH (A), partial pressure of carbon
dioxide (PaCO2 , C), arterial oxygen
saturation (SaO2 , E) and haemoglobin (Hb,
G). Total mean values for the duration of
the treatment period of all parameters are
also shown (right: B, D, F, H). Groups are
appropriately grown (AG, white, n = 6),
saline-treated fetal growth-restricted (FGR,
black, n = 7) and sildenafil-treated fetal
growth-restricted (FGRSC, grey, n = 7)
fetuses. Duration of treatment is indicated
by the SC administration bar. ∗Significant
difference between FGR and AG;
#significant difference between FGRSC and
AG. Daily physiological data collected over
the duration of the experiment were
analysed using a two-way repeated
measures ANOVA. Weekly mean
physiological parameters were analysed
using a one-way ANOVA.
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was higher in SUALSC, compared to AG fetuses, at 119 d
GA (Fig. 3C; P = 0.02) and no differences were seen
between SUAL and AG at individual timepoints. Mean
lactate over the 2-week treatment period was higher in
SUALSC compared to AG fetuses during the SC treatment
period (Fig. 3D, P = 0.007) and no difference was seen
between AG and SUAL.

Maternal blood pressure and heart rate response
to sildenafil treatment

In all groups, maternal blood pressure decreased
throughout the experiment (P = 0.03; Fig. 4A). Mean
maternal blood pressure over the 2-week treatment period
was reduced in ewes carrying SUAL compared to AG
fetuses (Fig. 4B, P = 0.03) but no difference was seen
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lactate (C). Total mean values for the
duration of the treatment period of all
parameters are also shown (B and D).
Groups are appropriately grown (AG, white,
n = 6), saline-treated fetal growth restricted
(FGR, black, n = 7) and sildenafil-treated
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fetuses. Duration of treatment is indicated
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#significant difference between FGRSC and
AG. Daily physiological data collected over
the duration of the experiment were
analysed using a two-way repeated
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using a one-way ANOVA.
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compared to SUALSC. Mean maternal diastolic blood
pressure over the 2-week treatment period was reduced
in SUAL and SUALSC compared to AG (Fig. 4F, P = 0.002
and P = 0.04 respectively); no difference was seen between

SUAL and SUALSC. Maternal systolic blood pressure
(Fig. 4E and F) and maternal heart rate were not different
between groups at any time during the study (Fig. 4G and
H).
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Figure 4. The maternal cardiovascular
response to chronic antenatal sc
administration
Individual daily mean ± SD maternal blood
pressure (BP, A), diastolic blood pressure (C),
systolic blood pressure (E) and heat rate (G).
Total mean values for the duration of the
treatment period of all parameters are also
shown (B, D, F, H). Groups are appropriately
grown (AG, white, n = 6), saline-treated
fetal growth restricted (FGR, black, n = 7)
and sildenafil-treated fetal growth restricted
(FGRSC, grey, n = 7) fetuses. Duration of
treatment is indicated by the SC
administration bar. ‡Significant difference
over time. Daily physiological data collected
over the duration of the experiment were
analysed using a two-way repeated
measures ANOVA. Weekly mean
physiological parameters were analysed
using a one-way ANOVA.
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Fetal blood pressure and heart rate response
to sildenafil treatment

Mean fetal arterial (Fig. 5B) and systolic (Fig. 5D) blood
pressure over the 2-week treatment period were greater in
SUAL fetuses compared to AG and SUALSC (Fig. 5B and

D, P < 0.05) but no difference was seen between SUALSC

and AG. Mean fetal diastolic blood pressure (Fig. 5F) over
the 2-week treatment period was not different between
groups. Mean fetal heart rate was lower in SUALSC fetuses
compared to AG and SUAL fetuses (Fig. 5H, P < 0.05)
during SC treatment.
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Figure 5. The fetal cardiovascular response
to chronic antenatal SC administration
Daily mean ± SD blood pressure (BP) (A), diastolic
pressure (C), systolic pressure (E) and heat rate
(G). Total means throughout the treatment
period of all parameters are also shown (B, D, F,
H). Groups are of appropriately grown (AG,
white, n = 6), saline-treated fetal growth
restricted (FGR, black, n = 7) and
sildenafil-treated fetal growth restricted (FGRSC,
grey, n = 7) fetuses. Duration of treatment is
indicated by the SC administration bar. Daily
physiological data collected over the duration of
the experiment were analysed using a two-way
repeated measures ANOVA. Weekly mean
physiological parameters were analysed using a
one-way ANOVA.
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Femoral blood flow and oxygen delivery

Mean fetal femoral blood flow over the 2-week
treatment period was lower in SUAL fetuses compared
to AG and SUALSC fetuses (Fig. 6D, P = 0.002 and
P = <0.001 respectively) but no difference was seen
between AG and SUALSC fetuses. Mean fetal femoral
oxygen delivery over the 2-week treatment period
was lower in SUAL compared to AG fetuses (Fig. 6F;
P = 0.008) but no difference was seen between AG and
SUALSC fetuses.

Discussion

Hypoxaemia and FGR are most commonly caused by
impaired placental function resulting in a hypoxic fetal

environment. Currently there is no cure or treatment
options available for women with suspected FGR. Potential
treatments to improve placental function, such as SC
(Ganzevoort et al. 2014), are an important area of
investigation. The present study aimed to investigate
the effect of maternal SC administration on fetal and
maternal cardiovascular physiology in ovine pregnancies
complicated by placental insufficiency, induced by SUAL.
SUAL resulted in reduced femoral blood flow and
oxygen delivery consistent with brain-sparing. Our key
finding was that antenatal treatment with SC altered
fetal cardiovascular redistribution, coupled with increased
fetal distress and hypoxaemia. SC exposure resulted in
widespread fetal vasodilatation, which counteracts the
normal fetal cardiovascular adaptation (brain-sparing
response) in the setting of chronic hypoxaemia.
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Figure 6. Fetal carotid and femoral blood
flow and oxygen delivery in response to
growth restriction and sildenafil treatment
Daily mean ± SD (A, C, E,) carotid blood flow
(A), femoral blood flow (C) and femoral oxygen
delivery (E). Total weekly means of the
treatment period of all parameters are also
shown (B, D, F). Groups are appropriately
grown (AG, white, n = 6), saline-treated fetal
growth restricted (FGR, black, n = 7) and
sildenafil-treated fetal growth restricted (FGRSC,
grey, n = 7) fetuses. Duration of treatment is
indicated by the SC administration bar.
∗Significant difference between FGR and AG.
Data are daily physiological data collected over
the duration of the experiment were analysed
using a two-way repeated measures ANOVA.
Weekly mean physiological parameters were
analysed using a one-way ANOVA.
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Impact of SC on fetal oxygenation and growth

An important finding was the effect of SC on fetal
oxygenation and growth. SUAL induces FGR via placental
insufficiency and thereby creating a chronic fetal hypo-
xic environment (Alves de Alencar Rocha et al. 2017b).
A reduction in birthweight was observed in both SUAL
groups within this study. Zhang et al. (2015) have
discussed the potential for the placental vascular bed to
mount a vasodilative compensatory response to placental
insufficiency in an attempt to modulate the degree of
FGR, and Kitanaka et al. (1989) have shown that uterine
artery blood flow increases gradually in pregnant sheep
exposed to chronic hypoxia. These studies suggest in
adverse pregnancy, the placental vasculature has some
vasodilatory ability to increase blood flow and oxygen
carrying capacity for the fetus. Accordingly, in the current
study we observe a return to normoxia within 4 days of
SUAL in saline-treated SUAL fetuses.

In contrast, SC-treated SUAL fetuses became
progressively more hypoxic, which probably resulted in
the reduced growth observed. The increased hypoxaemia
in SUALSC fetuses suggests impairment, or failure, to
potential placental adaptation to hypoxaemia as described
above. We have previously discussed the potential SC to
decrease maternal systemic resistance, resulting in a sub-
sequent ‘steal’ of blood from the uteroplacental circulation
as it flows to a vascular unit with lower resistance (Miller
et al. 2009; Inocencio et al. 2019). It is reasonable to assume
the increased fetal hypoxaemia observed in our current
study may have also been driven by similar alterations in
maternal and/or placental blood flow by SC. Given we also
observe effects of SC on the fetal circulation, we suggest
that this too may contribute to the increased fetal distress
observed.

The normalization of peripheral blood flow in SUAL
lambs observed in our current study may be an alternative
mechanism behind the exacerbation of fetal hypo-
xaemia observed. We measured femoral blood flow as
an indication of peripheral circulation in our study. As
SC crosses the placenta and enters the fetal circulation
(Inocencio et al. 2019), the vasodilatory effects of SC are
probably global within the fetus. Thereby, in the face
of fetal hypoxaemia, global vasodilatation by SC may
enable perfusion of all organs, rather than preferential
distribution to the brain. This would result in increased
oxygen consumption by less important organs at the
expense of critical organs such as the heart and brain. We
suggest that this may have contributed to the increased
hypoxaemia and the subsequent further impairment of
growth in SUAL fetuses exposed to SC.

Lactate is a marker of fetal distress and tissue hypoxia
(Kastendieck et al. 1988; Borruto et al. 2006). The increased
lactate in SUALSC compared to SUAL and AG fetuses we
observed is likely to reflect increased fetal stress caused by

increased hypoxaemia and nutrient deprivation resulting
in anaerobic glycolysis in SUALSC fetuses (Yates et al.
2012). Lactate is the main substrate for brain development
(Medina & Tabernero, 2005), and Mann et al. (1971) have
shown an increased lactate uptake by the brain following
lactate infusion into the fetal circulation. If lactate can act
as an energy source for the brain, the increased lactate seen
in the growth-restricted fetuses exposed to SC may have
contributed to the increased fetal brain weight relative to
the SUAL and AG lambs. As increased brain sparing is
associated with worsening placental function (Giussani
et al. 2012; Cohen et al. 2016) and adverse fetal outcomes
(Cheema et al. 2006), we do not believe that the increased
brain weight observed is associated with improved brain
development. However, analysis of the brain, which is
beyond the scope of this study, will be useful to determine
the effects of SC on the developing brain.

Sildenafil citrate impairs cardiovascular adaptations
to hypoxaemia

In SUAL fetuses, mean arterial blood pressure increased in
response to SUAL, driven by vasoconstriction of the peri-
phery, evidenced by a widening pulse pressure (increased
systolic bloob pressure) also shown in our study. It is
important to note that several studies using different ovine
models of FGR have demonstrates no difference between
blood pressure of FGR and control fetuses (Danielson
et al. 2005; Bubb et al. 2007; Dyer et al. 2009; Miller
et al. 2009) Conversely, studies involving similar models
of FGR have demonstrated an increase in fetal blood
pressure(Murotsuki et al. 1997; Galan et al. 2005). A
potential reason behind these contrasting findings is the
severity of hypoxaemia induced in the different models of
FGR. Our results suggest that SUAL results in hypoxaemia
that is sufficient to drive an increase in fetal blood pressure,
and observe effects of SC to blood pressure regulation.

The fetal cardiovascaular response to chronic hypo-
xaemia is mediated by fetal endocrine and metabolic
adaptations and are aimed at maintaining maximal organ
perfusion (Morrison, 2008; Giussani et al. 2012; Newby
et al. 2015; Giussani, 2016). Peripheral vasoconstriction
results in a redistribution of blood flow away from
the periphery, as evidenced by a significant reduction
in femoral blood flow and oxygen delivery (calculated
from oxygen concentration and arterial blood flow)
in SUAL lambs, whereas cerebral oxygen delivery was
maintained. While brain/body ratio was 12% greater in
SUAL lambs compared to control, this difference was not
statistically significant. The SUAL procedures surgically
induce placental insufficiency and exposes the fetus to
a pathological placenta (Emmanouilides et al. 1969).
This is evident in our study, with fetal oxygenation
decreasing 26% relative to AG fetuses following the
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SUAL procedure. Our observations suggest that even in
the absence of significant brain-sparing, chronic hypo-
xaemia in the fetus induces key adaptive mechanisms
to facilitate the redistribution of cardiac output from
the periphery to the cerebral circulation (Cosmi et al.
2011). Additionally, in another sheep model of FGR, via
placental-restriction, Poudel et al. (2015) have shown a
similar physiological response in FGR fetuses whereby
blood flow to the brain was similar and femoral blood
flow was decreased. Therefore, while SUAL fetuses were
not significantly smaller in our current study, the physio-
logical response to placental artery ligation is consistent
with previous literature.

However, SC administration normalized mean and
systolic fetal blood pressure, and in concert with
restoration of femoral blood flow in SUAL fetuses,
demonstrates interference by SC to this well-described
cardiovascular adaptation to hypoxaemia. Furthermore,
peripheral oxygen delivery was also normalized after SC.
SC induces vasodilatation via inhibition of enzyme PDE5,
normally responsible for the degradation of cGMP which
enables smooth-muscle vasoconstriction. We have pre-
viously shown that femoral arteries of fetal sheep vaso-
dilate in response to SC ex vivo, which demonstrates
the presence of PDE5 within this vascular bed (Polglase
et al. 2016; Itani et al. 2017). We suggest that SC
counteracts the vasoconstrictive adaptation in SUAL
fetuses by inducing peripheral vasodilatation, resulting
in the normalization of perfusion (BP, resistance) and
restoration of femoral oxygen delivery and blood flow.
Ruijtenbeek et al. (2000) have shown chronic hypoxaemia
increased peripheral sympathetic innervation, which they
describe as a key mechanism involved in the maintenance
of cardiac output redistribution observed in FGR. It is
possible that peripheral vasodilatation and normalization
of peripheral oxygen delivery by SC may impair this
adaptive peripheral hyperinnervation, resulting in the
altered fetal cardiovascular redistribution observed in our
study. The consequences of cardiovascular adaptation to
placental insufficiency are complex. While redistribution
of fetal cardiac output, and subsequent brain-sparing,
is a well-accepted adaptation to preserve perfusion of
key organs and maintain fetal life (Cohen et al. 2015),
an increased degree of brain-sparing is also strongly
associated with poorer neonatal outcome (Malhotra et al.
2019). We are unable to determine if the normalization of
femoral blood flow observed in our study is detrimental
or beneficial to postnatal life. However, in the context of
SC, we suggest that benefit is unlikely given the negative
effects observed in this study, including further decreases
in fetal weight, hypoxaemia and fetal stress evident by
higher lactate levels.

Interestingly, despite the potential for widespread vaso-
dilatation, SC treatment did not significantly increase
carotid blood flow. As adaptation to hypoxaemia aims

to maximally perfuse key organs such as the brain, it is
possible that the cerebral circulation is maximally dilated
to facilitate maximal oxygen delivery to the brain. The
cerebral vasculature may therefore have limited ability to
further vasodilate in response to a vasodilator such as SC.

Effects of SC on maternal heart rate and blood
pressure

Maternal arterial and diastolic blood pressure decreased
following SUAL. Whilst fetal growth restriction is not
traditionally associated with decreased blood pressure,
Steer et al. (2004) found an association between maternal
hypotension and infants that were small for gestational age
in their population consisting of >500,000 birth records.
As we did not observe a difference between SUAL- and
SUALSC-bearing ewes, we suggest that decreased maternal
blood pressure in SUAL-bearing ewes reflects a maternal
vascular response to the induction of SUAL.

Limitations

In this study we aimed to mimic the human dose of
SC administration used in the recent STRIDER trials. To
provide a controlled administration of SC to the pregnant
ewe, SC was given as a continuous I.V. infusion to the
ewe. In consideration of the different dosing routes, we
decreased the dosage of SC to match the bioactivity of the
drug when taken orally (i.e. 50% bioactive via oral route).
We acknowledge that the pharmacokinetic profile of SC
is likely to be different between our study and the women
in STRIDER, in which oral administration would result
in cyclic (Wang & Craik, 2016) levels of SC, as opposed to
our constant SC levels.

Statistically, saline-treated SUAL fetuses were not
growth restricted compared to AG fetuses. However, SUAL
fetuses did have a reduction in weight of �400g, which
represents a reduction of 11.1% in body weight. This
is similar to previously reported FGR weights by our
group (Malhotra et al. 2018). This difference in body
weight probably represents a decrease in growth velocity,
which is associated with an increased risk of postnatal
complications and stillbirth (MacDonald et al. 2017).
Interestingly, SUALSC fetuses had a reduction of 32% in
body weight, which highlights the exacerbation of SUAL
by maternal SC treatment.

Fetal oxygenation was measured via samples collected
within the descending aorta. While blood within the
descending aorta eventually supplies the peripheral
vasculature, the point of collection is before blood
flow through the abdominal organs and the periphery.
Therefore, sampling from this vessel limits the ability
to account for specific oxygenation differences between
the femoral and cerebral vascular beds. Unfortunately,
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we were limited in our ability to instrument a central
vascular bed as we collected the brains for a separate study.
It would have been very informative to have obtained
an additional blood sample from the carotid artery to
allow the determination of carotid oxygen delivery to fully
elucidate regional changes in fetal oxygenation during SC
administration.

The rationale for the clinical use of SC was undertaken
with the expectation that SC would improve placental
blood flow and thereby fetal growth (Pels et al. 2017).
Although it is possible that the effects of SC on the placenta
underlie the decrease in growth and increase in hypo-
xaemia observed in SUALSC fetuses, we are unable to
speculate further on these as they were not investigated in
the current study. We have previously shown that SC can
acutely impair uterine flow (Miller et al. 2009) and have
now shown chronic SC modulates fetal vasodilatation.
Future studies could investigate the potential for chronic
SC treatment to alter placental and uterine blood flow.

It is also important to note that there are key differences
between our model and the human pathology under-
lying FGR. Furthermore, there are key differences between
the aetiology of clinical placental insufficiency and our
SUAL model. In contrast to abnormal placental vaso-
dilatation causing a decrease in placental perfusion, SUAL
induces placental atrophy to mimic placental insufficiency
(Emmanouilides et al. 1969). In our study, indices of hypo-
xaemia improved over gestation in both SUAL groups,
suggesting a potential adaptive response to SUAL. While
we are still able to observe detrimental effects of SC,
true exacerbation of hypoxaemia may be masked by any
adaptation to SUAL. Additional information regarding the
mechanisms by which SC impacts fetal growth restriction
could be gained by investigating the effects of SC to fetal
oxygenation in models where hypoxia and hypoxaemia
can be carefully manipulated, such as chronic maternal
hypoxia (Allison et al. 2016) and/or umbilicoplacental
embolization (Duncan et al. 2000). Furthermore, an
increase in umbilical flow may be limited in the SUAL
model. Notwithstanding this, the ability of SC to improve
placental blood flow is contentious, with some studies
demonstrating benefit (Satterfield et al. 2010; Dastjerdi
et al. 2012) and others demonstrating impairment (Miller
et al. 2009; Inocencio et al. 2019) of placental function.

Conclusions

We demonstrated that chronic administration of SC to
SUAL fetal sheep altered the cardiovascular adaptation
to chronic hypoxaemia. These adaptations aim to assist
with in utero survival, and inhibition of this adaptive
mechanism by SC resulted in increased fetal hypoxaemia
and exacerbation of growth restriction. This is the first
study to demonstrate the decentralization of blood flow in
the developing, hypoxic fetus by sildenafil citrate. Whilst

the developmental consequences of altered adaptation
to FGR are unknown, the increased hypoxaemia, distress
and reduced fetal growth suggest outcomes are likely to
be worsened.

Importantly, our study highlights the potential of
therapies administered to pregnant women to have
significant implications upon the developing fetus, and
the ability of these treatments to interfere with key
survival mechanisms, such as the conservation of oxygen
delivery to critical organs during chronic hypoxaemia. Our
findings suggest the use of SC in the clinical treatment for
placental insufficiency should be approached with caution.
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