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Objectives: To develop and validate a radiomic feature-based nomogram for
preoperative discriminating the epidermal growth factor receptor (EGFR) activating
mutation from wild-type EGFR in non-small cell lung cancer (NSCLC) patients.

Material: A group of 301 NSCLC patients were retrospectively reviewed. The EGFR
mutation status was determined by ARMS PCR analysis. All patients underwent
nonenhanced CT before surgery. Radiomic features were extracted (GE healthcare).
The maximum relevance minimum redundancy (mRMR) and LASSO, were used to select
features. We incorporated the independent clinical features into the radiomic feature
model and formed a joint model (i.e., the radiomic feature-based nomogram). The
performance of the joint model was compared with that of the other two models.

Results: In total, 396 radiomic features were extracted. A radiomic signature model
comprising 9 selected features was established for discriminating patients with EGFR-
activating mutations from wild-type EGFR. The radiomic score (Radscore) in the two
groups was significantly different between patients with wild-type EGFR and EGFR-
activating mutations (training cohort: P<0.0001; validation cohort: P=0.0061). Five clinical
features were retained and contributed as the clinical feature model. Compared to the
radiomic feature model alone, the nomogram incorporating the clinical features and
Radscore exhibited improved sensitivity and discrimination for predicting EGFR-activating
mutations (sensitivity: training cohort: 0.84, validation cohort: 0.76; AUC: training cohort:
0.81, validation cohort: 0.75). Decision curve analysis demonstrated that the nomogram
was clinically useful and surpassed traditional clinical and radiomic features.

Conclusions: The joint model showed favorable performance in the individualized,
noninvasive prediction of EGFR-activating mutations in NSCLC patients.
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INTRODUCTION

With the development of molecular biology in cancer therapy,
the treatment of NSCLC patients has become increasingly based
not only on the patient’s clinical characteristics and tumor
morphology but also on individual mutational profiles (1).
EGFR-activating mutations, including exon 19 deletion
(DEL19) and exon 21 substitution (L858R), account for
approximately 90% of all EGFR mutations in advanced NSCLC
patients (2). For advanced NSCLC patients with EGFR-
activating mutations, treatment with EGFR tyrosine kinase
inhibitors (EGFR TKIs), such as gefitinib and afatinib, has
become the standard of care (3, 4). Accumulating evidence
suggests that EGFR TKIs can significantly prolong
progression-free survival (PFS) compared to standard
chemotherapy in this genetically distinct subset of patients (5,
6). Thus, the detection of EGFR-activating mutations at the time
of initial diagnosis, before treatment, is critical.

Gene mutation testing can uncover pivotal information
connected to underlying molecular biology. The most
commonly used approach for obtaining specimens for a
specific diagnosis and molecular testing is biopsy. However, the
tissue acquired by invasive techniques may fail to represent the
anatomic, functional, and physiological properties of cancer.
Clinical studies have suggested that 10% to 20% of all NSCLC
biopsies are inadequate for molecular analysis because of a lack
of either sufficient tumor cells or amplifiable DNA (7). Moreover,
intratumoral heterogeneity due to the diverse collection of cells
harboring distinct molecular signatures will result in differential
levels of sensitivity to treatment (8). Thus, an alternative
approach for genetic testing is needed.

Computed tomography (CT) imaging presents a perspective
of the entire tumor and its microenvironment, allowing
prediction of the EGFR mutation status globally (9, 10).
Radiomics refers to the computerized extraction of a large
number of quantitative radiomic features from radiologic
images, and this method has unique potential to reveal tumor-
related information, such as pathological features, biomarker
expression and genomic features, using machine learning
algorithms (11, 12). Radiomics provides quantitative and
objective data collected from medical images to be utilized
within clinical-decision support systems to improve diagnostic,
prognostic, and predictive accuracy, especially in lung cancer
(13–15). Developing such a quantitative imaging technique and
testing its validity may offer a new non-invasive and convenient
Abbreviations: ADC, Adenocarcinoma; AUC, Area under the curve; CEA,
Carcinoembryonic antigen; CT, Computed tomography; CYFRA21-1,
Cytokeratin 19-fragment; DCA, Decision curve analysis; EGFR, Epidermal
growth factor receptor; EGFR DEL19, EGFR exon 19 deletions; EGFR L858R,
EGFR exon 21 substitutions; GLCM, Gray-Level Co-occurrence Matrix;
GLZSM=Gray level zone size matrices; LASSO, The least absolute shrinkage
and selection operator; mRMR, The maximum relevance minimum redundancy;
NSCLC, Non-small cell lung cancer; NSE, Neuron specific enolase; PCR,
Polymerase chain reaction; PFS, Progression free survival; ProGRP, Progastrin-
releasing peptide; Radscore, Radiomic scores; RLM, Run-length matrix; ROC,
Receiver operating characteristic; ROI, Region of interest; SCC, Squamous cell
carcinoma; SCCA, Squamous cell carcinoma antigen; TKIs, Tyrosine kinase
inhibitors; 95%CI, 95% Confidence interval.
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approach for the better management of therapeutic strategies,
resulting in optimized clinical and economic benefits to
the patient.

Herein, we examined the correlation between 396 radiomic
features and EGFR-activating mutation subtypes in two
independent cohorts comprising 301 NSCLC patients.
Furthermore, we created a user-friendly nomogram by
incorporating the radiomic signature with the clinical
characteristics to predict the probability of an event based on
the individual profile of each patient. Our results reveal that the
combination of the repeatable, reproducible and low-cost CT-
derived radiomic signature and the clinical parameters can be
used for evaluating the EGFR-activating mutation status. This
may have important clinical influence, notably by allowing the
better personalization of target therapy for NSCLC patients with
EGFR-activating mutations.
MATERIALS AND METHODS

Dataset
Our study was approved by the institutional review board of
Lishui Hospital of Zhejiang University. Because of its
retrospective nature, requirement for informed consent was
waived. Patients who were diagnosed with pathologically
confirmed NSCLC from June 30, 2015, to January 18, 2018,
were enrolled. A total of 590 were included according to the
following inclusion criteria (1): CT imaging performed within
one month before surgery (2); histological diagnosis of NSCLC
(3); EGFR mutations (EGFR EXON18 G719X、EGFR EXON19
19-Del、EGFR EXON20 T790M、EGFR EXON20 20-Ins、
EGFR EXON20 S768I、EGFR EXON21 L858R、EGFR
EXON21 L861Q) detected by amplification refractory mutation
system-Scorpion real-time PCR (ARMS-PCR); and (4) clinical
data were available. Thereafter, 289 patients were excluded
according to the following exclusion criteria (1): preoperative
treatment at the time of the initial diagnosis (n=96) (2); tissue
sample obtained by biopsy rather than surgery (n=138); and (3)
histological diagnosis of SCLC (n=55). Eventually, a total of 301
patients were enrolled in our study; 210 patients and 91 patients
were allocated to the training and validation cohorts, respectively
with a ratio of 7:3 (16).
CT Image Acquisition and Interpretation
Patients underwent preoperative unenhanced CT scanning using
a 64-channel Philips Brilliance CT system (Philips Medical
Systems). Details regarding the acquisition parameters were set
as follows: tube current, 200 mA; tube voltage, 120 kV; slice
thickness, 0.9 mm; collimation width, 40 mm (64 × 0.625 mm);
reconstruction interval with iDose3 hybrid iterative
reconstruction algorithm, 0.45 mm; scan field of view (SFOV),
15-20 cm; pitch, 1.2; rotation time, 350 ms; and pixel matrix size,
1024×1024. The images were processed in the Extended
Bril l iance Workspace (EBW, Phil ips). Multi-planar
reconstruction was used for image reconstruction with a
thickness of 5 mm.
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Two thoracic radiologists with 9 and 13 years of experience
(H.W. and C.L.) performed retrospective reviews independently.
Disagreements were settled by the third radiologist who had 20
years of experience (J.J.). The image features included the
following (1): size and (2) volume, measured using the
Extended Brilliance Workspace and Lung Nodule Assessment
software (Philips) (3); lobe (4); cancer type(primary cancer or
metastasis cancer) (5); tumor location (6); shape: regular (round
or oval) or irregular (17) (6); lobulation (present/absent) (7);
speculation (present/absent) (8); air bronchogram (present/
absent) (9); necrosis (present/absent) (10); pleural retraction
(present/absent) (11); calcification (present/absent); and (12)
pleural effusion (present/absent).

Tumor Segmentation and Radiomic
Feature Extraction
CT images of selected patients were exported from the picture
archiving and communication system (PACS) according to the
inclusion and exclusion criteria. ITK-SNAP software (version
3.4.0, www.itk-snap.org) was used for three-dimensional semi-
automatic segmentation (18). All images were automatically
segmented and adjusted by a radiologist with 18 years of
experience (Z.W., reader 1), who repeated the same procedure
within 2 weeks. The interobserver reproducibility of each
segmentation was evaluated by another radiologist with 20
years of clinical experience (J.J., reader 2).

Radiomic features were extracted from the ROI by
commercial software Artificial Intelligence Kit (A.K) which
developed by GE Healthcare (19). A total of 396 high-
dimensional features were extracted from each individual, and
these features were divided into 5 categories (Supplementary
Figure 1): histogram (n=42), form factor (n=9), grey level co-
occurrence matrix (GLCM) (n=154), run-length matrix (RLM)
(n=180), and grey level zone size matrix (GLZSM) (n=11).

Inter- and Intraobserver Reproducibility
The inter- and intraobserver reproducibility of semantic image
features, tumor segmentation and feature extraction were
evaluated by intraclass correlation coefficients (ICCs). Two
radiologists specialized in chest CT interpretation initially
analyzed the images obtained from 30 randomly selected
patients within 2 weeks in a blinded fashion. ICCs greater than
0.75 were considered as good consistency, and the remaining
image segmentation was performed by reader 1.

Radiomic Feature-Based Prediction
Model Construction
We built the radiomic signature model based on selected features
from the training cohort. Z‐score was applied to feature
normalization before feature selection. Two feature selection
methods, maximum relevance minimum redundancy (mRMR)
and least absolute shrinkage and selection operator (LASSO),
were used to select the features. First, mRMR was performed to
eliminate redundant and irrelevant features. LASSO was used to
select the most useful features by penalty parameter tuning and
Frontiers in Oncology | www.frontiersin.org 3
10-fold cross-validation based on the minimum criteria. LASSO
includes choosing the regular parameter l to determine the
number of features. After the number of features was
determined, the most predictive subset of features was chosen,
and the corresponding coefficients were evaluated. The
coefficients for most radiomic features were reduced to zero,
and any remaining radiomic features with non-zero coefficients
were selected. Next, we built a model with selected radiomic
features. A radiomic score (Radscore) was computed for each
patient through a linear combination of selected features
weighted by their respective coefficients. The final formula for
the Radscore was as follows: “Radscore = -0.152*Small Area
Emphasis + -0.097*Long Run High Grey Level Emphasis_
angle0_offset4 + 0.035*Cluster Prominence _All Direction_
offset7_SD + 0.082*Inverse Difference Moment_All Direction
_offset4_SD + 0*Low Grey Level Run Emphasis_All
Direction_offset4_SD + -0.064*Long Run Low Grey Level
Emphasis_All Direction_offset7_SD + 0.275*Correlation_
angle0_offset7 + 0.211*std Deviation + -0.068*GLCM
Energy_All Direction_offset4_SD + -0.018”. Furthermore,
the Radscore was compared between the wild-type EGFR and
EGFR-activating mutations in both the training and
validation cohorts.

Logistic regression with L1 regularization was performed to
select the independent clinical predictors in the training cohort.
Prediction models combining radiomic features and clinical
variables were established. We built a radiomic nomogram
based on the multivariate logistic regression model in the
training cohort, and receiver operating characteristic (ROC)
curves were developed to evaluate the discriminatory ability of
the nomogram. The calibration curve of the nomogram was used
to assess how closely the nomogram predicted EGFR-activating
mutations relative to the actual probability (20, 21). The
Hosmer-Lemeshow test was used to evaluate the goodness-of-
fit of the calibration curve (22). In addition, decision curve
analysis (DCA) was used to determine the clinical usefulness of
the prediction model by quantifying the net benefits at different
threshold probabilities. DCA estimates the net benefit of a model
through the difference between the true-positive and false-
positive rates, weighted by the odds of the selected threshold
probability of risk (23).

Statistical Analysis
Statistical analysis was performed using R software (version 3.3)
for quantitative feature analysis. The characteristic features of
patients with EGFR-activating mutations and wild-type EGFR
were compared by Student’s t-test for normally distributed data;
otherwise, the Mann-Whitney U test was used. Multivariate
binary logistic regression was performed with the “rms”
package. A nomogram was established by incorporating
significant characteristic features and radiomic features. ROC
curves were plotted to evaluate the diagnostic efficiency of the
model. The area under the ROC curve (AUC) was then
calculated. The nomogram was constructed and the calibration
plots were created using the “rms” package. A p-value <0.05 was
considered significant.
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TABLE 1 | Characteristics of 301 NSCLC patients, according to the presence of the EGFR activating mutation.

Univariate Cox regression Multivariate Cox regression

Total EGFR Activating Mutation EGFR Wild Type P P

Gender <0.001 NA
Male 156 103 53
Female 145 49 96

Age 64.95 ± 10.52 64.68 ± 10.70 65.23 ± 10.36 0.647
Smoking Status <0.001 <0.0001
Active 110 79 31
Inactive 191 73 118

Size(cm) 1.9 (2.9, 4.6) 3.15 (1.98, 5.03) 2.6 (1.8, 4.2) 0.062
Volume(cm3) 9.08 (2.23, 30.39) 12.64 (2.78, 45.59) 6.86 (1.73, 25.50) 0.032 NA
Lobe 0.094
Left Upper 89 39 50
Left Middle 0 0 0
Left Lower 54 26 28
Right Upper 78 36 42
Right Middle 16 10 6
Right Lower 64 41 23

Cancer Type >0.999
Primary Cancer 296 149 147
Metastasis Cancer 5 3 2

Tumor Location 0.393
Peripheral 140 67 73
Central 161 85 76

Concomitant other malignancy 0.636
Present 16 9 7
Absent 285 143 142

Shape 0.259
Regular 36 15 21
Irregular 265 137 128

Lobulated 0.51
Present 274 140 134
Absent 27 12 15

Spiculated 0.021 0.076
Present 199 91 108
Absent 102 61 41

Air-bronchogram 0.014 0.039
Present 80 31 49
Absent 221 121 100

Necrosis 0.009 NA
Present 113 68 45
Absent 188 84 104

Pleural Retraction 0.136
Present 240 116 124
Absent 61 36 25

Calcification 0.547
Present 35 16 19
Absent 266 136 130

Pleural Effusion 0.189
Present 83 47 36
Absent 218 105 113

CEA <0.001 0.004
Normal 96 1 95
Abnormal 205 148 57

SCCA 0.006 0.026
Normal 258 136 122
Abnormal 43 13 30

CYFRA21-1 <0.001 NA
Normal 68 1 67
Abnormal 233 148 85

NSE <0.001 NA
Normal 98 3 95
Abnormal 203 146 57

(Continued)
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RESULTS

Clinical Characteristics
A total of 301 patients were enrolled in this study, 152 patients
(50.5%)were determined to have the EGFR exon 21 L858Rmutation
or the EGFR exon 19DEL19mutation,which are both considered as
EGFR-activating mutations, 149 patients (49.5%) presented with
wild-type EGFR. There were 103 males and 49 females with EGFR-
activating mutations and 53 males and 96 females with wild-type
EGFR, respectively; the mean age was 64.95 (Table 1).

Univariate analysis revealed that sex, smoking status, tumor
volume, spiculation, air bronchogram, necrosis, CEA, SCC,
CYFRA21-1 and NSE were significantly associated with EGFR-
activating mutations. Further multivariate analysis suggested that
smoking status (OR: 5.79, 95%CI: 2.93-11.45, P<0.0001), spiculation
(OR: 1.82, 95% CI: 0.94-3.51, P=0.076), air bronchogram (OR: 2.18,
95% CI 1.04-4.57, P=0.039), CEA (OR: 2.57, 95% CI: 1.35-4.87,
P=0.004) and SCCA (OR: 0.37, 95% CI 0.15-0.89, P=0.026) were
independent predictors of EGFR-activating mutations (Table 1).
Satisfactory interobserver and intraobserver reproducibility of the
clinical features was achieved (ICC=0.83, 0.79).
Radiomic Signature Construction,
Validation, and Evaluation
A total of 396 radiomic features were extracted from unenhanced
CT images. The intraobserver ICCs ranged from 0.80 to 0.89,
and the interobserver ICCs ranged from 0.76 to 0.90,
indicating satisfactory intra- and interobserver feature
extraction reproducibility. In all, 20 features were retained after
the mRMR algorithm was applied. Then, LASSO was performed,
including selection of the regular parameter l (log l=0.03), to
determine the number of features (Figures 1A, B). After the
number of features was determined, the most predictive subset of
9 features was chosen (Supplementary Table 1), and the
corresponding coefficients were evaluated (Figure 1C) and
used to build a prediction model. The Radscore showed a
significant difference between NSCLC patients with wild-type
EGFR and EGFR-activating mutations in the training (P<0.0001)
and validation cohorts (P=0.0061). Patients with EGFR-activating
mutations generally showed a higher Radscore (Figure 2).

As shown in Figure 3, the radiomic feature only model
achieved an AUC of 0.70 in the training cohort and 0.67 in the
validation cohort. We incorporated the clinical indicators with P
values less than 0.01 and the radiomic features into the logistic
TABLE 1 | Continued

Univariate Cox regression Multivariate Cox regression

Total EGFR Activating Mutation EGFR Wild Type P P

ProGRP 0.952
Normal 269 133 136
Abnormal 32 16 16
Frontiers in Oncology | www.frontiersin.
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Age is expressed as Mean ± SD. Size, and volume are expressed as Quantiles (Q1, Q3)/Median (interquartile range). Otherwise, data are number of patients.
CEA, Carcinoembryonic antigen, SCCA, Squamous cell carcinoma antigen, CYFRA21-1, Cytokeratin 19-fragments, NSE, Neuron specific enolase, ProGRP, Progastrin-releasing
peptide. The P value marked bold indicated statistical significance.
A

B

C

FIGURE 1 | Selection of radiomic features associated with EGFR-activating
mutations using the LASSO regression model. (A) Cross-validation curve. An
optimal log lambda (0.03) was selected, and 9 non-zero coefficients were
chosen. (B) LASSO coefficient profiles of the 396 radiomic features against the
deviance explained. (C) Histogram showing the contribution of the selected
parameters with their regression coefficients in the signature construction.
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regression analysis (Supplementary Table 2). The joint model
yielded an AUC of 0.81 (95% CI, 0.75-0.87) with a sensitivity of
84% in the training cohort (Figure 3A) and an AUC of 0.75 (95%
CI, 0.65-0.86) with a sensitivity of 76% in the validation cohort
(Figure 3B), which showed an improved performance over the
radiomic signature in both the training and validation cohorts.
Table 2 lists the predictive performance of the joint model, using
the AUC, accuracy, sensitivity and specificity as the main
measurements. The joint model outperformed the radiomic
feature model and the clinical characteristics-based model in
terms of sensitivity in the training and validation cohorts.
Frontiers in Oncology | www.frontiersin.org 6
Subsequently, a nomogram integrating smoking status,
spiculation, air bronchogram, CEA, SCCA and Radscore was
constructed, as presented in Figure 4A. The calibration curve of
the nomogram for the prediction of EGFR-activating mutations
demonstrated favorable agreement between estimation with the
radiomic nomogram and actual observations. The p value
obtained via the Hosmer-Lemeshow test for the predictive
ability of the nomogram was 0.57 in the training cohort
(Figure 4B) and 0.24 in the validation cohort (Figure 4C).

DCA for the prediction model showed that the joint nomogram
had the highest net benefit compared with the clinical and radiomic
A B

FIGURE 2 | Difference in the Radscore between NSCLC patients with wild-type EGFR and EGFR-activating mutations in training cohort (A) and validation cohort (B).
A B

FIGURE 3 | Comparison of performance among the three developed models for the prediction of EGFR-activating mutations in NSCLC patients. ROC curves of
clinical features alone, radiomic features alone and combined features in the training (A) and validation (B) cohorts.
August 2021 | Volume 11 | Article 590937
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feature models across the majority of the range of reasonable
threshold probabilities (Figure 4D). The decision curve showed
that if the threshold probability of a patient was within the range
from 10% to 65%, using the joint nomogram developed in our study
to predict EGFR-activating mutations added more benefit than the
treat-all-patients scheme or the treat-no-patients scheme.
DISCUSSION

We undertook this study to develop and validate a joint model-
based nomogram for the preoperative individualized prediction of
EGFR-activating mutations in NSCLC patients. The nomogram
integrated 5 clinical features, i.e., smoking status, spiculation, air
bronchogram, CEA, and SCCA, and 9 radiomic features. Our
findings suggest that NSCLC patients could be classified as having
EGFR-activating mutations or wild-type EGFR according to our
nomogram, indicating that the nomogram could be used as a novel
and user-friendly instrument for the bettermanagement ofNSCLC
patients. Moreover, this study provides a visualized explanation to
help clinicians understand the prediction outcomes in terms of
CT data.

Diagnosis of the EGFRmutational status on an individual basis
is vital for defining personalized treatment strategies. EGFR
mutation including the sensitivity (EGFR Del19 and L858R) and
resistance mutation (EGFR T790M) to TKIs. Recently, researchers
have been seeking novel approaches to replace or complement
conventionalmolecular analysis in routineCTexaminations.Wang
et al. proposed an end-to-end deep learning model to predict the
EGFR mutation status by preoperational CT scanning, with an
AUC of 0.85 in a primary cohort (24). However, the developed
model can only beused todistinguishpatientswithwild-typeEGFR
and EGFR mutations and cannot identify whether mutations are
EGFR activating or drug resistant mutations. In addition, although
the deep learning method is labor-saving since it does not require
precise nodule segmentation (25), the accuracy of segmentation is
controversial. Liu et al. collected 289 patients with surgically
resected peripheral lung adenocarcinomas and extracted 219
radiomic features to predict the EGFR mutation status, with an
AUCof0.709 (26).Thepredictionmodel inour study,withanAUC
of 0.81 in the training cohort, is more reliable and can be used for
discriminating wild-type EGFR and EGFR-activating mutations to
guide targeted therapy.

Although smoking has been well established as the major cause
of lung cancer, EGFR mutations have proved to be the most
Frontiers in Oncology | www.frontiersin.org 7
common genetic alteration in never-smoking NSCLC patients. A
meta-analysis performed by Ren et al. revealed that non-smoking
was associated with a significantly higher EGFR mutation rate. The
frequency of EGFR mutations ranged from 22.7% to as high as
72.1% in never-smokers (27). Our results are in line with those of a
previous study in that the presence of EGFR mutations was closely
associated with the never-smoking status in NSCLC patients (28).

The relevance of CT features to the EGFR mutation status has
also been reported recently. Spiculated margins, subsolid density,
and non-smoking were confirmed to be significantly associated
with EGFR-activating mutations (29). Zhou et al. found that
spiculated margins, pleural retraction, and air bronchogram were
more frequent in the EGFRmutation group than in the wild-type
group, but there was no significant difference between these
groups (30). On the other hand, air bronchogram was reported
as an indicator of EGFR mutations in NSCLC (31). This result is
consistent with Liu’s findings, which revealed a significant
correlation between a small lesion size and air bronchogram
with EGFR mutations in lung adenocarcinoma (32).

Serum tumor markers, such as CEA, SCCA, CYFRA 21-1,
NSE, and ProGRP, are considered to be predictive or prognostic in
NSCLC, and some of these markers have been shown to be
correlated with EGFR mutations (33). CEA is widely known as a
serum tumor marker of NSCLC (34, 35). It has also been
uncovered that the serum CEA level in Chinese patients is not
only positively associated with EGFR mutation but also negatively
associated with the efficacy of TKI therapy (36). These findings
raise the question of whether there is any correlation between the
serum CEA level and EGFRmutations. In our study, the CEA level
(below or above 5 ng/mL) served as an independent marker for
predicting EGFR-activating mutations in NSCLC patients.
Consistent with a previous report, an elevated serum CEA level
predicted the presence of EGFR mutations in pulmonary
adenocarcinoma (37). The low frequency of an elevated SCCA
level has been reported in EGFR-mutated NSCLC, but no further
evidence has been presented regarding the relation between SCCA
and EGFR-activating mutations (38, 39). In our study, patients
with a normal SCCA level showed higher scores, suggesting that
this factor may contribute to the increased possibility of EGFR-
activating mutations.

With the radiomic approach, we identified that 9 radiomic
features from 4 different feature categories (GLCM, histogram,
RLM, GLZSM) were significantly associated with EGFR-
activating mutations and could serve as indicators for the
prediction of EGFR-activating mutations. The AUC of the
TABLE 2 | Predictive performance of the three models in the training and validation cohorts.

Model Accuracy [95%CI] AUC [95%CI] Sensitivity Specificity P value

Training cohort
Radiomic features 0.76 [0.70-0.82] 0.70 [0.63-0.77] 0.74 0.79 P < 0.0001
Clinical features 0.71 [0.64-0.77] 0.77 [0.71-0.84] 0.69 0.72 P < 0.0001
Joint features 0.68 [0.61-0.74] 0.81 [0.75-0.87] 0.84 0.51 P < 0.0001
Validation cohort
Radiomic features 0.72 [0.60-0.80] 0.67 [0.55-0.78] 0.67 0.79 P = 0.0038
Clinical features 0.63 [0.52-0.73] 0.67 [0.55-0.78] 0.62 0.64 P = 0.0043
Joint features 0.66 [0.55-0.76] 0.75 [0.65-0.86] 0.76 0.57 P < 0.0001
Augu
st 2021 | Volume 11 | Art
AUC, Area under the curve; 95%CI, Confidence interval. The P value marked bold indicated statistical significance.
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A

B

D

C

FIGURE 4 | Nomogram for the prediction of EGFR-activating mutations based on the training cohort and the calibration curve for model evaluation. (A) Radiomic
nomogram constructed with the clinical characteristics and Radscore. Calibration curves were used to assess the consistency between the nomogram-predicted
EGFR-activating mutation probability and the actual fraction of EGFR-activating mutations in both the training (B) and validation (C) cohorts (D). DCA for the prediction
of EGFR-activating mutations in NSCLC patients for each model. The X-axis represents the threshold probability, and the Y-axis represents the net benefit. The net
benefit is calculated by adding the benefits (true-positive results) and subtracting the risks (false-positive results), with the latter weighted by a factor related to the harm
of an undetected cancer relative to the harm of unnecessary treatment. The red curve indicates the nomogram, which represents the joint prediction model composed
of radiomic features and clinical indicators. The green curve represents the clinical feature model, while the blue curve represents the radiomic feature model. Our joint
prediction model outperformed both the other models and simple strategies, such as the follow-up of all patients (grey line) or no patients (horizontal black line), across
the majority of the range of threshold probabilities at which a patient would choose to undergo a follow-up imaging examination.
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radiomic feature model was lower than that of the joint model
(P=0.0005), suggesting that the radiomic features helped
improve the performance of the joint model, as indicated by
the higher AUC. These findings suggest that models integrating
radiomic features with clinical features are more effective.

DCA demonstrated that the joint nomogram was superior to
both the clinical feature model and the radiomic model across the
majority of the range of reasonable threshold probabilities, which
also indicates that the radiomic signature added value to the
traditional clinical features used for individualized EGFR-
activating mutation estimation. Therefore, a non-smoking
patient presenting with an abnormal serum CEA level, a normal
SCCA level, spiculation, air bronchogram and a high Radscore
might be more likely to have EGFR-activating mutations.

This study has several limitations. First, this was a
retrospective study and thus may have selection bias. Second,
tumor segmentation was performed by a semi-automatic
process, which was time consuming for the radiologists.
However, the results are more robust, especially for tumors
with unclear margins. Third, different CT scanning devices
with different acquisition protocols were used. Thus,
multicenter validation need to be performed to prove
nomogram reliability.

In conclusion, we established a CT image-based model
combining radiomic features and clinical variables for the
prediction of EGFR-activating mutations before initial
treatment in patients with NSCLC. The radiomic feature-based
nomogram can serve as an alternative approach to determine
better candidates for first-generation EGFR TKI therapy.
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