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Abstract 

Histone H3 mutations are frequently found in diffuse midline gliomas (DMGs), which include diffuse 
intrinsic pontine gliomas and thalamic gliomas. These tumors have dismal prognoses. Recent evidence 
suggests that one reason for the poor prognoses is that O6-methylguanine-DNA methyltransferase (MGMT) 
promoter frequently lacks methylation in DMGs. This review compares the epigenetic changes brought 
about by histone mutations to those by isocitrate dehydrogenase-mutant gliomas, which frequently have 
methylated MGMT promoters and are known to be sensitive to temozolomide.
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Introduction

Diffuse midline gliomas (DMGs), including diffuse 
intrinsic pontine gliomas (DIPGs) and thalamic 
gliomas, have dismal prognoses: 8–11 months for 
DIPGs1,2) and about 25 and 12 months for World 
Health Organization (WHO) grades 3 and 4 thalamic 
gliomas, respectively.3,4) Possible explanations for 
the poor prognosis include difficulty of surgery5) 
and the ineffectiveness of temozolomide.6)

It is well known that malignant gliomas with 
isocitrate dehydrogenase (IDH) mutation have a good 
prognosis7,8) compared to IDH-wildtype gliomas.  
A majority of IDH-mutant gliomas are known to have 
O6-methylguanine-DNA methyltransferase (MGMT) 
promoter methylation and respond to temozolomide.9)

Recent genetic studies have shown that up to 90% 
of DMGs have mutations in histone H3.3 H3K27M 
encoding the gene H3F3A or H3.1 H3K27M encoding 
HIST1H3B.10–15) H3.3 H3K27M mutations are about 
2.5-fold more frequent, present at an older age, have a 
gender predisposition toward boys, and carry a worse 

prognosis compared to DIPGs with H3.1 H3K27M 
mutations.12) Epigenetic studies have shown that 
histone mutations cause DNA hypomethylation,16,17) 
whereas IDH mutation causes DNA hypermethyla-
tion.17,18) We review the increasing evidence that 
this epigenetic modification renders IDH-mutant 
gliomas sensitive to temozolomide, but not DMGs.19)

IDH-mutant Gliomas Have Frequent 
MGMT Promoter Methylation and  

Are Sensitive to Temozolomide

A seminal study in glioblastomas showed that recur-
rent mutations in IDH1 is seen in approximately 
10% of glioblastomas.20) Subsequent studies have 
shown that IDH1 and IDH2 mutation are frequently 
seen in WHO grades 2 and 3 astrocytomas and 
oligodendrogliomas,8) and that IDH-mutation is a 
vital, early event in gliomagenesis.

IDH mutations are known to be gain-of-
function mutations, which produce the onco-
metaboli te  R-2-hydroxyglutarate  (2HG). 21)  
The 2HG is structurally similar to alpha-ketoglutarate 
(α-KG), which is necessary to produce the DNA 
demethylase TET2 and histone demethylases (JMJs). 
2HG competitively inhibits DNA and histone demethy-
lases,22) causing diffuse deoxyribonucleic acid (DNA) 
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hypermethylation [the so-called “glioma-CpG island 
methylator phenotype (G-CIMP) phenotype”]18) and 
histone hypermethylation.23)

A large proportion of G-CIMP cases are known 
to have MGMT promoter methylation. Data from 
the NOA-04 trial found that 96% of G-CIMP cases 
had methylated MGMT promoters.24) Also, 88% of 
oligodendrogliomas, which are known to harbor 
IDH mutations, were found to have MGMT promoter 
methylation.25)

It is well known that MGMT promoter methyla-
tion is a predictive factor of response to temo-
zolomide.9,26) The main mechanism of action of 
temozolomide is to add a methyl-group at the 
O6 position of guanine (G) in the DNA of glioma 
cells, causing a methyl-guanine (meG)-to-thymine 
(T) mismatch at DNA replication, instead of cyto-
sine (C) (Fig. 1). Mismatch repair genes locate the 
meG-T mismatch and remove the T, only to have 
a T re-inserted. This insertion and removal of T, 
called the “futile mismatch repair”, contributes 
to the vulnerability of tumor DNA and ultimately 
leads to death of the tumor cell. MGMT, which is 
expressed in normal cells but lost in a percentage 
of brain tumors, removes the methyl group at the 
O6 position of guanine added by temozolomide, 
neutralizing its effect (Fig. 1). MGMT expression 
is epigenetically regulated.9) Thus, MGMT promoter 
methylation inhibits the transcription of MGMT 
leading to MGMT silencing (Fig. 2).

Taken together, we can conclude that IDH-mutant 
gliomas express the G-CIMP phenotype, frequently 
have MGMT promoter methylation and are sensi-
tive to temozolomide (Fig. 3, left side). Secondary 

Fig. 1  A schematic drawing showing the relationship 
between MGMT promoter methylation and MGMT protein 
expression. When the MGMT promoter is methylated, 
transcription is repressed and thus MGMT protein is 
not produced.

Fig. 2  The main mechanism of action of temozolomide 
is to add a methyl-group at the O6 position of guanine 
(G) in the DNA of glioma cells, causing a methyl-guanine 
(meG)-to-thymine (T) mismatch at DNA replication, instead 
of cytosine (C). Mismatch repair genes locate the meG-T 
mismatch and remove the T, only to have a T re-inserted. 
This insertion and removal of T, called the “futile mismatch 
repair”, contributes to the vulnerability of tumor DNA and 
ultimately leads to apoptosis. MGMT, which is expressed 
in normal cells but lost in a percentage of brain tumors, 
removes the methyl group at the O6 position of guanine 
added by temozolomide, neutralizing its effect.

Fig. 3  A flow chart showing the relationship between 
epigenetic changes in DNA, MGMT promoter methylation 
and response to temozolomide in IDH-mutant gliomas  
(left side) and diffuse midline gliomas with histone 
H3K27 mutations (right side).



H. Abe et al.292

Neurol Med Chir (Tokyo) 58, July, 2018

glioblastomas harboring IDH-mutations are known 
to be sensitive to temozolomide therapy.27)

Histone H3-mutant Diffuse Midline 
Gliomas Have Frequent Unmethylated 

MGMT Promoter and Are Resistant  
to Temozolomide

In contrast to IDH-mutation, in which diffuse DNA 
hypermethylation occurs, epigenetic studies have 
shown that histone mutations, including H3K27M 
and H3G34R/V (seen in pediatric glioblastoma of 
the cerebrum), cause DNA hypomethylation.16,17,28) 
Recent studies suggest that MGMT is almost always 
expressed in DMGs. None of the 46 DMGs with 
confirmed H3F3A mutation showed MGMT promoter 
methylation in a report by Banan et al.29) Similarly, 
Korshunov et al.30) reported that MGMT promoter 
was methylated in only 3% of DIPGs with H3K27M 
mutations.

Furthermore, Oka et al.31) showed that MGMT was 
expressed in 9 out of 11 (82%) brainstem gliomas 
in which immunohistochemical analysis of MGMT 
was feasible. From these reports, we can postulate 
that epigenetic changes driven by histone H3K27M 
mutation cause frequent lack of MGMT promoter 
methylation, thus expression of MGMT and resist-
ance to temozolomide therapy (Fig. 3, right side).

Future Directions and Therapeutic  
Implications

Temozolomide is a key drug used in the treatment of 
glioblastomas, and is often used in the treatment of 
WHO grade 3 malignant gliomas as well. However, 
increasing evidence suggests that temozolomide is 
not effective in DMGs. Despite some effort for aggres-
sive surgical intervention,4) the clinical outlook for 
DMGs remain dismal. Here, we outline just some of 
the new preclinical and clinical efforts to eradicate 
this disease.

Epigenetic modification
Since global reduction of H3K27 methylation is 

a key epigenetic event in H3K27M mutant DMGs, 
pharmacologic restoration of H3K27 methylation 
either by enhancing H3K27 methyltransferase (PRC2) 
activity or by inhibiting H3K27 demethylase activity 
for the lysine 27 residue is a rational method to 
treat DMGs.32) The latter can be achieved by using 
the H3K27 demethylase inhibitor GSKJ4. Decreased 
histone methylation at H3K27 causes increased histone 
acetylation in DIPG, which can also be targeted. 
The HDAC inhibitor panobinostat was found to be 

effective in DIPG cell lines through a screening of 
83 drugs. Panobinostat was found to increase H3 
acetylation and restore H3K27 trimethylation.19) This 
data has led to the commencement of clinical trials 
looking at the efficacy of panobinostat in DIPGs. 
Two recent high-profile papers show the efficacy 
of BET bromodomain inhibitors, which prevent 
the interaction of BRD4 with acetylated histone, 
leading to the repression of BRD4 transcriptional 
targets and proliferation.33,34)

Targeting of associated mutations
Epigenetic modification can be very toxic, as drugs 

will affect the epigenetic status of normal cells 
as well as tumor. Less toxic treatments including 
localized delivery and targeted treatments need to 
be explored. One potential avenue of treatment is 
targeting of mutations associated with H3K27M muta-
tions. Mutations in activin receptor type 1 (ACVR1) 
are frequently seen in H3.1 H3K27M mutant, but not 
H3.3 H3K27M mutant DMGs.12,35) ACVR1 encodes 
for type I bone morphogenic protein (BMP) receptor 
ALK2, and mutation of this receptor leads to constitu-
tive activation of BMP signaling pathway.35) Targeted 
treatment using the ALK2 inhibitor LDN-193189 
showed moderate response in vitro.15)

FGFR1 mutations are seen in 4–27% of thalamic 
high-grade gliomas, but not DIPGs,35) and is a poten-
tial target for thalamic gliomas.

Targeting of PARP
As stated above, the main mechanism of action 

for temozolomide is to add a methyl-group at the 
O6-position of guanine, which is removed by MGMT 
(Fig. 1). However, temozolomide is also known to 
methylate adenine at N3-position and guanine at the 
N7-position. These do not generally induce cytotoxicity, 
as poly(ADP-ribose) polymerase (PARP) activation 
allows for base excision repair of damaged DNA. 
Evidence suggests that inhibition of PARP or depletion 
of NAD+ which is a co-enzyme of PARP, can lead to 
cytotoxicity.36) Interestingly, a study by Chornenkyy 
et al.37) shows PARP1 expression in DIPG cell lines 
and sensitivity to the PARP inhibitor niraparib.

Inhibition of PTEN/AKT/mTOR signaling pathway
Approximately, 70% of DIPGs have either AKT 

gain or phosphatase and tensin homolog deleted 
on chromosome 10 (PTEN) loss,38,39) suggesting that 
targeting of the PTEN/AKT/mechanistic target of 
rapamycin (mTOR) signaling pathway is a potential 
therapeutic strategy for DIPGs. Miyahara et al.40) 
and others41) reported the efficacy of dual mTOR 
inhibition in vitro and in vivo.
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Immunotherapy
Okada and colleagues established T cell receptor-

transduced T cells recognizing a peptide sequence 
encompassing the H3.3K27M mutation. Preclinical 
data shows significant suppression of glioma xeno-
grafts in mice.42) Development of a peptide vaccine 
recognizing IDH1 R132H mutant glioma43) has led 
to exploration of a similar peptide vaccine recog-
nizing H3K27M.44) Major histocompatibility complex 
(MHC) class 2 response, which allows proteins to 
be degraded into peptides and sent to the surface of 
the cell,45) enables intracellular mutant proteins to 
be expressed at the surface of tumor cells. A Phase I 
clinical trial (NCT02960230) testing the safety of an 
H3.3K27M peptide vaccine is currently underway.

Convection-enhanced delivery and other methods 
of delivery

Convection-enhanced delivery (CED) of drugs to 
the brainstem remains a promising candidate for 
treatment of DIPGs. Preclinical brainstem tumor 
models have been treated with CED of various drugs 
including temozolomide.46) In Japan, Saito et al.47) 
have published a case report showing radiographical 
response after CED of nimustine hydrochloride 
(ACNU) in a patient with recurrent glioblastoma 
infiltrating into the brainstem. Intranasal delivery 
(IND) is also a promising method of delivery, as 
it is far less invasive than CED.48) IND was shown 
to be effective in a brainstem tumor model when 
combined with nanoliposomal chemotherapy.49)

Conclusion

This paper focused on what we currently known 
about the reason H3 mutant DMGs are not sensi-
tive to temozolomide. Epigenetic changes brought 
about by H3 mutation cause DMGs to frequently 
lack MGMT promoter methylation thus express 
MGMT. Since radical surgery is difficult in almost 
all cases of DMGs, there is an urgent need for 
new, more effective therapies targeting DMGs. Safe, 
local delivery, as well as more targeted therapies 
are rapidly being developed and tested, but a real 
breakthrough remains elusive. Worldwide collabo-
ration in research as well as clinical treatment is 
critical to overcome this uncommon but deadly 
disease.
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