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Ecology and evolutionary biology, like other scientific fields, are experien-
cing an exponential growth of academic manuscripts. As domain
knowledge accumulates, scientists will need new computational approaches
for identifying relevant literature to read and include in formal literature
reviews and meta-analyses. Importantly, these approaches can also facilitate
automated, large-scale data synthesis tasks and build structured databases
from the information in the texts of primary journal articles, books, grey
literature, and websites. The increasing availability of digital text, compu-
tational resources, and machine-learning based language models have led
to a revolution in text analysis and natural language processing (NLP) in
recent years. NLP has been widely adopted across the biomedical sciences
but is rarely used in ecology and evolutionary biology. Applying compu-
tational tools from text mining and NLP will increase the efficiency of
data synthesis, improve the reproducibility of literature reviews, formalize
analyses of research biases and knowledge gaps, and promote data-driven
discovery of patterns across ecology and evolutionary biology. Here we pre-
sent recent use cases from ecology and evolution, and discuss future
applications, limitations and ethical issues.
1. Why use text mining?
The volume of scientific literature is growing exponentially [1], with over three
million peer-reviewed academic articles published each year [2]. In a sample of
33 ecology journals alone, over 80 000 articles have been published since 1980
[3]. Reading this amount ofmaterial is an insurmountable task,makingmanual lit-
erature syntheses and compilation of literature-based datasets increasingly
difficult. As bodies of literature continue to grow, highly cited papers are more
likely to be cited compared to recent work, which can result in slowing of scientific
progress as transformative ideas are less likely to permeate and make substantive
impact [4]. Adopting computational approaches for analysis of scientific texts
allows researchers to rapidly and systematically identify relevant publications
and synthesize larger amounts of literature compared to manual approaches.
Beyond literature syntheses, computational tools can be used to efficiently extract
information from texts and update existing literature-based databases, ultimately
increasing the value of published research.

When humans read, we interpret information in text through the meaning of
words and grammatical contexts. To a computer, human language is complex and
difficult to convert to structured formats, such as tabular or relational databases
commonly used in scientific research. Therefore, raw text is commonly referred
to as ‘unstructured’. To convert unstructured data in scientific texts to a format
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Figure 1. Publication trends indicating an earlier adoption, and greater (a) absolute number and (b) proportion of papers involving text mining in biomedical
publications compared to ecology and evolutionary biology. Data were from two Web of Science (WOS) searches: one with ‘*medic*’ and the other with ‘ecology’
OR ‘evolutionary biology’ OR ‘biodiversity’ in the Topic field, plus ‘text mining’ OR ‘Natural Language Processing’ OR ‘NLP’ in All Fields for each search. A total of 5262
biomedical papers and 120 ecology/evolutionary biology papers mentioning text mining or NLP were identified out of a total 2 355 632 biomedical and 354 798
ecology/evolution papers. Searches were conducted on 10 September 2021 via the University of Toronto subscription. Note that variation in WOS search results varies
owing to institutional subscriptions [10]. Search results were subset to the years 1990–2020 inclusive. Data and R code to reproduce the figure, and .bib files with
citation information for the returned articles can be accessed at https://github.com/maxfarrell/textmining_trends. (Online version in colour.)
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ready for statistical analysis, we can apply a diverse set of com-
putational approaches. These tools broadly fall under the
umbrella of ‘text mining’, but often come from natural
language processing (NLP), a field that focuses on compu-
tational interpretation of human language, blending theory
and approaches from linguistics, computer science, statistics
and artificial intelligence. NLP comprises an extremely broad
set of computational methods that allow us to gather, sort,
translate and understand written documents.

Tools for mining scientific texts have seen wide-scale
adoption in other fields, such as biomedical sciences,
where models have been developed to recommend relevant
literature and extract data for further analysis. Exciting
examples include the construction of large-scale databases of
protein–protein interactions [5], drug–drug interactions [6],
gene-disease relations [7], chemical-disease relations [8], and
interfaces to extract information using structured searches [9].
Applications of NLP in ecology and evolution are relatively
rare compared to biomedical sciences (figure 1). The disparity
in onset and magnitude of adoption suggests that ecology
and evolution researchers could look to biomedical studies
for inspiration on applying classical and cutting edge NLP
approaches in their projects.

NLP itself is a rapidly growing field with many approaches
applicable to ecology and evolution. In recent years, ecologists
and evolutionary biologists have begun to develop similar
domain-specific approaches, but their applications have lar-
gely been restricted to the analysis of publishing trends and
related metrics. Given the growing and diverse types of litera-
ture, the importance of research syntheses, and increasing
computational literacy in the field, ecology and evolutionary
biology are prime candidates for the application of more
advanced text mining and NLP approaches.

Using NLP to create literature-based databases holds
particular value for comparative studies and biodiversity synth-
eses as these projects can be greatly accelerated by improving
the reproducibility and efficiency of data integration [11].
Further, the aggregation of key biodiversity data enables ana-
lyses that would not otherwise be possible [12]. While peer-
reviewed literature in journals represents the most common
source of scientific texts, application of NLP to other texts,
such as preprints [13], can highlight emergent and rapidly chan-
ging science, such as the COVID-19 pandemic [14,15].
Considerable ecological knowledge is also stored in older
books and texts associated with archival samples and natural
history collections [16], but recent advances in document scan-
ning, digitization, and optical character recognition (e.g. from
printed or handwritten texts) mean NLP approaches are now
feasible and promising [17,18]. This technological advancement
parallels the invention of new sensors and machine learning
tools for image analysis in wildlife conservation [19,20]. Simi-
larly, there exist vast amounts of text published alongside
online genetic sequence databases such as GenBank or the
Gene Expression Omnibus [21]. With increasing digitization
efforts and availability of associated texts, adoption of text
mining in ecology and evolution could greatly expand meta-
data and maximize the use of these ever-growing resources.

Beyond supporting the efficient creation and expansion of
literature-derived databases, using scripted and archived
computational processes for text analysis can dramatically
improve transparency, and help the reproducibility in all
phases of research, from identifying relevant papers, analys-
ing research trends, constructing and expanding datasets and
automated translation of text into data ready for statistical
analysis. Here we outline current and future applications of
text mining in ecology and evolutionary biology and discuss
current barriers to implementation.
2. Recent applications in ecology and evolution
(a) Detecting trends and topics
The most common uses of text analysis in ecology and
evolution have been under the umbrella of bibliometrics:
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quantitative research that studies trends in subject matter,
authorship, and impact of publications. For example, Ander-
son et al. [22] analysed over 130 000 articles to explore the
increasing diversity of ecological hypotheses and theories
published over the past 80 years. Similar studies of publish-
ing trends have explored ecological topics in high impact
journals [23], showed the emergence of conservation biology
as a separate discipline from ecology [24], analysed the
growth of interdisciplinarity in biodiversity science [25],
tracked shifting popularity of topics within industrial ecology
[26] and fish ecology [27], identified research themes in dis-
ease ecology [28], and pinpointed critical research gaps in
conservation science [29] and pollination ecology [30]. Out-
side of academic articles, text mining can reveal important
trends for environmental management and biodiversity con-
servation [31]. In conservation science, analysis of online texts
and social media posts led to the development of conservation
culturomics, a field that evaluates public interest in nature
[32], tracks opinions on conservation topics [33] and quan-
tifies people’s experiences in nature [34] based on an
increasingly diverse set of data sources [35]. Beyond tracking
trends, text analysis can be used to gather evidence support-
ing the success of conservation actions and develop more
culturally relevant policies.

(b) Evidence synthesis and literature reviews
The growth of scientific literature is making evidence
synthesis an increasingly difficult task, leading to an
ever-widening ‘synthesis gap’ [36]. For both narrative and
systematic reviews, text mining is projected to become a
necessary tool to circumvent literature overload [37]. Text
analysis can be implemented at multiple phases of a review,
from identifying search terms using keyword co-occurrence
networks [38], to applying predictive approaches to screen
studies for inclusion [36]. Abstract screening using text
mining and machine learning can be a precise and efficient
alternative to the common practice of screening abstracts
with two reviewers [39], which may help limit individual
biases by providing a consensus annotation, but is time con-
suming and can be error-prone. The future of systematic
reviewing will necessitate the interaction of humans and
machine learning algorithms to tackle the rapid growth
in publications [40]. Overall, implementing computational
processes can dramatically expand literature assessments
to include more diverse texts, increase the efficiency of
reviews and literature syntheses, and allow rapid reproduci-
bility and updating as new literature is published [37].
These tools need to be properly calibrated and valida-
ted to ensure accuracy compared to manual search and
screening [36,41,42].

(c) Expanding literature-based datasets
Large-scale studies in ecology are often based on data
compiled from previously published research and typically
involve significant manual investment for literature
searching, acquisition, screening, data extraction, and harmo-
nization of entities such as species names, place names,
measurement units, experimental designs and terminology
with inconsistent definitions [12]. As such, these studies
require substantial effort to update as new papers are pub-
lished. In NLP, the sub-field of information retrieval
develops search algorithms and models that suggest articles
of potential interest. In a recent ecological application, Corn-
ford et al. [43] train machine learning models to classify
literature as relevant to the PREDICTS database [44], a litera-
ture-based database of biodiversity responses to human
impacts. Their best models could distinguish relevant from
non-relevant articles with over 90% accuracy based only on
title and abstract text, significantly improving the speed
and ease with which new articles can be screened for data-
base inclusion. A similar machine learning approach was
used by Roll et al. [45] to identify articles using the term ‘rein-
troduction’ in a conservation context (release of organisms
into their historical native habitat), rather than a non-ecologi-
cal context. Outside of search engines, a number of machine
learning models for text classification have been developed
in recent years [46], but are rarely used in ecology and evol-
utionary biology [47]. The ability to continually flag and
integrate relevant publications will help transition from
static ecological datasets to living ones, and help promote
more efficient, timely, and impactful science.

(d) Extraction and integration of primary
biodiversity data

Integrating data from across the life sciences is currently
a major challenge, but will foster the interdisciplinary
research needed to address pressing global issues [48]. With
NLP approaches, unstructured texts can be more efficiently
transformed into structured data commonly analysed in
ecological and evolutionary studies. With dictionaries
containing terms of interest (e.g. species names, traits, key-
words describing an ecological interaction), the frequency
of term co-occurrences can be used to discover associations
[49]. For example, by quantifying the co-occurrence frequen-
cies of ant species names and terms describing ant-plant
mutualisms, Kaur et al. [50] were able to identify ant species
associated with mutualistic behaviours, and used the com-
piled dataset to study the evolution of plant mutualisms.
Similar approaches have been used to infer inter-species
associations via descriptions from the Encyclopedia of Life
[51], and NCBI and PubMed [52,53]. Ecologists have also
used text from Twitter [54] and news sources to gather
species-linked data that can infer population trends, geo-
graphical ranges or even monetary values, that support
innovative systems to monitor and respond to conservation
concerns [55].

These studies used dictionaries to identify relevant terms,
but to go beyond lists of words, terms can be linked to other
datasets using ontologies. In linguistics, an ontology refers to
a set of terms and their relationships, forming a network of
concepts in a domain [56]. Ontologies capture expert knowl-
edge and allow users to translate concepts across databases,
disambiguate terms with different disciplinary meanings, or
collapse terms into larger concepts (much like a taxonomy
allows collapsing species into genera, families, orders,
etc…). Ontologies have proven useful in biomedicine
[57,58] and for harmonizing data across diverse texts to
study problems within environmental science, bacterial evol-
ution, and comparative anatomy [59–64].

Ecology and evolution are rife with ambiguously defined
terminology (e.g. the definition of ‘virulence’ depends on if
the pathogen infects a plant or animal host, and often differs
between theory and empirical papers [65]), which slows
research progress and limits the ability to synthesize across
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studies [66,67]. Creating platforms with consistent naming
conventions and connected concepts will facilitate data har-
monization, sharing and annotation and aid collaborative
research projects already common in biodiversity science
[68]. There exist a number of related ontologies describing
ecological observations [69], biological collections [70], phe-
notypes [71,72], and biodiversity science [73]. Recent efforts
have aimed to generate consensus definitions for ecological
traits with ontologies [74]. These act as resources for describ-
ing, accessing and manipulating phenotypic data by making
phenotypic data more manipulable by computers [75],
efficiently extracting phenotypic data from taxonomic
descriptions [76], structuring species information [77], and
harmonizing traits with taxa [78]. Developing diverse voca-
bularies, definitions and relationships among concepts is
crucial for dealing with the heterogeneous nature of infor-
mation in ecology and evolution, and these initiatives will
lay the groundwork for more automated text analyses in
the future.
 9:20212721
3. Future uses of text mining and natural
language processing in ecology and evolution

Given the current limited use of NLP approaches in ecology
and evolution, we suggest that their adoption will have the
greatest impact on the construction of large scale comparative
databases. We highlight three tasks that are likely to be extre-
mely useful: document classification, tagging domain-specific
entities in text, and building structured databases through
relation extraction (figure 2). Each of these tools can be gen-
eralized to future research projects, or linked together to
build a workflow from raw texts to a structured database
ready for analysis. In general, model performance will
differ based on the specific task, goals of the larger project,
and to what degree metrics such as precision or recall
should be optimized. For example, a computational approach
may not return all articles identified in a manual search, but
may still be desirable if it identifies a larger number of rel-
evant texts to include, or offers the ability to more rapidly
analyse a larger set of documents. Below we assume that
some source texts (corpus) have already been identified,
either through targeted literature searches, or choice of an
existing body of literature. We do not discuss article search
strategies, as detailed guides exist [79], but note that this is
an important consideration when gathering a corpus and
designing a text mining project.

(a) Document classification
The success of document classification by Cornford et al. [43]
demonstrates the potential for document-level predictive
models to aid the updating of large-scale comparative data-
bases. As a general template, if databases derived from
published articles can be linkedwith abstracts or full texts, clas-
sifiers can be trained to predict whether subsequently
published articles are likely to contain relevant data. Training
a classifier requires examples of both positive and negative
cases (e.g. relevant and irrelevant articles). Databases that
report discarded literature are great resources of positive and
negative examples. However, because existing databases
rarely document these, ‘irrelevant’ papers may be identified
by sampling papers in the discipline, such as the use of general
ecology papers by Cornford et al. [43]. These irrelevant articles
are similar to the use of ‘background’ or ‘pseudo-absence’ data
in species distribution models [80] in that they may contain
undocumented positives (i.e. relevant articles), but the
assumption is that the majority will be irrelevant and provide
a useful contrast to those in existing databases.

The choice of negative examples for training should reflect
future search strategies, whether it be searching through all
ecology papers, or a more specific set. If the source database
clearly outlines their strategy for literature inclusion (i.e.
search terms, targeted journals, publication dates), it may be
possible to compile more targeted sets of negative examples
for training. Future development of document classifiers
should explore the influence of these different approaches for
generating negative training data on accuracy, and validate
these predictive models on articles which have been expert-
validated rather than assumed to be irrelevant (figure 2). In
addition to periodic updating, using predictive models to
expand existing datasets will lay the foundation for systems
that can alert researchers of relevant papers as they are
published, and automatically extract data from these papers.
(b) Identifying entities specific to ecology and evolution
Once relevant texts are identified, the next task is extraction
of relevant terms. If researchers know exactly what they are
looking for, and terms of interest are completely known
and can be listed, simple methods such as text matching
can be used to identify them. However, given the diversity
of specialised terms in ecology, this is unlikely to be the
case. When relevant terms are not known, or texts are
expected to include never-before-seen terms, named entity
recognition (NER) will be extremely useful. NER involves
identifying real-world objects (named entities) based on the
context of their surrounding text, such as people, locations,
organizations, etc. In biomedical text analysis, specialized
NER tools are built to identify mentions of diseases, genes,
proteins, cell types, and chemicals [81]. NER tools designed
for ecology and evolutionary biology are currently rare, but
would greatly improve literature exploration and information
extraction. Contemporary NER tools are often created by
adapting deep learning based language models [82]. There-
fore, given suitable training data, NER models can be
trained to recognize and disambiguate ecology-specific enti-
ties (figure 2). For example, the recently developed
TaxoNERD [78] is a deep-learning based model that recog-
nizes scientific and common species names, and can
normalize names to match NCBI or GBIF. One current chal-
lenge to developing deep learning-based ecological
language models from scratch is the lack of domain-specific
‘gold standard’ training data. However, the authors of Taxo-
NERD overcome this by starting with a pre-trained
biomedical language model and updating it for an ecological
task. This successful example of transfer learning demon-
strates the potential of large deep-learning based models to
generalize to novel tasks and reduce the amount of labelled
training data needed to build a tool explicitly for ecology
and evolutionary biology. Moving forward, the development
of NLP tools for ecology and evolution could be greatly sup-
ported by hubs of open access training data, such as those
created for image analysis in biology and conservation [83].

Once named entities are recognized, a text analysis pipe-
line can take many different paths. To better understand
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context, researchers may cross-reference terms with ontolo-
gies to connect concepts or collapse terms into higher
groups. For example, scispaCy v. 2.5.0 supports entity linking
to biomedical ontologies including the Unified Medical
Language System (UMLS) [84] and the Medical Subject
Headings (MeSH terms) [85], which in turn allow them to
be connected to a diverse array of databases. These may be
used to group organs into larger anatomical systems, or cat-
egorize proteins into enzymes, hormones, or antibodies.
While approaches have been developed to identify taxo-
nomic, morphological and habitat entities [63,86], merge
existing ontologies [87,88] and create standards for publish-
ing of biodiversity information [89], these initiatives remain
disconnected, and have not yet been integrated with contem-
porary NLP software.
(c) Relation extraction and creation of structured
datasets

Once entities are recognized, and disambiguated or linked to
an ontology, multiple approaches can be used to identify
relationships among these entities (for examples, figure 2
and table 1). One approach is analysis of term co-occurrences,
as used by Kaur et al. [50] to identify ant-plant mutualisms.
Alternatively, the structure of the text itself can be used to
identify the relationships, through a task referred to as relation
extraction. Relation extraction can be done by incorporating
linguistic information, such as semantic relationships between
entities, or through training of a deep-learning based language
model if one is available. For example, identifying protein-
protein interactions in text has progressed from using a

https://BioRender.com


Table 1. Table of common relationship types in ecology and evolution, and example texts. Italics are species names, underlining are the entities, bold are the
relations.

example of relation example text

measurements and units ‘The average length of human gestation is 280 days’

model-specific parameters ‘R0 was estimated to be 1.13’

species interactions ‘Anoplocephala manubriata parasitizes Asian elephants’

protein–protein interactions ‘Pleiotropic drug resistance 1p (Pdr1p) regulates Pdr5p’

habitat associations ‘Ribes mandschuricum is found in shady areas’

species occurrences ‘Cercopia moths were collected from sites throughout Massachusetts ‘

Linnaean taxonomy/common names/synonyms ‘Boops boops, commonly called the bogue, is a species of seabream native to the eastern Atlantic’

anthropogenic impacts ‘Inversodicraea botswana is threatened by sewage discharge’
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dictionaryofproteinnames and co-occurrences, to adding infor-
mation about parts of speech (e.g. verbs, nouns, adjectives), to
supervised and deep learning approaches that incorporate
vector representations of articles as predictors [90]. Relation
extraction can also be used to identify relationships between
different classes of entities, such as disease-gene interactions
[7]. Relation extraction is often a complex task, which can
be daunting for researchers new to text mining. However,
given the diversity and value of relational data in ecology and
evolution, we suggest that relation extractionwill be an increas-
ingly important means of generating structured, analysis-ready
data in the future.Thisoffers excitingnew frontiers forecologists
and evolutionary biologists to collaborate with computational
linguists and computer scientists.
4. Current barriers to adoption and pathways
forward

Despite the promise of text mining to revolutionize literature
synthesis and database creation, several technical and social
barriers currently limit widespread adoption in ecology and
evolution. These include a lack of knowledge of existing tools,
best practices, and shared vocabularies needed for collaboration
with computational linguists [36]. Further, there are inequalities
in access to software, data, and academic literature [10,47,91].
To use text mining and NLP in ecology and evolution to their
full potential, we need to promote awareness of these methods,
improve access to scientific literature and article-level metadata,
facilitate cross-disciplinary collaborations, create domain-
specific software, and develop an ecosystem of scientific
language tools that work across all the world’s languages, not
just English. Recent successful applications of NLP approaches
in ecology and conservation biology have involved close collab-
orations between biologists and computer scientists [55,92]
highlighting the importance of cross-disciplinary research.
However, as general tools and frameworks exist, their adoption
in ecology and evolution is now limited by access to texts,
development of applications specific to ecology, and the
dissemination and uptake of these tools.

For primary literature, abstracts are among themost readily
accessible documents and can be sufficient for document classi-
fication and database creation [43,50,93]. However, abstracts
may not be available for more historical papers [22], and ana-
lyses of manuscript full texts are likely to outperform the use
of abstracts only, as shown for relation extraction [93]. Unlike
abstracts, access to full academic texts is limited by institutional
subscriptions [10], with only half of publishers releasingmanu-
scripts in a machine readable format [94]. Access to paywalled
articles and copyright issues will limit the reproducibility
of studies using text mining, and re-publishing or hosting
source texts as supplementarymaterialsmay be illegal. Projects
such as the PMC Open Access Subset offers bulk download of
100 000s of articles in machine-readable format [95], and The
General Index [96], an open access database of text sequences
and keywords extracted from 107 million journal articles,
offers researchers the ability to perform specialized searches
and analyse thematic trends in scientific literature without bar-
riers imposed by paywalls or institutional access. While such
databases can greatly improve interaction with published lit-
erature, their success relies on unrestricted bulk access to
primary texts. Interfaces such as application programming
interfaces can facilitate scripted retrieval of texts, but usually
involve arbitrary rate-limitation which makes large-scale
analyses difficult and hampers literature-based research
[97]. Thus, scientific advances in synthesizing studies in ecol-
ogy and evolution are limited by business decisions and
publisher-imposed restrictions that create artificial scarcity
[98]. In turn, when analysing large volumes of papers,
researchers should take care to cite primary sources appropri-
ately. However, the mainstreaming of text mining has
resulted in a need for new bibliometric and citation infra-
structure to facilitate transparent and permanent linking of
large citation lists, and allow proper acknowledgement of
individual studies that underlie large-scale literature surveys.
Overall, the scale and reproducibility of text mining studies
will be hindered until scientific articles are considered a
public good and made open and freely accessible.

Parallel to variation in access to scientific publications, the
dominance of English in science has led to data from non-Eng-
lish publications being omitted from ecological syntheses [99].
There also exist systematic inequalities in the representation
and performance of NLP technologies across languages
[91,100]: largely because of the historical dominance of English
as the lingua franca of scientific publishing, current scientific
language models are designed only for English texts
[101,102]. As training data and models for previously under-
supported languages continue to grow [103], the future looks
promising for expansion of NLP approaches to non-English
scientific texts. This could promote broader inclusion in science
by facilitating translation of publications across languages,
easing barriers for researchers to publish in their chosen
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languages, and allowing broader inclusion of non-English
scientific texts in synthetic research.
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5. Conclusion
The application of text mining and natural language models
to domain-specific text in ecology and evolutionary biology
shows great promise for summarizing historical research
and current gaps in knowledge, efficiently identifying perti-
nent literature, constructing structured databases from
unstructured texts and developing real-time biodiversity
surveillance for issues such as emerging diseases and con-
servation threats. We urge early-career scientists and
established researchers alike to explore and apply these
tools in their own research, foster interdisciplinary collabor-
ations, build open access corpora, contribute their expertise
to developing open-source software and expert-created
training data, and develop tools that are designed
specifically for processing texts in ecology and evolution.
Data accessibility. We create a very simple graph of number of publi-
cations through time. We detail the exact search strategies in the
figure caption, so as to make this search reproduced by readers.
We also provide a link to a github repository with the underlying
data and R script used to make this figure, and reference this in the
caption of figure 1 (https://github.com/maxfarrell/textmining_
trends).
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