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Synthetic cells, which mimic cellular function within a minimal compartment, are finding
wide application, for instance in studying cellular communication and as delivery devices to
living cells. However, to fully realise the potential of synthetic cells, control of their function is
vital. An array of tools has already been developed to control the communication of
synthetic cells to neighbouring synthetic cells or living cells. These tools use either chemical
inputs, such as small molecules, or physical inputs, such as light. Here, we examine these
current methods of controlling synthetic cell communication and consider alternative
mechanisms for future use.
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INTRODUCTION

The construction of an autonomous synthetic cell (SC) from the bottom-up is a formidable task.
Hence, rather than creating a single compartment that performs every necessary cellular function,
most bottom-up SC research focuses on recapitulating specific cellular hallmarks such as metabolism
(Lee et al., 2018; Berhanu et al., 2019), division (Zhu and Szostak, 2009; Kretschmer et al., 2019; Miele
et al., 2020; Steinkühler et al., 2020; Dreher et al., 2021), and communication (Lentini et al., 2014;
Booth et al., 2016; Lentini et al., 2017; Ding et al., 2018; Niederholtmeyer et al., 2018; Rampioni et al.,
2018; Tang et al., 2018; Joesaar et al., 2019; Toparlak et al., 2020; Chakraborty and Wegner, 2021),
into simple cell models. Membrane-defined SCs have been developed from liposomes (Stano, 2019),
emulsion droplets (Booth et al., 2017a), polymersomes (Rideau et al., 2018), and proteinosomes
(Huang et al., 2013) that feature an internal lumen surrounded by a physical boundary comprised of
a lipid bilayer or monolayer, amphipathic polymers, or proteins, respectively. The lumen can be filled
with enzymes, small molecules, or even a minimal mixture of enzymes and small molecules capable
of performing cell-free protein synthesis (CFPS). Membrane-less SCs have also been assembled from
coacervates (Mason and van Hest, 2019).

Of the many cellular traits, communication has received significant attention as it offers the
promise to interface the various forms of SCs with living cells, or assemble communities of
interconnected SCs that perform more complex tasks as a collective. Communication between
populations of SCs, or SCs and living cells, has been achieved with liposomes (Gardner et al., 2009;
Lentini et al., 2014; Lentini et al., 2017; Tang et al., 2018; Toparlak et al., 2020), droplet networks
(Booth et al., 2016; Schwarz-Schilling et al., 2016; Dupin and Simmel, 2019), proteinosomes (Tang
et al., 2018; Joesaar et al., 2019), and polymersomes (Niederholtmeyer et al., 2018), and tends to
employ two main approaches; Using either 1) membrane-permeable signalling molecules formed in-
situ from precursors contained within the compartment, through chemical (Gardner et al., 2009) or
enzymatic reactions (Lentini et al., 2017; Ding et al., 2018; Rampioni et al., 2018; Tang et al., 2018;
Wang et al., 2019; Buddingh’ et al., 2020), or 2) membrane-impermeable signalling molecules
encapsulated or formed inside a compartment, and then released into the environment via the
insertion of pore-forming proteins (Adamala et al., 2017; Tang et al., 2018; Toparlak et al., 2020) or
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FIGURE 1 | Controlling communication in synthetic cells. Genetically encoded synthetic cell communication systems have been controlled by regulating the
expression of αHL using (A) small molecule sensitive riboswitches or (B) transcription factors. (C—left) Transcription factors that recognise acyl-homoserine lactones are
typically used to regulate quorum sensing between E. coli and synthetic cells or synthetic cells and other synthetic cells, (C—right) but they have also regulated
expression of a large protein pore, PFO, in synthetic cell communication with mammalian cells. (D) Control over communication that does not require genetic
control has been demonstrated by using pH-responsive DNA nanostructures and polymers to regulate the fusion of entrapped vesicles with the membrane of a larger
vesicle and the release of insulin. (E) In contrast to molecular activation, communication between synthetic cells has been initiated using light-activated DNA. 3OC6-HSL,
N-3-oxo-hexanoyl homoserine lactone; αHL, alpha-hemolysin; araC, arabinose-sensitive transcription regulator; BDNF, brain-derived neurotrophic factor; Cat, catalase;
Dox, doxycycline; fLuc, firefly luciferase; GFP, green fluorescent protein; Glut 2, glucose transporter 2; GO, glucose oxidase; GOI, gene of interest; HEK293T, human
embryonic kidney 293T cells; IPTG, isopropyl ß-D-1-thiogalactopyranoside; LacI, lac repressor; LasI, 3OC12-HSL synthase gene; LasR, 3OC12-HSL transcriptional
activator; LuxI, 3OC6-HSL synthase gene; LuxR, 3OC6-HSL transcriptional activator; PEG, polyethylene glycol-5000; PFO, perfringolysin O; RBS, ribosome binding
site; TetR, Tet Repressor protein; UV, ultraviolet.
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peptides (Wang et al., 2019) into the membrane. Current cutting-
edge applications of SCs, using these mechanisms, include the
delivery of therapeutic proteins to tumours in vivo (Krinsky et al.,
2018), detection and subsequent killing of bacterial cells (Ding
et al., 2018), and directed differentiation of neuronal stem cells
(Toparlak et al., 2020).

These approaches represent the foundations of how
communication between SCs can be achieved, but the
processes involved are poorly regulated. Pore-dependent
communication using encapsulated signalling molecules often
suffers from molecule leakage, either due to the SCs rupturing or
leaky expression of the pore proteins (Lentini et al., 2014), while
in-situ synthesis of signalling molecules often lacks regulation
altogether when encapsulated or constitutively expressed
enzymes are used (Ding et al., 2018; Rampioni et al., 2018;
Wang et al., 2019).

For SCs to become a mature technology with meaningful
applications, their activities must be regulated to ensure they
function only under the desired context or at the intended time.
Hence, we must find better ways to regulate molecular
communication in SCs; an area that currently lags behind
creating the communication routes themselves. If we can
regulate communication with more biologically relevant
molecules, SCs could play a role in modulating the
microbiome. Alternatively, by controlling communication
spatially or temporally with light or temperature, SCs could be
applied in various fields, including tissue engineering and
biomedicine. Several in-depth reviews covering recent
advances in SC communication systems have been published
over the last few years (Rampioni et al., 2019; Robinson et al.,
2021; Mukwaya et al., 2021). In this review, we describe how SC
communication systems have been controlled, and explore
alternative parts that might be used to control SC
communication in biologically useful ways, as well as spatially
and temporally using remotely-controlled stimuli. We focus our
attention on liposome-based SCs, but these tools are broadly
applicable to other forms of SCs.

CURRENT METHODS OF CONTROLLING
SYNTHETIC CELLS
Molecular Control of Synthetic Cell
Communication
Unlike natural cells, SCs do not have complex uptake and signal
recognition pathways to import and detect molecular cues.
Instead, small molecule-activated communication tends to be
achieved by the direct interaction of the molecule with its cognate
regulator. Most commonly, this is achieved using membrane-
permeable small molecules that diffuse across the SC membrane
and activate transcription factors (TFs) or riboswitches to control
transcription and translation, respectively (Figures 1A–C).

Riboswitch Control
Riboswitches are RNA sequences found in the 5’ untranslated
region (UTR) of a gene of interest that couple the binding of a
small molecule to the sequestration or release of a downstream

ribosome binding site (RBS) (Serganov and Nudler, 2013). In this
way, small molecules can control gene expression at the level of
translation. Pore-dependent molecular communication in SCs
has been controlled using riboswitches, through the theophylline-
induced expression of a membrane protein pore, alpha-
hemolysin (αHL). αHL is a protein pore from Staphylococcus
aureus that spontaneously assembles and inserts into lipid
bilayers (Thompson et al., 2011). By placing the αHL gene
downstream of a theophylline riboswitch, membrane-
impermeable signalling molecules, encapsulated inside a SC
with a CFPS system, were released following binding of
theophylline to the riboswitch, causing the release of the RBS,
and expression then membrane insertion of the protein pore.
Using this approach, isopropyl ß-D-1-thiogalactopyranoside
(IPTG) (Lentini et al., 2014; Adamala et al., 2017) and
doxycycline (Adamala et al., 2017) have been released from
SCs to activate gene expression in neighbouring E. coli
(Lentini et al., 2014) or SCs (Adamala et al., 2017) (Figure 1A).

Transcription Activators
Bacterial small molecule-based transcriptional control systems
have been widely used to control gene expression in SCs. One
example is quorum sensing (QS) systems that are involved in
natural bacterial communication, which use membrane-
permeable small molecules, known as N-acyl-homoserine
lactones (AHSLs), that are released from bacteria and enter
their neighbours to activate transcription regulators (Whitehead
et al., 2001). The well-characterized QS pathway from Vibrio
fischeri (LuxR) (Fuqua et al., 1994) has been reconstituted into
SCs to sense an AHSL andmediate communication between two
populations of bacteria that do not usually communicate with
one another (Lentini et al., 2017). Cell-free expression of an
AHSL synthetase within the SCs was activated by N-3-oxo-
hexanoyl homoserine lactone (3OC6-HSL), produced by a
population of bacteria, which initiated the synthesis and
release of N-3-oxo-dodecanoyl homoserine lactone (3OC12-
HSL), and activated reporter gene expression in a secondary
population of bacteria (Figure 1C). 3OC6-HSL has also been
used to initiate the expression of the large protein pore
perfringolysin O inside SCs to release in-situ synthesized
brain-derived neurotrophic factor (BDNF), which
subsequently initiated differentiation of co-incubated neural
stem cells (Toparlak et al., 2020) (Figure 1C). An alternative
pathway, based on the EsaR repressor protein, was used to
activate the release of glucose from liposome-based SCs to
communicate with co-incubated proteinosome-based SCs
(Tang et al., 2018).

Other bacterial transcription factor (TF) systems used within
SCs include the lac repressor (LacI) and arabinose-sensitive
transcription regulator (araC), which control expression of the
lac and arabinose operons and are commonly used for controlled
expression in E. coli. Placement of LacI or araC operators
upstream of a gene of interest has allowed IPTG and
arabinose to initiate communication between emulsion
droplet-based SCs (Schwarz-Schilling et al., 2016) and between
different populations of liposome-based SCs (Adamala et al.,
2017) (Figure 1B).
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Other Molecular Activators
The addition of alternative activator molecules such as glucose
(Chen et al., 2018; Tian et al., 2018; Gobbo et al., 2018; Wang
et al., 2019; Li et al., 2020), ATP (Buddingh’ et al., 2020), or ions
(Gardner et al., 2009) have also been shown to initiate
communication between SCs and living cells. SCs have been
produced that could release insulin in response to hyperglycemic
levels of glucose and lower the blood glucose levels in a mouse
model (Chen et al., 2018). Glucose was taken up via a glucose-
specific transporter and converted to hydrogen peroxide by
glucose oxidase (GO). The subsequent decrease in the internal
pH caused the fusion of internally held vesicles containing insulin
to the membrane of the SCs (Chen et al., 2018) (Figure 1D).
Glucose has also been used to activate SCs patterned into tissue-
like colonies using magnetic (Li et al., 2020) and acoustic (Wang
et al., 2019) manipulation. In both examples, glucose was used to
initiate the formation of hydrogen peroxide in one population of
SCs, which subsequently initiated a fluorescent output in
neighbouring cells or cell death in neighbouring mammalian
cells. Communication between SCs and bacteria has also been
controlled by a change of external pH, which triggered a formose
reaction that produced a QS analogue inside liposomes and
subsequently activated bioluminescent signalling pathways in
Vibrio harveyi (Gardner et al., 2009).

A synthetic “predator-prey” interaction was developed between
two populations of SCs by adding the membrane-permeable small
molecule coelenterazine to initiate intracellular bioluminescence.
Light responsive proteins iLID and Nano, in the respective
“predator” and “prey” SCs, subsequently adhered together to
initiate Ca2+ transfer through αHL, causing lysis of the prey SC
(Chakraborty and Wegner, 2021).

Control of communication between non-liposomal
compartments has been achieved by the addition of glucose to
coacervates (Tian et al., 2018) and proteinosomes (Gobbo et al.,
2018). The addition of ssDNA, across semi-permeable
membranes, has also been used to initiate DNA strand-
displacement (DSD) reactions between proteinosomes (Joesaar
et al., 2019).

Physical Control
While small molecule activation is limited to those that can
penetrate the SC membrane, physical stimuli such as light,
temperature, acoustics, and magnetism can all easily pass
through any SC membrane. An additional advantage of using
physical stimuli to activate SCs is they can be applied
spatiotemporally. Work to date has entirely focused on
controlling SC communication with light, which has the
advantage of being a biorthogonal, tuneable, and remotely
controlled signal.

Light-activated gene expression has been used to spatially
control neuron-like communication between SCs formed of
aqueous droplets, 3D-printed and bound through lipid bilayers
(Booth et al., 2016). This was achieved by sterically blocking the
T7 RNA polymerase promoter with seven biotins, each bound to
a monovalent streptavidin, conjugated to the DNA through 2-
nitrobenzyl photocleavable groups. Ultraviolet (UV) light was

used to express αHL in individual SCs (Booth et al., 2017b) or
patterned pathways through the droplet networks (Booth et al.,
2016), which allowed movement of ions between only the
activated SCs (Figure 1E). Optical tweezers have been used to
controllably bring together SCs in a targeted manner, followed by
the use of a laser to fuse specific SCs (Bolognesi et al., 2018). This
spatiotemporal fusion initiated expression of a fluorescent
protein. Light-activated communication was also demonstrated
between sender-receiver proteinosomes, using photocleavable
DNA templates that could release ssDNA through semi-
permeable membranes to initiate DSD reactions in
neighbouring SCs (Yang et al., 2020).

ALTERNATIVE PARTS FOR CONTROLLING
COMMUNICATION

Although the work highlighted above provides a foundation for
controlling SC communication with a variety of mechanisms, the
approaches are not without their flaws. The theophylline
riboswitch used to control αHL expression is leaky; expression
occurs even in the absence of theophylline. Expression of non-
selective pores limits the longevity of SC activity, as small
molecules required for transcription and translation are
released along with the membrane-impermeable signalling
molecule, and the QS receiver proteins that have been shown
to work in SCs both recognise the same molecule. Several
technologies, including stimuli-responsive pores and opto-/
thermo-genetics, have been underexplored in SC research to
date but could offer tighter and more application-specific
control over SC communication. Here, we highlight some
underutilised technologies that might be useful tools in future
SC communication efforts.

Protein Pores
Most current work on pore-dependent communication has
employed wild-type αHL, however, other natural proteins,
such as Outer membrane protein F (OmpF) (Nikaido, 1994)
and the Mechanosensitive channel of large conductance (MscL)
(Sukharev et al., 1997), or de novo designed pores, assembled
from protein (Scott et al., 2021; Vorobieva et al., 2021) or DNA
(Burns et al., 2013a; Burns et al., 2013b; Diederichs et al., 2019;
Thomsen et al., 2019; Fragasso et al., 2021; Lanphere et al., 2021)
building blocks, have also been shown to permeabilise
membranes. These pores each have different sized channels,
membrane preferences, and hence allow the passage of
different molecules, although most are still non-selective. By
introducing stimuli-responsive peptide motifs or small
molecules at various positions inside these pores and channels,
via genetic or chemical means, their activity can be regulated with
externally controlled stimuli. Gateable pores could therefore be
used for targeted or context-dependent release of small molecules.

pH and Metal Ions
pH-controlled gating has mostly been demonstrated using
OmpF, specifically to gate polymersome membrane

Frontiers in Molecular Biosciences | www.frontiersin.org January 2022 | Volume 8 | Article 8099454

Smith et al. Controlling Synthetic Cell-Cell Communication

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


permeability. pH-responsive plugs comprised of an amphipathic
peptide (Edlinger et al., 2017) or hydrazine molecular cap (Einfalt
et al., 2015) have been appended within the entrance of OmpF to
regulate flux through the pore. A similar feat has also been
achieved via the introduction of six histidines into loops
within OmpF, which restricted flux through the pore
depending on their protonation state (Ihle et al., 2011). Tetra-
or penta-histidine motifs have also been introduced into the pore
of αHL, but in this case, the pores were tightly blocked through
the binding of divalent metal ions, and subsequently unblocked
by chelating the metal ions (Russo et al., 1997; Booth et al., 2019;
Alcinesio et al., 2021). Small molecules with pKa’s between 5–8
have also been inserted into the hydrophobic gate of MscL to
render it pH-responsive rather than pressure-responsive (Koçer
et al., 2006). pH-responsive pores might find use in acidic
environments, such as the tumour microenvironment, to
release immunomodulators and recruit immune cells.

Temperature
Repeats of a temperature-sensitive peptide have been genetically
inserted into αHL (Jung et al., 2006). These peptides were soluble
below 40°C and restricted current flow through the pore.
However, when heated above this temperature they aggregated
and enabled higher flux through the pore.

Light
Light-switchable nanovalves have been developed by installing
photosensitive small molecules inside pores and channels
(Figure 2A). Conjugation of azobenzene or spiropyran
adducts within an αHL pore (Loudwig and Bayley, 2006;
Chandramouli et al., 2016) or MscL channel constriction
(Koçer et al., 2005; Iscla et al., 2013) reversibly enabled or
restricted molecule flux across a membrane through UV and
blue light-triggered isomerisation. MscL channels can also be
irreversibly opened using light, by installing 6-nitroveratryl

FIGURE 2 | Alternative tools for controlling synthetic cell communication. (A) Gateable pore or channel proteins engineered with stimuli-responsive moieties might
be used to control the delivery or release of membrane-impermeable signalling molecules in a spatiotemporal or context-dependent manner. (B) Orthogonal quorum
sensing systems that recognise different acyl-homoserine lactones, and with greater stringency, could diversify the molecules that synthetic cells utilise to regulate gene
expression. (C) Regulating gene expression inside synthetic cells with temperature or light might offer greater user-defined control over synthetic cell
communication for more widespread applications. 3OC6-HSL, N-3-oxo-hexanoyl homoserine lactone; AHSL, acyl-homoserine lactone; C4-HSL, N-butanoyl-l-
homoserine lactone; GOI, gene of interest; MscL, mechanosensitive channel of large conductance; pC-HSL, para-coumaroyl-homoserine lactone; QS, quorum sensing;
RBS, ribosome binding site; RpaR, pC-HSL transcription regulator.
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caging groups (Koçer et al., 2005). In addition to light-responsive
pore blockades, light-regulated insertion of αHL has also been
realised by N-terminal fusion of a photoactive protein (Ui et al.,
2012) or photocaging residues involved in prepore formation
with a 2-bromo-2-(2-nitrophenyl)-acetic acid group (Chang
et al., 1995), to switch-on penetration of the pore into lipid
bilayers. Light-responsive pores could be used to control the
release of small molecules and ions, and might be interfaced with
brain tissue to spatially activate neuron signalling without the
need for genetic manipulation, unlike optogenetics.

These responsive variants of well-defined protein pores/
channels offer a strong foundation towards fully controllable
molecular delivery, but computationally or de novo designed
transmembrane pores may offer more options in the future.
Their pore size can be tuned by design (Xu et al., 2020;
Lanphere et al., 2021), gated by simple base pairing rules
(Burns et al., 2016; Arnott and Howorka, 2019) and there are
already a variety of modifications that can be incorporated during
solid-phase peptide and nucleic acid synthesis to introduce
stimuli-responsive properties.

Quorum Sensing
Of the many QS systems known, only the well characterised receiver
proteins LuxR (Lentini et al., 2017; Toparlak et al., 2020) and EsaR
(Ding et al., 2018; Tang et al., 2018) have been successfully used in
SCs to date. Despite their different modes of action, transcription
activation and repression respectively, both systems recognise
3OC6-HSL. Consequently, it would be difficult to control
multiple populations of SCs independently due to signal crosstalk
or to distinguish between different species of bacteria. To overcome
this, additional QS receiver proteins are required, particularly those
that recognise more diverse, physiologically relevant AHSLs.
3OC12-HSL, used in Pseudomonas aeruginosa QS, has been
detected using a cell-free lasR circuit (Wen et al., 2017), however,
the cognate ligand varies from 3OC6-HSL only in the length of the
acyl chain. BjaR and RpaR proteins on the other hand activate gene
expression in response to branched AHSLs (Lindemann et al., 2011)
and aryl homoserine lactones (ArHSLs) (Schaefer et al., 2008)
respectively, and could be used to assemble communicating
populations of SCs that work orthogonally to SCs that recognise
linear chain AHSLs (Scott and Hasty, 2016; Kylilis et al., 2018; Du
et al., 2020) (Figure 2B).

Modulating Gene Expression
Gene expression inside SCs tends to be regulated with small
molecule-responsive TFs (Adamala et al., 2017; Lentini et al.,
2017; Tang et al., 2018; Dupin and Simmel, 2019; Garamella et al.,
2019; Toparlak et al., 2020; Garenne et al., 2021). While these TFs
enable SCs to sense environmental cues, some of which are
biologically significant, a lack in the diversity of readily
exploitable TFs and the requirement that molecules recognised
by these proteins be membrane-permeable or able to cross the
membrane through a protein pore reduces the versatility of this
platform. An underexplored area in SC regulation is the control of
gene expression with physical stimuli, for instance, light or
temperature. The use of physical stimuli resolves some of
these issues surrounding the regulation of gene expression

with small molecules and would enable synthetic cells to be
used as tools that could be remotely activated using an
external, user-controlled stimulus with high spatial precision.

Light
Optogenetic activation of αHL expression from light-activated
DNA templates has already been used to establish neuron-like
communication between networks of droplet-based SCs (Booth
et al., 2016), but other light-activated DNAs have also been
described. Nitrobenzyl groups installed into the DNA backbone
of a plasmid was shown to repress transcription inside SCs until
their removal with UV light (Schroeder et al., 2012), while
azobenzenes placed in the T7 promoter can offer reversible
control over CFPS with UV and visible wavelengths of light
(Venancio-Marques et al., 2012; Kamiya et al., 2015). One caveat
to the current light-activated DNA templates, and most other
synthetic light-activated systems on offer, stems from the use of
UV light, which can be cytotoxic at high doses and has little
tissue penetration (Olejniczak et al., 2015); therefore, there is a
need for light-activated systems that respond to longer
wavelengths of light. Alternative optogenetic systems such as
light-activated TFs (Jayaraman et al., 2018) or two-component
systems (Zhang et al., 2020) can also be used to control cell-free
gene expression with more red-shifted wavelengths of light, and
other light-activated systems that work well in bacteria may
transition into CFPS (Hartmann et al., 2020), although this has
yet to be realised. Light-responsive gene expression could be
used to controllably produce and release small molecules or
proteins and might be applied in tissue engineering efforts to
spatially control morphogen gradients and direct tissue
differentiation.

Temperature
Due to the improved tissue penetration of heat compared to light,
temperature-responsive gene expression in SCs may prove useful
for in vivo communication applications. To this end,
temperature-sensitive RNA thermometers that sequester a RBS
until a threshold temperature is reached and the secondary
structure denatures (Neupert et al., 2008; Kortmann et al.,
2011; Sen et al., 2017) (Figure 2C), or thermally-regulated TFs
that couple temperature-induced changes in protein folding to
their ability to regulate gene expression (Piraner et al., 2017)
might be activated remotely usingmild hyperthermia and focused
ultrasound.

DISCUSSION

Early SC communication studies used non-physiologically
relevant small molecules such as theophylline to activate gene
expression. A high concentration of the molecule was required to
activate gene expression, and the molecule needed to overcome a
membrane barrier to regulate a leaky riboswitch. The
introduction of QS systems into SCs improved upon this,
creating a more biologically significant and tightly controlled
SC communication platform that also allowed SCs to be
interfaced with bacterial cells via the detection and production
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of membrane-permeable AHSLs. However, both QS systems used
to date recognise 3OC6-HSL, limiting the versatility of this
control mechanism. More recently, SCs have been engineered
to respond to other physiologically relevant stimuli, such as
glucose concentration, or technologically useful stimuli, such
as light, representing further progress towards controlling
communication in more biologically and medically useful
ways. However, SC communication is yet to be a truly
disruptive technology.

To fully realise the potential of SCs in biology and medicine,
the existing toolbox and design of SC communication need to be
reconsidered. Riboswitches need to be designed for more
relevant molecules, something that was recently shown to be
possible by the creation of histamine responsive SCs (Dwidar
et al., 2019). QS systems must be diversified to establish SCs
capable of sensing and responding to more complex populations
of bacterial cells, although this may be somewhat challenging as
a QS system’s activity isn’t always conserved when transferred
from bacteria to cell-free systems (Lentini et al., 2017). Also,
stimuli-responsive technologies that respond to pH,
temperature or light need to be more readily adopted to
apply SCs in a biomedical context and regulate the

communication in a spatially controlled manner. Using these
improved tools, SCs might be engineered to release signalling
molecules inside environments with an acidic pH, such as inside
tumours or endosomes, or controllably release
neurotransmitters to stimulate neurons without the need for
intrusive methods.
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