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Abstract

To improve our knowledge on the epidemiological status of African trypanosomiasis, better

tools are required to monitor Trypanosome genotypes circulating in both mammalian hosts

and tsetse fly vectors. This is important in determining the diversity of Trypanosomes and

understanding how environmental factors and control efforts affect Trypanosome evolution.

We present a single test approach for molecular detection of different Trypanosome species

and subspecies using newly designed primers to amplify the Internal Transcribed Spacer 1

region of ribosomal RNA genes, coupled to Illumina sequencing of the amplicons. The pro-

tocol is based on Illumina’s widely used 16s bacterial metagenomic analysis procedure that

makes use of multiplex PCR and dual indexing. Results from analysis of wild tsetse flies col-

lected from Zambia and Zimbabwe show that conventional methods for Trypanosome spe-

cies detection based on band size comparisons on gels is not always able to accurately

distinguish between T. vivax and T. godfreyi. Additionally, this approach shows increased

sensitivity in the detection of Trypanosomes at species level with the exception of the Trypa-

nozoon subgenus. We identified subspecies of T. congolense, T. simiae, T. vivax, and T.

godfreyi without the need for additional tests. Results show T. congolense Kilifi subspecies

is more closely related to T. simiae than to other T. congolense subspecies. This agrees

with previous studies using satellite DNA and 18s RNA analysis. While current classification

does not list any subspecies for T. godfreyi, we observed two distinct clusters for these spe-

cies. Interestingly, sequences matching T. congolense Tsavo (now classified as T. simiae

Tsavo) clusters distinctly from other T. simiae Tsavo sequences suggesting the Nannomo-

nas group is more divergent than currently thought thus the need for better classification

criteria. This method presents a simple but comprehensive way of identification of
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Trypanosome species and subspecies-specific using one PCR assay for molecular epide-

miology of trypanosomes.

Author summary

Tsetse flies are central actors in the transmission of Trypanosomes to vertebrate hosts.

Therefore, detection of Trypanosomes in the tsetse flies is important for understanding

the epidemiology of African trypanosomiasis as a component of new control or surveil-

lance strategies. We have developed a method that combines multiplex PCR and next-gen-

eration sequencing for the detection of different Trypanosome species and subspecies.

Similar to the widely used bacterial metagenomic analysis protocol, this method uses a

modular, two-step PCR process followed by sequencing of all amplicons in a single run,

making sequencing of amplicons more efficient and cost-effective when dealing with large

sample sizes. As part of this approach, we designed novel Internal Transcribed Spacer 1

primers optimized for short read sequencing and have slightly better sensitivity than con-

ventional primers. Taxonomic identification of amplicons is based on BLAST searches

against the constantly updated NCBI’s nt database. Our approach is more accurate than

traditional gel-based analyses which are prone to misidentification of species. It is also

able to discriminate between subspecies of T. congolense, T. simiae, T. vivax, and T. god-
freyi species. This method has the potential to provide new insights into the epidemiology

of different Trypanosome genotypes and the discovery of new ones.

Introduction

Human African trypanosomiasis (HAT) or sleeping sickness is classified as a neglected tropical

disease by WHO, that is endemic in sub-Sahara Africa. HAT affects impoverished rural areas

of sub-Saharan Africa, where it coexists with animal trypanosomiasis constituting a major

health and economic burden [1]. The disease is caused by protozoan parasites of the genus

Trypanosoma, it is transmitted by the bite of blood-sucking tsetse flies (Diptera, genus Glos-
sina). The human disease is caused by Trypanosoma brucei rhodesiense and Trypanosoma
brucei gambiense, causing an acute and chronic disease in humans respectively [2]. T.b. rhode-
siense is found in East Africa and transmitted by Glossina morsitans, while T.b gambiense is

distributed in West Africa and is mainly transmitted by Glossina pallidipes [3–5]. Uganda is

the only country that both forms of the disease occur with the potential for overlapping infec-

tions [6]. According to WHO, the incidence of sleeping sickness has fallen over the years, from

10,388 cases reported in 2008 to 2,804 cases reported in 2015 [7]. However, WHO estimates

the number of actual cases to be below 20,000 [8]. This decrease is attributed to improved case

detection and treatment and vector management [9]. Despite this decreased incidence, it is

estimated that up to 70 million people distributed over 1.5 million km2 remain at risk of con-

tracting the disease [10]. Besides, African animal trypanosomiasis (AAT) is one of the biggest

constraints to livestock production and a threat to food security in sub-Saharan Africa. The

parasites T. congolense (Savannah) and T. vivax are considered the most important animal

Trypanosomes due to their predominant distribution in sub-Saharan Africa and their eco-

nomic impact [11]. They cause pathogenic infections in cattle (Nagana) and also infect sheep,

goats, pigs, horses, and dogs, while T. brucei brucei (and T. brucei rhodesiense) is pathogenic to

camels, horses, and dogs, but causes mild or no clinical disease cattle, sheep, goats and pigs
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[12–14]. T. simiae causes a fatal disease in pigs and mild disease in sheep and goats. T. godfreyi
shows a chronic, occasionally fatal disease in pigs experimentally [15,16]. T. evansi was origi-

nally found to infect camels but it is present in dromedaries, horses, and other equines as well

as in a wide range of animals causing Surra disease, while T. equiperdum causes dourine in

equines [17]. Three species (T, evansi, T. vivax, and T. equiperdum) are independent of the

tsetse fly vector and thus distributed outside Africa [18,19]. Their transmission is either

mechanically, for T. evansi and T. vivax, or sexually for, T. equiperdum. T. vivax can be trans-

mitted cyclically by Glossina spp. and mechanically and therefore can found in both tsetse-

infested and tsetse-free areas [20]. Given that Trypanosome parasites are maintained in wild

and domestic animals as reservoirs, this complicates control measures.

Morphological methods have limited ability to distinguish between Trypanosome species

due to the existence of trypanosomes sharing developmental sites, and mixed and immature

infections. Thus, molecular methods are used for species identification. Identification of Try-

panosome species and subspecies is important to interrogate aspects such as what contribution

different species/subspecies make to livestock disease and, are species/subspecies differences

responsible for assumed “strain” differences in drug response among others. The ribosomal

RNA sequence region harboring internal transcribed spacer sequences have been used to iden-

tify Trypanosome species in hosts and vectors. Epidemiological and screening studies rely on

polymerase chain reaction (PCR) to amplify the internal transcribed spacer 1 (ITS1) region of

ribosomal genes to analyze Trypanosome species diversity [16–19]. This locus located between

the 18s and 5.8s ribosomal subunit genes which are about 100–200 copies [21] and is widely

used to identify Trypanosome species based on amplicon size in [22] a gel. However, ITS1

PCR coupled with viewing products on agarose gels fails to distinguish some species/genotypes

such as T. simiae and T. simiae Tsavo. Another limitation with ITS1 PCR is the sensitivity of

detection, showing bias in detection of some Trypanosome species over others [23,24]. Some

are prone to non-specific amplification particularly in bovine blood samples [25]. To address

some of the problems that ITS PCR method poses, fluorescent fragment length barcoding

(FFLB) method has been developed for Trypanosome species detection [26]. FFLB is based on

length variation in regions of the 18s and 28s ribosomal RNA gene region. Fluorescently

tagged primers, designed in conserved regions of the 18s and 28s ribosomal RNA genes, are

used to amplify fragments with inter-species size variation, and sizes are determined accurately

using an automated DNA sequencer. FFLB has been shown to be more sensitive in the identifi-

cation of Trypanosome species and subspecies and has the capacity to detect new species

through identification of unique barcodes [27,28]. However, the method requires the use of

four different PCR reactions per sample. A major problem with identification of Trypanosome

species with the use of ribosomal RNA genes is that they cannot be used to distinguish between

Trypanozoon species (T. brucei brucei, T. brucei rhodesiense, T. brucei gambiense, T. evansi,
and T. equiperdum) [22,26,29,30]. Currently, Trypanozoon subspecies are identified by spe-

cific PCR [31–34] and microsatellites markers [32,35,36].

When dealing with a large number of samples either for tsetse fly or animal infection preva-

lence studies, undertaking multiple PCRs for each sample is an expensive and a laborious

undertaking. Most often PCR amplicons are sequenced to confirm species identification usu-

ally through capillary sequencing. Recently, next-generation sequencing (NGS) has been estab-

lished as a well-established method for profiling bacterial and fungal, communities. Among

the many advantages, NGS provides a higher sensitivity to detect low-frequency variants, the

lower limit of detection of DNA, higher throughput with sample multiplexing and comprehen-

sive coverage among others. With the exception of Plasmodium in mosquitoes, relatively few

studies have applied this technology in the diagnostics of protozoal infections [37,38]. It is

therefore suited in the analysis of the genetic diversity of Trypanosome genotypes which is a
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composite aspect of understanding anthropogenic disturbance that may change repertoires of

trypanosomes infecting human and livestock [39].

Materials and methods

Tsetse fly collection

For this study, we analyzed tsetse fly samples from three different groups collected at three dif-

ferent locations (Fig 1) at different times. The first group was used for the initial analysis and

to validate our method and consisted of 188 tsetse flies collected from the area around Hur-

ungwe Game reserve in Zimbabwe between March and April 2014. The second group was

included in our final analysis to expand Trypanosome species spectrum and diversity and con-

sisted of 200 tsetse flies from Rufunsa area (Zambia) near Lower Zambezi National park (sur-

rounding farms and villages) collected in November and December 2013). For these samples,

information on tsetse fly species and sex was not available. The third group comprised of 85

flies caught in Zambia; on the border between Kafue National park and public settlement area,

collected in June 2017. For this group, flies were sorted according to sex and their species iden-

tity determined morphologically. Flies from all three groups had been collected using either

Fig 1. Map of Zambia and Zimbabwe showing areas of tsetse fly collection. The map was sourced from Simarro P, et al, 2012 [40] and modified in

Adobe Illustrator CC 2019 v23.0.1. Areas where tsetse flies were caught are marked in red stars: (A) Kafue in Zambia, (B) Rufunsa in Zambia and (C)

Hurungwe in Zimbabwe.

https://doi.org/10.1371/journal.pntd.0006842.g001
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custom-made mobile traps attached on a slow-moving vehicle (Kafue and Rufunsa groups) or

Epsilon traps (Hurungwe group). Individual flies were preserved in separate tubes containing

silica gel ready for crushing and DNA extraction. All flies analyzed in this study were caught

on public land.

Extraction of DNA

DNA extraction from all tsetse fly samples analyzed in this study was done by following a pro-

tocol adopted for extraction of DNA from crushed tsetse fly samples. Briefly, dried flies in

tubes containing stainless beads were transferred to a smashing machine and crushed at 3,000

rpm for 45 sec. DNA from crushed flies was isolated using the DNA Isolation kit for mamma-

lian blood (Roche USA) as per the manufacturer’s protocol with the slight modification sug-

gested for extraction of DNA from Buffy coat, where Red blood cell lysis step is bypassed. This

allows lysis of all cells in the solution at once including trypanosomes using the white cell lysis

buffer. The DNA sample was stored at -80˚C until analysis.

Primer design

The following sequences were retrieved from NCBI, Trypanosoma brucei (JX910378,

JX910373, JN673391, FJ712717, AF306777, AF306774, AF306771 and AB742530), Trypano-
soma vivax (JN673394, KC196703 and TVU22316), Trypanosoma congolense (JN673389,

TCU22319, TCU22318, TCU22317 and TCU22315), Trypanosoma simiae (JN673387 and

TSU22320), Trypanosoma godfreyi (JN673385) Trypanosoma evansi (D89527), Trypanosoma
otospermophili (AB175625), and Trypanosoma grosi (AB175624). They were aligned in Gen-

eious 9.1.5 software (Biomatters Ltd, Auckland, New Zealand) using MAFFT multiple aligner

with default settings and ITS1 region identified by comparing annotations and terminal

regions of 18s and 1.5s ribosomal RNA regions. Pairs of primers flanking the ITS1 region were

picked manually based on the consensus of bases in the alignment flanking the ITS1 region.

Manual editing was done on the final primer pair that was chosen, to improve the range of

Trypanosome species and subspecies. We used Primer-BLAST (https://www.ncbi.nlm.nih.

gov/tools/primer-blast) to confirm that the primers would amplify the target species, check the

species range and the melting temperature. The final pair comprised our new primers named

Amplification of ITS (AITS) forward (AITSF) and reverse (AITSR).

Experimental and in silico validation of primers

In silico testing. The expected amplicon sizes for the newly designed AITSF and AITSR

primers were compared with amplicons (in silico) from other three widely used primers; CF/

BR primers [24] and ITS1/ITS2 primers [41]. For in silico testing, we used Simulate_PCR [42];

a computer-based PCR analysis algorithm using the NCBI nt database to deduce the scope of

Trypanosome species and subspecies detection and the expected lengths of amplicons. Simula-

te_PCR uses BLAST to search amplicons from a specified database wherein we used a local nt
database downloaded on 3rd December 2017 from NCBI: ftp://ftp.ncbi.nlm.nih.gov/blast/db/.

Simulate_PCR was run using the command; simulate_PCR–db<path/to/database> -primers
<path/to/primers.fasta>–minlen 100 –maxlen 750 -mm 1 –num_threads 8 –max_target_seq
10000 –genes 1 –extract_amp 1

Sensitivity testing. We also tested the sensitivity of AITSF/AITSR primer set against the

CF/BR primer set by PCR to determine their sensitivity in amplifying the ITS1 region of differ-

ent Trypanosome species. The sequences; T. brucei (AF306774), T. simiae (JN673387), T. vivax
(KM391828), T. congolense (U22317) and T. godfreyi (JN673384) were downloaded from

NCBI, the18s to 5.8s ribosomal RNA region was obtained from each sequence, synthesized
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and each insert cloned into a pGEMT-easy vector. We chose Primer-BLAST subject sequences

common to both primer pairs. Of these, we picked the longer sequences that had a 18s region

and complete regions of ITS1 and 1.5s ribosomal RNA. One sequence was picked at random

to represent each of the five Trypanosome species from those that passed. For each of the

pGEMT-easy vector stock solutions, we calculated the plasmid number per μL (equivalent to

ITS1 copies since each plasmid has one copy). Working solutions containing 107 plasmids

were prepared then diluted serially to obtain a final dilution with 1 copy of ITS1 insert (1 plas-

mid). These dilutions were used as templates for PCR reaction (1 μL per reaction) using either

AITSF/AITSR or CF/BR primer sets. PCR was done in 10 μL primary reactions containing

0.5 μL of 10 μM each of the forward and reverse primers, 10 μL of 2X Ampdirect Plus buffer,

0.16 μL of 5 U/μL Taq polymerase (Kapa Biosystems, Boston, USA), 0.4 μL DMSO, and 1 μL

extracted DNA as a template. The temperature and cycling profile included incubation at 95˚C

for 10 min, followed by 37 cycles as follows: 95˚C for 30 sec, annealing at 60˚C for 1 min for

AITSF/AITSR primers and 58˚C for 1 min for CF/BR primers, 72˚C for 2 min, and final exten-

sion at 72˚C for 10 min. Results were analyzed on 1.5% Agarose gel.

Paired-end library preparation. A two-step PCR protocol for the library preparation was

applied in the multiplex PCR analysis. We used the newly designed AITSF/AITSR primer set

ligated to Illumina adapter sequences (Table 1).

ITS1 PCR was done in duplicate for Rufunsa samples to validate Trypanosome detection

results. We also included positive template controls comprising. T. b gambiense, T. b rhode-
siense, and T. congolense DNA. An artificial Trypanosome DNA mixture was included to

mimic a mixed infection control. It comprised artificially mixed T.b. gambiense and T. congo-
lense DNA mixed in equal proportions. The controls were processed the same as samples from

PCR to sequencing. The first PCR reaction used AITSF/AITSR primers which were ordered in

adapter ligated forms where Illumina adapter sequences were added to the 5’ end of each

primer (Table 1). Sequencing libraries were prepared according to the Illumina MiSeq system

instructions [43].

The first PCR was done in 20 μL primary reactions containing 0.5 μL of 10 μM each of the

AITSF and AITSR primers, 10 μL of 2X Ampdirect Plus buffer, 0.16 μL of 5 U/μL Taq poly-

merase (Kapa Biosystems, Boston, USA), 0.4 μL DMSO, and 1 μL extracted DNA as template.

The temperature and cycling profile included incubation at 95˚C for 10 min, followed by 37

cycles as follows: 95˚C for 30 sec, annealing at 60˚C for 1 min, 72˚C for 2 min, final extension

at 72˚C for 10 min.

The second PCR was done in 10 μL reactions containing 1 μL of 10 μM Illumina dual-index

primer mix (i5 and i7 primers), 1.2 μL of 25 mM MgCl2, 0.4 μL of 10 mM each of the dNTPs,

0.1 μL of 5 U/μL Taq polymerase, 4 μL 5X buffer, and 2 μL of 1/60 diluted primary PCR prod-

uct as template. The temperature and cycling profile included incubation at 95˚C for 3 min,

Table 1. Primers used in this study.

Description Primer name Primer sequence (5’-3’)

From Ref [24] ITS1 CF CCGGAAGTTCACCGATATTG

ITS1 BR TTGCTGCGTTCTTCAACGAA

New ITS1 forward primer AITSF CGGAAGTTCACCGATATTGC

New ITS1 reverse primer AITSR AGGAAGCCAAGTCATCCATC

Adapter sequence for the forward primer Illumina adapter forward ACACTCTTTCCCTACACGACGCTCTTCCGATCTNN[AITSF]a

Adapter sequence for the reverse primer Illumina adapter reverse GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTNN[AITSR] a

a [] indicate where the adapter is attached to the respective primer

https://doi.org/10.1371/journal.pntd.0006842.t001
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followed by 11 cycles as follows: 95˚C for 30 sec, 61˚C for 1 min, 72˚C for 2 min and a final

extension at 72˚C for 10 min. A negative template control was included in each set of PCR

reactions. To enable the sequencing of all amplicons in this study in one run, we used different

sets of dual index primers for each sample in the second PCR reactions.

Library sequencing. The barcoded second PCR products were analyzed in 1.5% agarose

gel. Equal volumes of each sample were pooled into one library. The library pool was purified

using the Wizard SV Gel and PCR Clean-Up System (Promega, Madison, WI, USA) by cutting

out bands of interest to separate them from primer dimers and post PCR reagents. Quantifica-

tion of each of the library was done using a Qubit dsDNA HS assay kit and a Qubit fluorome-

ter (ThermoFisher Scientific, Waltham, MA, USA). The concentration of the library was then

adjusted to a final concentration of 4 nM using nuclease-free water and applied to the MiSeq

platform (Illumina, San Diego, CA, USA). Sequencing was performed using a MiSeq Reagent

Kit for 300 base pairs, paired-end (Illumina, San Diego, CA, USA) and a 20% PhiX DNA

spike-in control added to improve the data quality of low diversity samples, such as single PCR

amplicons. All controls were also included in the sequencing library.

Raw read data obtained from this study is available at Sequence read archive (SRA) database

under the SRA accession number SRP159480 (https://trace.ncbi.nlm.nih.gov/Traces/study/?

acc=SRP159480).

Bioinformatics. The analysis followed a workflow (Fig 2) comprising the Amplicon Tool

Kit (AMPtk) pipeline coupled with taxonomic identification by BLAST. All commands for

analysis were run as a custom script (S1 Text). Briefly, reads were processed using the AMPtk

pipeline by; 1) Trimming primers, removal of sequences less than 100 b.p, and merging pair-

end reads. Merging parameters were customized by editing the AMPtk file amptklib.py with

the USEARCH options; fastq_pctid set to 80, (minimum %id of alignment), minhsp set to 8,

and fastq_maxdiffs set 10 to limit the number of mismatches in the alignment to 10. 2) Cluster-

ing; the denoising algorithm (Divisive Amplicon Denoising Algorithm) DADA2 was called

within AMPtk pipeline using the amptk dada2 command. This algorithm provides a clustering

independent method that attempts to “correct” or “denoise” each sequence to a corrected

sequence using statistical modeling of sequencing errors. AMPtk implements a modified

DADA2 algorithm that produces both the standard “inferred sequences” referred to as ampli-

con sequence variants (ASVs) output and also clusters the ASVs into biologically relevant

operational taxonomic units (OTUs) using the UCLUST algorithm. 3) Downstream process-

ing of ASVs where ASV table filtering was done to correct for index-bleed where a small per-

centage of reads bleed into other samples. This was done by the amptk filter command using

0.005, the default index-bleed percentage. 4) An additional post-clustering ASV table filtering

step was done using the amptk lulu command. LULU is an algorithm for removing erroneous

molecular ASVs from community data derived by high-throughput sequencing of amplified

marker genes [44]. LULU identifies errors by combining sequence similarity and co-occur-

rence patterns yielding reliable biodiversity estimates. 5) Taxonomy was assigned to the final

ASV table. ASV taxonomic identification (in this study) was done by BLAST (v2.6.0) [45]

remotely using custom options specified as shown in Fig 2. The BLAST output file was parsed

and edited to match the taxonomy header formatting specified in the AMPtk manual and sub-

sequently used for generating a taxonomy labeled ASV table.

To check the accuracy of the ASVs generated by the Amptk pipeline, we simulated FASTQ

files generated in silico from downloaded sequences used in a previous study [15]. This was

done by running ArtificialFastqGenerator [46], to generate paired-end FASTQ files with 1000

reads per sequence. Real quality scores and simulation of sequencing errors was achieved by

using a pair of FASTQ files from sequencing output of the samples. Amptk pipeline was then

run on the generated reads. The resultant ASVs were allocated taxonomic identity at species
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level by BLAST and then compared to the species identity of parent sequences. All the software

used in data analysis are free under open access licenses. All ASVs generated in this study are

deposited in GenBank submission: SUB4757113 with accession numbers MK131764—

MK132190.

Phylogenetic and statistical analysis. A phylogenetic tree was created from the alignment

generated from ASVs obtained after analysis. Alignments were made with MAFFT [47] using

the mafft-xinsi option (allowing for prediction of RNA secondary structure and build a multi-

structural alignment) with 1,000 maximum iterations, leaving gappy regions and using

‘kimura 1’ option for score matrix. Maximum likelihood phylogenetic trees were built with

RAxML 8.0.26 using the ’GTRCATI’ model and default parameters with 10,000 bootstraps.

The tree was visualized and annotated using iTOL (version 4) [48]. Statistical analysis and

graphing of data were carried out in GraphPad Prism version 6.01 for Windows, GraphPad

Software, San Diego California USA, www.graphpad.com.

Results

Improved primers

In silico evaluation of the primers showed that our newly designed primer pair (AITSF/

AITSR) had a broad range similar to previously developed ITS1/ITS2 primer set [41] while the

range of the CF/BR primer set, previously developed to detect pathogenic Trypanosomes [24]

was confined to the pathogenic (S1 Table). We evaluated the sensitivity of newly designed

AITSF/AITSR primers to amplify ITS1 region of different Trypanosome species in comparison

to commonly used ITS1 primers; CF/BR primers. PCR was performed on pGEMT-easy plas-

mid DNA containing ITS1 inserts from different Trypanosome species at different dilutions.

Fig 2. Workflow for read analysis using AMPtk pipeline.

https://doi.org/10.1371/journal.pntd.0006842.g002
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Our evaluation was based on the visual sight of bands in a gel (the conventional method of

analysis). Our results showed that AITSF/AITSR primers were slightly more sensitive in the

detection of T. brucei, T. simiae and T. congolense (S1 Fig). AITSF/AITSR primers could detect

103 T. brucei, T. simiae, T. vivax and T. congolense and T. godfreyi ITS1 copies while CF/BR

primers could detect 103 T. godfreyi and T. vivax ITS1 copies, 104 T. simiae and T. congolense
ITS1 copies and 105 T. brucei ITS1 copies. Trypanosomes have about 115 copies of ribosomal

RNA genes [21].

Read data and replicate analysis

Reads generated from amplicon sequencing were of relatively good quality. Apart from those

from Zimbabwe, more than 90% of the reads passed quality filtering in all samples (Table 2).

The no. of ASVs generated in replicate runs was slightly different indicating slightly different

detection sensitivities in the replicate PCR runs. Only the forward read was retained for down-

stream analysis in reads that did not merge due to either amplicon being longer than 600 b.p

or due to low-quality bases in the overlap bases. This did not affect the final identification of

reads as shown by the simulated data results described later. We analyzed the Rufunsa samples

in replicates and compared the results. Both replicates had similar results in regard to individ-

ual Trypanosome species detection per sample seen in the gel image analysis (Fig 3A) as well

as amplicon read analysis (Fig 3B). The outcome of detection for each of the Trypanosome

species and subspecies in replicate runs was comparable and the Fischer’s exact test confirmed

that there was no significant difference (P<0.05) in the number of positive detections in repli-

cate runs (S2 Table).

Pipeline validation and accuracy of detection

Simulation of data generated from Trypanosome sequences downloaded from NCBI and ana-

lyzed using the AMPtk (amplicon toolkit) pipeline (version 1.2.4) (https://github.com/

nextgenusfs/amptk) showed that amplicon sequence variants (ASVs) generated by the pipeline

as primary units of representing sequence diversity, were more accurate in correctly inferring

the diversity sequences compared to operational taxonomic units (OTUs) derived from clus-

tering sequences at 97% identity (S3 Table). The specificity and precision of distinguishing

between individual sequences of the same Trypanosome species are reflected by the number of

ASVs or OTUs representing each of the different species. For example, only one OTU was gen-

erated for all three Trypanosoma theileri sequences, and three OTUs were generated for seven

Trypanosoma simiae sequences, while the number of ASVs generated in each case represented

each sequence accurately. The simulated data results indicated that read analysis using the

Table 2. Read data of all samples analyzed.

Source of sample No. of samples Total no. of reads Reads after pre-processing

(% of total)

Raw ASVs OTUs (97% clustering of ASVs) ASVs post-filtering

Rufunsa Run A 200 916,055 897,598

(99.8%)

269 89 174

Rufunsa Run B 200 1,289,667 1,248,934

(94.8%)

320 95 232

Kafue 85 483,589 454,799

(91.4%)

131 48 56

Hurungwe 188 29,798 11,247

(79.5%)

137 63 116

Amplicon sequence variants (ASVs) generated were filtered to remove underrepresented and/or artifact ASVs from the final taxonomy table.

https://doi.org/10.1371/journal.pntd.0006842.t002
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Fig 3. Representative replicates analysis results. (A) Gel analysis of Rufunsa samples done in replicate showing matching

bands per sample. (B) Amplicon sequence analysis of the same samples in showing number of reads detected per species in

each sample.

https://doi.org/10.1371/journal.pntd.0006842.g003
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AMPtk pipeline and ASVs instead of OTUs was suitable for sensitive identification of Try-

panosome reads.

Amplicon sequencing improves the sensitivity of detection and reveals

errors of detection in conventional ITS1 PCR-gel analysis

By comparing gel images after PCR and sequence data, it was observed that the sensitivity of

detection of Trypanosome DNA was increased by sequencing. Samples with bands that were

barely visible after the 1st PCR became visible after the 2nd PCR and were confirmed as positive

after sequencing (Fig 4A). It was also observed that some T. godfreyi and T. vivax amplicon

bands were of a relatively similar size and it was difficult to distinguish the two by gel analysis

alone (Fig 4B). From this example, sample no. 10 has an ITS amplicon size of about 400 b.p

similar to that of sample no. 6 and 8. Sequence analysis showed that the band in sample no. 10

was identified as T. vivax while bands observed in sample no. 6 and 8 were identified as T. god-
freyi despite their similar sizes. Mixed and single infections with multiple and single bands

respectively were observed and confirmed by amplicon sequence analysis. Results for the sec-

ond PCR using dual-index primers showed consistency with those of the first PCR. There

were no bands visible outside the expected range indicating the absence of non-specific ampli-

fication in both PCR steps. The 1st PCR amplicons were slightly longer than expected sizes due

to the adapter sequences (approx. 80 bp) added to the primer, therefore the bands observed

corresponded to T. congolense (Kilifi/Forest and Savannah); 650–800 b.p, T. brucei; 520–540

bp, T. simiae; 440–500 bp, T. godfreyi; 320–400 bp, and T. vivax; 290–400 bp.

Trypanosome ITS1 sequences can be used to distinguish between different

Trypanosome species and subspecies but not for the Trypanozoon

subgenus

The accuracy in distinguishing between Trypanosome species and subspecies was analyzed by

phylogenetic analysis of ASV sequences and their species identity allocated by BLAST. ASVs

were named after the area of collection of the sample they originated from, ASV number allo-

cated during analysis, accession number and the taxonomic name of their respective top hit

BLAST subject sequence. Phylogenetic analysis of all ASVs obtained from this study showed

that ASVs named after same Trypanosome species clustered together regardless of sample col-

lection location. Sub-clustering into different subspecies of the same species was also observed

(Fig 5). The Nannomonas subgenus showed the highest diversity of sub-clustering where T.

simiae clustered into two main subspecies; T. simiae and T. simiae Tsavo. Two T. simiae Tsavo

II ASVs from Kafue, with 91% and 97% identity to T. congolense Tsavo (Accession number

U22318) recently reviewed and classified as T. simiae Tsavo [49,50] clustered distinctly from

the rest of the T. simiae Tsavo I ASVs. T. congolense ASVs showed the highest diversity and

clustered into three main subspecies; Kilifi, Riverine/Forest, and Savannah. T. congolense
Savannah represented the most diversity in all the ASVs analyzed from all the samples. T. con-
golense Kilifi clustered separately and far from T. congolense Savannah and Riverine/Forest

subspecies. T. godfreyi showed sub-clustering into two main subspecies while T. vivax (belong-

ing to the Dutonella subgenus) also clustered into two subspecies. It was expected that the Try-
panozoon subgenus (T. brucei/T. evansi) did not show any distinct sub-clustering.

Prevalence and distribution of Trypanosome species in tsetse flies

The prevalence of Trypanosome infection in tsetse flies caught in the Rufunsa area, Zambia,

was 25.6%, that of in the Kafue area, also Zambia, 28.2%, while that of the Hurungwe area,

A single test approach for Trypanosome detection and characterization
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Zimbabwe, was 47.3%. Flies caught in Rufunsa had the highest prevalence of T. congolense
while those from Kafue had the highest prevalence of T. godfreyi (Table 3). The highest preva-

lence of T. brucei/ T. evansi was recorded in flies caught in Hurungwe. We did not detect any

Fig 4. Representative gel and sequence analysis results. (A) Arrows showing bands are not visible after the 1st PCR become visible after 2nd PCR. (B) By gel

analysis, amplicon bands of samples 5, 7 and 10 are indistinguishable by size and are deemed to be all T. godfreyi while sequencing reveals that the amplicon of

sample 10 is, in fact, T. vivax. Positive controls comprise; Tbg (T. brucei gambiense), Tbr (T. brucei rhodesiense), Tb/Tc (an artificial mixture of equal amounts

of T. brucei gambiense and T. congolense DNA).

https://doi.org/10.1371/journal.pntd.0006842.g004
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T. brucei/ T. evansi from flies collected in Kafue. Mixed infections were predominant in flies

caught in Rufunsa and Hurungwe while flies caught in Kafue were predominantly infected

with T. godfreyi (Fig 6). Only tsetse flies from the Kafue region were sorted by sex during col-

lection and we observed that the infection rate in female flies (38.6%) was more than twice that

of male flies (17.1%). Additionally, we did not detect T. congolense and T. vivax infections in

male flies. Flies caught in Hurungwe did not have single infections with T. congolense or T.

godfreyi.

Discussion

This study reports a new and versatile approach for detection of Trypanosome DNA in multi-

ple samples with high sensitivity and precision than conventional PCR-gel approach. We have

established that conventional ITS PCR gel analysis is not an accurate way of determining the

prevalence of Trypanosome species infections since identification of species by band size is

Fig 5. Phylogenetic tree of unique ASVs generated from amplicon sequence data. A Bodo caudatus ITS1 sequence was included as outgroup. Individual

Trypanosome species and subspecies cluster into distinct clades. ASV are named after their respective blast best hit matches.

https://doi.org/10.1371/journal.pntd.0006842.g005
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inaccurate and may lead to misidentification of some Trypanosome species. Our new

approach is sensitive at the subspecies level and has a high capacity to process large amounts of

samples in one run (approximately a 700 samples mixed library) owing to the high repertoire

of Illumina dual indexing primers. However, we did not see any unique clusters that could dis-

tinguish between the Trypanozoon subspecies which are of high priority because 1) they cause

HAT (T. b rhodesiense and T. gambiense) and 2) their distribution is not restricted to Africa

(T. evansi and T. equiperdum). However, we did identify two clusters of T. vivax. This is

important since T. vivax is distributed outside Africa since it can be transmitted both cyclically

by tsetse flies and also mechanically. Failure to distinguish between Trypanozoon subspecies

was expected since the ribosomal RNA genes are highly conserved in this subgenus and cannot

be able to tell apart the subspecies [29,30]. Moreover, a study based on genome-wide SNP anal-

ysis of 56 Trypanozoon genomes, including eight T. evansi and four T. equiperdum has

revealed extensively similar genomes [51]. A single molecular test able to distinguish between

members of the Trypanozoon subspecies is yet to be developed thus, subspecies specific based

tests remain obligatory for their identification. As part of this work, we have also developed

new primers that show high sensitivity to T. brucei compared to conventional primers and

cover a wider range of the Trypanosoma genus. With our approach, it is now possible to iden-

tify species and subspecies of Trypanosomes by sequence analysis on individual samples as

opposed to pooled samples for a large dataset which allows for the detection of new isolates. It

is also possible to make a better inference of the Trypanosome species circulating in an area.

This approach is practical and, with the decreasing cost of next-generation sequencing, cost-

effective way to monitor large field samples of all kinds. They can, therefore, be utilized in a

wide range of samples from vectors and hosts and the analysis of new Trypanosome species.

The results obtained in this study indicate that T. vivax and T. godfreyi have very similarly

sized ITS1 amplicons making it difficult to identify one from the other based solely on gel

band sizes. Sequencing and clustering of the reads effectively address this issue.

Table 3. Prevalence of Trypanosome species infection in wild-caught tsetse flies.

Trypanosome species Rufunsa (n = 200) Kafue (n = 85) Hurungwe (n = 188)

Trypanozoon 6.0% 0.00% 45.7%

(3.5% - 10.2%) 0% - 4.3%) (38.8%– 52.9%)

T. congolense Forest 4.5% 1.2% 0.0%

(2.4% - 8.3%) (0.2% - 6.4%) (0% - 2.0%)

T. congolense Kilifi 7.5% 2.4% 4.8%

(4.6% - 12.0%) (0.7% - 8.2%) (2.5% - 8.9%)

T. congolense Savannah 7.5% 4.7% 39.9%

(4.6% - 12.0%) (1.9% - 11.5%) (33.2% - 47.0%)

T. godfreyi 3.0% 16.5% 3.7%

(1.4% - 6.4%) (10.1% - 25.8%) (1.8% - 7.5%)

T. simiae 6.0% 5.9% 1.1%

(3.5% - 10.2%) (2.5% - 13.0%) (0.3% - 3.8%)

T. simiae Tsavo 8.7% 2.4% 0.0%

(4.5% - 16.2%) (0.7% - 8.2%) (0% - 2.0%)

T. vivax 7.5% 2.4% 29.2%

(4.6% - 12.0%) (0.7% - 8.2%) (23.2% - 36.1%)

Trypanosoma 26.5% 28.2% 47.3%

(overall prevalence) (20.9% -33.0%) (19.8% - 38.6%) (40.3% - 54.5%)

Confidence levels at 95% for apparent prevalence (Wilson) are shown in brackets.

https://doi.org/10.1371/journal.pntd.0006842.t003
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Fig 6. The distribution of Trypanosome species amongst infected tsetse flies. (A1) Pie chart showing the prevalence of Trypanosome species in wild-caught tsetse

flies collected from Kafue, Zambia. (A2) Bar graph showing the Trypanosome species infecting male and female flies from flies collected in Kafue, Zambia. (A3)

Graphical representation showing the infection rates of male and female flies collected in Kafue, Zambia. (B) Pie chart showing the prevalence of Trypanosome species

in wild-caught tsetse flies collected from Hurungwe, Zimbabwe. (C) Pie chart showing the prevalence of Trypanosome species in wild-caught tsetse flies collected from

Rufunsa, Zambia. TBE = T. brucei/T. evansi, TV = T. vivax, TS = T. simiae, TG = T. godfreyi, and TC = T. congolense.

https://doi.org/10.1371/journal.pntd.0006842.g006

A single test approach for Trypanosome detection and characterization

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006842 February 25, 2019 15 / 20

https://doi.org/10.1371/journal.pntd.0006842.g006
https://doi.org/10.1371/journal.pntd.0006842


Phylogenetic analysis shows several interesting population substructures in the cases of T.

simiae and T. congolense. Within the T. congolense clade, Savannah and Riverine/Forest sub-

species show more sequence similarity while the Kilifi type shows more divergence. This agrees

with a previous study that found T. congolense Savannah and Riverine/Forest had 71% similar-

ity in satellite DNA sequence [52] and that the Kilifi subspecies was as divergent from other T.

congolense subspecies [53]. The clustering of T. congolense Kilifi close to T. simiae species than

other T. congolense subspecies is quite interesting in that an earlier study had identified a new

T. congolense Tsavo strain (Accession number U22318) [54] which has been classified as T.

simiae Tsavo [55]. We identified two ASVs from Kafue area (classified as T. simiae Tsavo II in

this study) that had 91% and 97% identity to the U22318 T. congolense Tsavo sequence and

that clustered with T. simiae Tsavo rather than other T. congolense species sequences support-

ing the T. simiae Tsavo classification. However, they cluster separately from the other T. simiae
Tsavo ASVs, suggesting that they may have a divergent genotype. Perhaps there is a complex

relationship between T. congolense and T. simiae species yet to be identified.

Prevalence of Trypanosome infection in caught tsetse flies differed in the sampled areas

with single and mixed infection being detected in flies caught agreeing with previous studies

[37,56,57]. This may be an important factor in the exchange of information between species.

We also observed that the infection rate of female tsetse flies was more than twice that of male

flies. This result is in contrast to dissection data from the Tinde experiment where male Glos-
sina morsitans centralis had a salivary gland infection rate (5.4%) more than twice that of

females (2.1%) [58]. However, our results agree with other studies on Glossina morsitans,
reporting high infection rates in female flies compared to males [59,60]. More research is

needed to find out the role of sex and infection rate differences between the different Glossina
species in both laboratory and wild caught flies.

To conclude, our results imply that with this approach, it is possible to detect and distin-

guish between different Trypanosome species and subspecies accurately (with the exception of

Trypanozoon subgenus) and therefore infer prevalence of infection more precisely using a sin-

gle test without having to undertake satellite DNA analysis that requires species-specific prim-

ers. This is made possible by deep sequencing which enables resolution at a single nucleotide

level. This high resolution at sub-cluster level utilizing only the ITS1 region has not been

shown before thus a practical and sensitive barcoding of African trypanosomes. Using our

approach, it is thus possible to distinguish T. godfreyi from T. vivax, as well as highlight finer

subpopulation structures within the T. simiae and T. congolense clades that raise interesting

questions regarding their classification. It is highly likely that there are genomic and taxo-

nomic differences between T. vivax, T. godfreyi and T. congolense subspecies that need to be

studied. This could provide answers on the evolution of Trypanosomes such as; what contribu-

tion do these Trypanosome subspecies make to livestock disease? Are these genotypes respon-

sible for assumed “strain” differences in drug response? Can these new genotypes be correlated

with the old morphological criteria and species designations? Do these “strains” have the

potential of evolving to new subspecies that could pose new risks? There is a need for more

studies to catch up with the molecular taxonomy to answer these questions.
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