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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by
progressive muscle paralysis, which is followed by degeneration of motor neurons in the
motor cortex of the brainstem and spinal cord. The etiology of sporadic ALS (sALS) is still
unknown, limiting the exploration of potential treatments. Ferroptosis is a new form of cell
death and is reported to be closely associated with Alzheimer’s disease (AD), Parkinson’s
disease (PD), and ALS. In this study, we used datasets (autopsy data and blood data) from
Gene Expression Omnibus (GEO) to explore the role of ferroptosis and ferroptosis-related
gene (FRG) alterations in ALS. Gene set enrichment analysis (GSEA) found that the activated
ferroptosis pathway displayed a higher enrichment score, and the expression of 26 ferroptosis
genes showed obvious group differences between ALS and controls. Using weighted gene
correlation network analysis (WGCNA), we identified FRGs associated with ALS, of which the
Gene Ontology (GO) analysis displayed that the biological process of oxidative stress was the
most to be involved in. KEGGpathway analysis revealed that the FRGswere enriched not only
in ferroptosis pathways but also in autophagy, FoxO, andmTOR signaling pathways. Twenty-
one FRGs (NR4A1, CYBB, DRD4, SETD1B, LAMP2, ACSL4, MYB, PROM2, CHMP5, ULK1,
AKR1C2, TGFBR1, TMBIM4, MLLT1, PSAT1, HIF1A, LINC00336, AMN, SLC38A1, CISD1,
andGABARAPL2) in the autopsy data and 16 FRGs (NR4A1, DRD4, SETD1B,MYB, PROM2,
CHMP5, ULK1, AKR1C2, TGFBR1, TMBIM4, MLLT1, HIF1A, LINC00336, IL33, SLC38A1,
and CISD1) in the blood data were identified as target genes by least absolute shrinkage and
selection operator analysis (LASSO), in which gene signature could differentiate ALS patients
from controls. Finally, the higher the expression of CHMP5 and SLC38A1 in whole blood, the
shorter the lifespan of ALS patients will be. In summary, our study presents potential
biomarkers for the diagnosis and prognosis of ALS.
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INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease affecting
the motor nervous system in the brain and spinal cord, which is the most common subtype of
motor neuron disease (MND). Worldwide, ALS is a severe public health problem with an
incidence of 1.75–4.42 in 100,000 and the median survival time is only 2–4 years (Chiò et al.,
2014; De Marchi et al., 2019; Xu et al., 2020). About 10% of the ALS cases are classified as familial

Edited by:
Nguyen Quoc Khanh Le,

Taipei Medical University, Taiwan

Reviewed by:
Zhangyu Zou,

Fujian Medical University Union
Hospital, China

Liu Yueying,
Affiliated Hospital of Jiangnan

University, China

*Correspondence:
Qi Niu

md_new@sina.com
Zheng Wang

wangzheng6611@sina.com

†These authors have contributed
equally to this work and share first

authorship

Specialty section:
This article was submitted to

Computational Genomics,
a section of the journal
Frontiers in Genetics

Received: 14 April 2022
Accepted: 30 May 2022
Published: 08 July 2022

Citation:
Zhang Q, Zhao H, Luo M, Cheng X,
Li Y, Li Q, Wang Z and Niu Q (2022)
The Classification and Prediction of

Ferroptosis-Related Genes in ALS: A
Pilot Study.

Front. Genet. 13:919188.
doi: 10.3389/fgene.2022.919188

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 9191881

ORIGINAL RESEARCH
published: 08 July 2022

doi: 10.3389/fgene.2022.919188

http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.919188&domain=pdf&date_stamp=2022-07-08
https://www.frontiersin.org/articles/10.3389/fgene.2022.919188/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.919188/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.919188/full
http://creativecommons.org/licenses/by/4.0/
mailto:md_new@sina.com
mailto:wangzheng6611@sina.com
https://doi.org/10.3389/fgene.2022.919188
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.919188


ALS (fALS) caused by genetic mutations and the remaining
90% of cases are termed sporadic ALS (sALS) (Ajroud-Driss
and Siddique, 2015). Riluzole and edaravone are the two
approved treatments for ALS; however, they only have a
mild effect (Bordoni et al., 2020). Despite a lot of
pathologic mechanisms having been proposed, the etiology
of sALS is still unknown; moreover, most sALS cases are
diagnosed by clinical symptoms and signs without definitive
diagnostic tests, which significantly hampers the development
of potentially effective drugs.

In 2012, a novel form of cell death was discovered, which is
different from typical programmed cell death processes
(necrosis, autophagic, and apoptosis), characterized by
excessive iron-dependent lipid peroxidation and named
ferroptosis (Dixon et al., 2012). Ferroptosis is closely
associated with the iron metabolism and has been reported
to be related to several diseases, such as cancer (Yu et al., 2017),
stroke (Alim et al., 2019), myocardial infarction (Park et al.,
2019), and a variety of neurodegenerative diseases, such as
Alzheimer’s disease (AD) (Stockwell et al., 2017), Parkinson’s
disease (PD) (Do et al., 2016; Masaldan et al., 2019), and ALS
(Wang et al., 2021). In induced pluripotent stem cells induced
by patients with sporadic ALS, lipid peroxidation and
ferroptosis played important roles in motor neuron cell
death (Fujimori et al., 2018). In the transgenic mouse model
of ALS, using iron chelators could significantly reduce the iron
level and increase the mean life span (Moreau et al., 2018;
Wang et al., 2011). The specific pathogenesis of ferroptosis in
ALS remains unclear. Previous neuroimaging studies have
found the deposition of iron in the involved brain and
spinal regions in ALS (Andersen et al., 2014). Human
postmortem research demonstrates that ferroptosis, but not
necroptosis, could be more important in the mediation of
motor neuron death (Wang et al., 2021). In addition, as a key
antioxidant enzyme in suppressing ferroptosis, the glutathione
peroxidase 4 (GPX4) expression level is significantly reduced
in both fALS and sALS (Wang et al., 2021). In the transgenic
mouse model of ALS (SOD1G93A, TDP-43, and C9orf72),
conditional ablation of GPX4 leads to obvious degeneration
of motor neurons and significantly shortens the survival time.
Contrastingly, the overexpression of GPX4 exhibits delayed
disease onset and improved motor function (Chen et al., 2015,
2021; Evans et al., 2022; Wang et al., 2021). Prior research has
confirmed that the mechanism of ferroptosis is very complex
and can be modulated by numerous genes (Zhou and Bao,
2020). However, whether these ferroptosis-related genes
(FRGs) have a potential prognostic and predictive role in
ALS remains largely unknown.

Here, publicly available mRNA expression data of ALS
postmortem human specimens were first used to perform the
cluster and differential expression analysis to identify the FRG
target genes, which were then utilized to construct a predictive
multigene signature and validated in the whole blood chip-seq
data of ALS. Finally, we explored the survival of the FRG target
genes in the blood data to evaluate the prognostic gene signature
for ALS.

MATERIALS AND METHODS

Data Source
The two datasets in this study were collected from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo/) (GSE153960 and GSE112680). The GSE153960
dataset contains mRNA expression data across the brain and
spinal cord of postmortem human specimens from 1,838
samples in the New York Genome Center (NYGC) ALS
Consortium, including non-neurological control, ALS
spectrum, familial ALS, and other neurological disorders or
motor neuron disease. Depending on the platform, the
GSE153960 dataset consisted of two different parts: one was
based on the GPL24676 and was selected as the primary dataset
and the other one was based on the GPL16791 and was referred
to as the secondary dataset. We chose the non-neurological
controls and ALS patients in our analysis, which included 521
ALS patients and 190 non-neurological controls and 442 ALS
patients and 90 non-neurological controls in the primary and
secondary datasets, respectively. Finally, the GSE112680 dataset
was used to search for prognostic and predictive novel
biomarkers of ALS, which included 376 whole-blood samples
of ChIP–chip data (control, ALS, and ALS-mimic) (Van
Rheenen et al., 2018). After the removal of ALS-mimic, we
obtained 164 ALS patients and 137 controls in the blood dataset
(Figure 1).

Data Processing
All data were processed and analyzed using R (version 4.1.0). For
the GSE153960 dataset, the DESeq2 package (version 1.32.0) was
used to normalize raw counts by the variance stabilizing
transformation (vst) function and shrink the log2FoldChanges
by the lfcShrink function (Love et al., 2014). A total of 348
Ferroptosis-related genes (FRGs) that drive, suppress or mark
ferroptosis were downloaded from public FerrDb database after
removing the duplicates (Zhou and Bao, 2020) (Supplementary
Table S1). For the GSE112680 dataset, the normalization and log-
transformed was performed by the limma package (version
3.48.3).

Gene Set Enrichment Analysis (GSEA)
The GSEA analysis was processed by the gseKEGG function in
the R package clusterProfiler (version 4.0.5) (nPerm = 10,00,
minGSSize = 20, p = 0.05). The GSEA plots were generated by the
R package enrichplot (Version 1.12.2) and ggpolt2 (version 3.3.5).

Weighted Gene Correlation Network
Analysis
Using the R WGCNA package (version 1.70-3; https://cran.r-
project.org/package=WGCNA), we performed WGCNA analysis
of the FRGs extracted from the primary dataset (Langfelder and
Horvath, 2008). All processed expressions of data were computed
to construct a similarity matrix by using Pearson’s correlation
analysis. Subsequently, the integrated pickSoftThreshold function
was used to calculate a suitable power of β to achieve a scale-free
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co-expression network. The minimum size of 30 was set to obtain
co-expression modules in which the similar expression patterns
of FRGs were clustered into different color modules. Finally, the
ALS-related modules of FRGs were identified by Pearson’s
correlation analysis of the calculation of phenotype and each
module (Pei et al., 2020).

Gene Function Annotation and Pathway
Analysis
The genes of all the identified WGCNA ALS-related FRGs
modules were performed to the Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analyses using the clusterProfiler R package
(version 4.0.5) (Yu et al., 2012). For statistically significant
differences, the cutoff was set to a false discovery rate (FDR)

p < 0.05. In addition, the top 10 KEGG pathways were shown
as bubble charts, while using the bar chart to display the top
eight GO terms of biological process (BP), cellular component
(CC), and molecular function (MF).

Identification of Ferroptosis-Related Gene
Target Genes
The DESeq2 R package was used for differential gene
screening of FRGs that were extracted from the primary
dataset. Considering the log2FoldChanges was shrank in
the processing, we set the | log2 (fold change)| > 0.5 and
adjusted p < 0.05 as the cut-off criteria (Gormally et al., 2014).
The obtained FRG differential genes and the identified
WGCNA ALS-related FRGs were crossed to obtain the
overlapped genes, which were selected as the FRG target

FIGURE 1 |Workflow of this study. Abbreviations: ALS, amyotrophic lateral sclerosis; GSEA, gene set enrichment analysis; KEGG, Kyoto encyclopedia of genes
and genomes; GO, gene ontology; LASSO, least absolute shrinkage and selection operator; SVM, support vector machine; ROC, receiver operating characteristic.
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genes. Meanwhile, the expression correlation analysis of the
overlapped genes was performed by the Pearson correlation
coefficients.

Construction of Least Absolute Shrinkage
Selection Operator and Support Vector
Machine
Using the R package glmnet (version 4.1-2) and e1071
(version 1.7–9), we constructed the LASSO (primary
dataset; blood dataset) and SVM (blood dataset) models
with the FRG target genes, respectively. The LASSO is a
method of compression estimate with 5-fold cross-
validation (family = binomial, measure type = deviance,
lambda = the minimum value), which is used to simplify
the model and to prevent overfitting. The ferroptosis-related
score of the LASSO model was computed with the equation
ferroptosis-related score = Σ expgenei* βi, where expgenei is
the relative gene expression in the signature for patient i, and
βi is the LASSO regression coefficient of gene i. SVM is a
discriminative algorithm which has shown promising and
better classification performance compared with other
methods (Scholkopf et al., 1997). We selected the Radial
Basis Function (RBF kernel) as the kernel function and
performed 5-fold cross-validation to construct and validate
the SVM model (type = eps-regression, the other parameters
set by default). Moreover, the primary dataset and blood
dataset were divided into the training (70%) and test (30%)
sets that represented the training and internal validation
cohort, respectively. Finally, the receiver operating
characteristic (ROC) curve analyses were used to display
the predicted efficacy of the occurrence of ALS in the
LASSO model (training and validation cohort, respectively)
and the SVM model (confusion matrices of training and
validation) with the pROC package (version 1.18.0) (Robin
et al., 2011). The overall accuracy of the model was evaluated
using the area under the curve (AUC) (area under the ROC
Curve) and a value of over 70% was considered acceptable
(Rice and Harris, 2005).

Survival Analysis
We performed the Kaplan–Meier survival analysis (log-rank) of
the clinical characteristics (gender, onset age, and site) and the
FRG target genes in the blood dataset using the R survival
(version 3.2–11) and survminer packages (version 0.4.9). To
detect the effect of onset age, age stratification was performed
by 55 and 65 years, respectively. For the FRG target genes, we set
the median value of expression levels as a cut-off score that over
the median were classified as high expression and the others as
low expression. p-values of less than 0.05 were deemed indicative
of survival differences.

RESULT

GSEA
Figure 1 shows the whole flow diagram of this study, and
Figure 2 is the result of GSEA using the KEGG pathway gene
sets in the primary dataset. GSEA is a threshold-free approach
that can identify significantly differentially expressed gene sets
without being affected by the internal correlation difference
(Subramanian et al., 2007). A total of 126 enriched pathways
were upregulated and three were downregulated by GSEA
(Supplementary Table S2). Figure 2A lists the top 10
enriched activated pathways and three suppressed pathways,
including protein export, ferroptosis, tryptophan metabolism,
notch signaling pathway, olfactory transduction, and
glutamatergic synapse. Of these, the ferroptosis pathway was
significantly enriched (adjusted p = 0.0116) (Figure 2B), and
in which the 26 gene expression levels show striking differences
between the control and ALS group in the primary datasets using
Student’s t test (p < 0.05) (Supplementary Figure S1).

WGCNA
We constructed a gene co-expression network with the
expression profiles of FRGs in the primary dataset
(Figure 3) and calculated a suitable β to build a scale-free
network (β = 1, scale-free R2 > 0.85) (Guo et al., 2021). A total
of 4 modules were identified and labeled with different colors

FIGURE 2 | Results of GSEA (KEGG pathways). (A) Distribution of gene ratio for the top 10 signaling pathways. (B) Enrichment plot of the ferroptosis pathway.
Abbreviations: GSEA, gene set enrichment analysis; KEGG, Kyoto encyclopedia of genes and genomes.
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(Figure 3A), in which the blue (cor = 0.41, p = 6e-30) and
brown modules (cor = 0.33, p = 3e-19) were positively
correlated with ALS (Figure 3B). Next, the correlation of

each gene with phenotype was analyzed, and the two
modules represented a significant association between gene-
trait significance and module membership (blue: cor = 0.53,

FIGURE 3 | Visualization of WGCNA results. (A) WGCNA cluster dendrogram groups genes into distinct four modules. (B) Correlation between each module’s
eigengene and phenotype. Two modules were positively correlated with ALS, namely, the brown and blue modules. All modules are marked with different colors. (C)
Scatter plot of module eigengenes in the brown and blue modules that significantly correlated with ALS (p < 0.05). (D) Heatmap profiling of the genes of brown and blue
modules derived from WGCNA. Abbreviations: WGCNA, weighted gene correlation network analysis; ALS, amyotrophic lateral sclerosis.
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p = 1.1e-07; brown: cor = 0.4, p = 0.00096) (Figure 3C).
Figure 3D shows the heatmap of the correlations between
genes and clinical phenotypes in the two modules.

Gene Ontology and Kyoto Encyclopedia of
Genes and Genomes Pathway Analyses
A total of 153 genes were obtained from the WGCNA identified
blue and brown modules that were used to perform GO and
KEGG pathway analyses (Figure 4). There were several biological
processes that were enriched, including cellular response to
chemical or oxidative stress, and external or extracellular
stimulus. In the enrichment of molecular function, the activity
of protein serine/threonine kinase, protein serine kinase, and
ubiquitin−like protein ligase or phosphoprotein binding was
obviously involved. In the cellular component category,
peroxisome, mitochondrial outer membrane, organelle outer
membrane, and outer membrane were the main enriched
terms (Figure 4A). (Supplementary Table S3). Figure 4B
showed the top 10 results of the KEGG pathway enrichment
analysis, which mainly involved autophagy, FoxO signaling,
mTOR signaling pathway, and ferroptosis (Supplementary
Table S4).

Ferroptosis-Related Genes Target Genes
A total of 35 differentially expressed genes (DEGs) between ALS
and control group were obtained from the FRGs that extracted
from processed primary dataset using the cut-off criteria of | log2
(fold change)| > 0.5 and adjusted p < 0.05 (Figure 5A, Figure 5B).
Then, intersecting the 35 DEGs-FRGs and the 153 WGCNA
identified ALS-related FRGs resulted in 22 FRG target genes
(Figure 5C). Moreover, we performed Pearson correlation
coefficient analysis to calculate the correlations among the
overlapped 22 FRG expression levels (Figure 5D), and the

result showed that all 22 genes were correlated with each
other. Among them, CYBB and TMBIM4 (correlation = 0.83),
TMBIM4 and LAMP2 (correlation = 0.85), LAMP2 and PSAT1
(correlation = 0.81), GABARAPL2 and CHMP5
(correlation = 0.87) were the four pairs of genes that showed
the most positive correlation. However, TGFBR1 and ULK1
(correlation = -0.80), TMBIM4 and ULK1 (correlation = -
0.84), GABARAPL2 and MLLT1 (correlation = -0.80),
CHMP5 and PROM2 (correlation = -0.82), were the four pairs
of most negatively correlated genes.

Construction of the Least Absolute
Shrinkage and Selection Operator Model in
the Autopsy Data
The LASSO analysis was employed to further screen core genes
of the overlapped 22 FRGs and construct the prediction model
in the primary dataset (Figure 6A). In our study, there were 21
genes with non-zero coefficients that were selected in the
model: NR4A1 expression p0.05013 + CYBB expression
p0.06870 + DRD4 expression p(-0.18833) + SETD1B
expression p 1.04753562 + LAMP2 expression p0.56448 +
ACSL4 expression p(−1.03872649) + MYB expression
p0.66426 + PROM2 expression p0.63262 + CHMP5
expression p(−1.05494) + ULK1 expression p(−1.84926) +
AKR1C2 expression p(−0.88291) + TGFBR1 expression
p(−0.98841) + TMBIM4 expression p1.13877 + MLLT1
expression p1.13996 + PSAT1 expression p(−1.45143) +
HIF1A expression p0.12640 + LINC00336 expression
p0.89801 + AMN expression p(−0.02644) + SLC38A1
expression p(−0.23000) + CISD1 expression p0.73836 +
GABARAPL2 expression p0.63893. Next, ROC curves were
used to measure the accuracy of the predictive model in the
primary dataset (train and test) and also used for external

FIGURE 4 | GO and KEGG analysis for the whole ALS- related genes of brown and blue modules derived from WGCNA. (A) GO pathway analysis, including BP,
CC, andMF. (B) Top 10 results of KEGG pathway enrichment analysis. The color represents the adjusted p value, and the size of the dots and bar represents the number
of the genes. Abbreviations: GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; WGCNA, weighted gene correlation network analysis; BP,
biological process; CC, cellular component; MF, molecular function.
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validation in the secondary dataset (Figure 6B). The AUC was
0.8884 (training set, red line, sensitivity = 0.875, specificity =
0.735), 0.8718 (test set, green line, sensitivity = 0.815,
specificity = 0.774), and 0.719 (secondary dataset, blue line,
sensitivity = 0.600, specificity = 0.724), respectively. This
suggests that these 21 gene signatures could be used as a
diagnostic biomarker for ALS.

Analysis of Diagnostic Performance and
Kaplan-Meier in the Blood Data
To further explore the diagnostic performance of the FRGs target
genes in the whole blood, we adopted two approaches to
construct the predictive models (Figure 7). A total of 18 FRG

target genes were involved in the two models because of 4 genes
undetected in the blood data (CYBB, LAMP2, ACSL4, and
AMN). In the LASSO model, the AUC was 0.8227 in the
training set (red line, sensitivity = 0.784, specificity = 0.798)
and 0.7567 in the test set (green line, sensitivity = 0.725,
specificity = 0.711) (Figure 7A and Figure 7B), which
contained 16 genes with non-zero coefficients: NR4A1
expression p1.32357 + DRD4 expression p(−0.20650) +
SETD1B expression p 7.15886 + MYB expression p3.31530 +
PROM2 expression p(−3.17261) + CHMP5 expression
p(−1.39924) + ULK1 expression p(−2.17756) + AKR1C2
expression p2.83465 + TGFBR1 expression p(−0.91465) +
TMBIM4 expression p(−0.56885) + MLLT1 expression
p(−1.80802) + HIF1A expression p(−1.43793) + LINC00336

FIGURE 5 | Overlapping differentially expressed FRGs and ALS-related FRGs derived from WGCNA. (A) and (B) represent the volcano plot and heat map of
differential FRG expression analysis. (C) Twenty-two overlapping genes were identified between differentially expressed FRGs and ALS-related FRGs derived from
WGCNA. (D) Heatmap of Pearson’s correlation across 22 overlapping genes. Abbreviations: ALS, amyotrophic lateral sclerosis; WGCNA, weighted gene correlation
network analysis; FRGs, ferroptosis-related genes.
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expression p(−1.68296) + IL33 expression p1.82787 + SLC38A1
expression p(−0.19496) + CISD1 expression p0.55844. Moreover,
the ROC curves of the SVM model displayed the results for the
confusion matrices of training and validation using the 18 FRGs
(blue line, AUC = 0.768, sensitivity = 0.707, and specificity =
0.780). These results implied that the FRG target gene signatures
in blood also had the diagnostic potential for ALS.

Finally, Kaplan-Meier analyses were performed to evaluate the
survival for ALS of the FRG target genes and clinical characteristics in
blood data. In our study, gender, onset site (bulbar or spinal), and
onset age didn’t show an influence on survival (Supplementary
Figure S2). Figure 8 displayed the result of the FRG target gene
survival analyses, which showed that the higher expression of CHMP5
(p=0.011) and SLC38A1 (p=0.033)were significantly correlatedwith
worse survival outcome.

DISCUSSION

ALS is now widely considered as a multifactorial and highly
heterogeneous disease. The lack of understanding of the
pathogenesis of ALS and specific biomarkers has seriously
hampered the development of clinically effective drugs. In our
study, we systematically investigated the expression and
constructed predictive models with the FRG target genes in
the autopsy (22 genes) and blood samples (18 genes) of ALS,
which showed strong predictive ability and successfully passed
verification. Moreover, functional analyses showed that
autophagy, mTOR signaling, and ferroptosis pathways were
enriched. Finally, we found that the high expression of
CHMP5 and SLC38A1 was closely related to the ALS patient’s
prognosis, which showed a shorter lifespan.

FIGURE 6 | Construction and validation of the LASSO model in the primary data. (A) Construction of the LASSO model by the overlapped 22 genes. The ROC
curve in the primary dataset of training data (red lines, N = 498, AUC = 0.8884), testing data (green lines, N = 213, AUC = 0.8718) (B), and in the secondary dataset (blue
lines, N = 532, AUC = 0.719) (C) Red line represents training data, the green line represents test data, and the blue line represents the secondary dataset. Abbreviations:
LASSO, least absolute shrinkage and selection operator; ROC, receiver of characteristic curve; AUC, area under curve.
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FIGURE 7 | Construction of the LASSO and SVM model in the whole blood data. (A) Construction of the LASSO model. (B) ROC curve in the blood dataset of
training data (red lines, N = 216, AUC = 0.8227), testing data (green lines, N = 85, AUC = 0.7567) and in the SVMmodel (blue lines, N = 301, AUC = 0.753) (C) Red and
green lines represent the ROC of training and test data in the LASSO model, respectively, where the blue line represents the ROC in the SVM model. Abbreviations:
LASSO, least absolute shrinkage and selection operator; ROC, receiver of characteristic curve; AUC, area under curve; SVM, support vector machine.

FIGURE 8 | Kaplan–Meier survival curve of the 18 overlapping FRGs in blood data. CHMP5 and SLC38A1 revealed significant survival differences (p < 0.05).
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GSEA has been widely used to perform gene set enrichment
testing, which is based on enriched molecular signatures instead
of differential gene expression (Subramanian et al., 2005). In the
top 10 pathways that were enriched using KEGG pathway gene
sets, the activated ferroptosis pathway displayed a higher
enrichment score and the expression of 26 ferroptosis genes
showed obvious group differences, which supported the
hypothesis of ferroptosis being involved in the pathogenesis of
ALS (Wang et al., 2021). In physiological situations, iron is
essential for life activities and is involved in lots of neuronal
functions. Previous research has reported iron metabolism
deregulation in ALS patients and mouse models (Ignjatović
et al., 2013; Jeong et al., 2009; Wang et al., 2020). In clinical
studies, increased iron content (serum ferritin) is associated with
a faster deterioration and shorter survival time in ALS (Nadjar
et al., 2012; Paydarnia et al., 2021; Sun et al., 2019; Yu et al., 2018),
while in the transgenic mouse model of ALS, using iron chelators
could significantly reduce the iron level and increase the mean life
span (Wang et al., 2011; Moreau et al., 2018). Moreover, the
overexpression of GPX4 (a critical enzyme in suppressing
ferroptosis) could improve both motor function and the
prognosis of ALS mice, which provides a potential therapeutic
target for ALS.

Using WGCNA, we identified 153 FRGs that were positively
correlatedwithALS from twomodules, whichwere then subjected to
the KEGG and GO analyses. The GO analysis displayed that
biological processes of oxidative stress were the most involved,
which was in accordance with the definition of ferroptosis. As
reported in previous studies, iron could pass through the blood-
brain barrier to enter the brain by transferrin-mediated iron
transcytosis (Ke and Qian, 2007; Song et al., 2018), which leads
to iron overload that induces oxidative stress and neuronal death
(Jellinger, 1999). In addition, as a classical antioxidant, edaravone
could effectively attenuate oxidative stress (Shimazaki et al., 2010)
and prevent ferroptosis in ALS (Homma et al., 2019). Concerning
molecular function, serine/threonine kinases were the most
implicated in the ALS-associated FRGs. It is well known that,
more than 25% of human protein kinases belong to serine/
threonine protein kinases and are involved in regulating
numerous signaling transduction cascades (Rask-Andersen et al.,
2014), including the Mitogen-activated protein kinase (MAPK)
family, Akt kinase (protein kinase B), Mammalian target of
rapamycin (mTOR), and so on, which are reported to be
strongly linked with the development of ALS (Halon-Golabek
et al., 2019; Sama et al., 2017; Saxena et al., 2013). Notably, in
the KEGG pathway analysis, we found the autophagy, ferroptosis,
FoxO, and mTOR signaling pathways were activated. Numerous
studies have reported the compromised autophagy in ALS (Chua
et al., 2021; Evans andHolzbaur, 2019), which is negatively regulated
by the mTOR pathway and induced by Foxo (Juhász et al., 2007;
Yuan et al., 2015). Currently, the crosstalk between autophagy and
ferroptosis is not well understood. Recent research concluded that
autophagy could promote ferroptosis by degrading ferritin (Hou
et al., 2016), and ferroptosis may be an autophagic cell death process
(Gao et al., 2016). Together, there is a close association between
autophagy and ferroptosis. Further exploration of the mechanism of
the crosstalk is important for finding new therapeutic targets.

Considering the tissue-specificity, spatial-specificity and
temporal-specificity of gene expression, we constructed different
models in the autopsy and blood samples, respectively. 21 FRGs
(NR4A1, CYBB, DRD4, SETD1B, LAMP2, ACSL4,MYB, PROM2,
CHMP5, ULK1, AKR1C2, TGFBR1, TMBIM4, MLLT1, PSAT1,
HIF1A, LINC00336, AMN, SLC38A1, CISD1, and GABARAPL2)
in the primary data and 16 FRGs in the blood data (NR4A1, DRD4,
SETD1B, MYB, PROM2, CHMP5, ULK1, AKR1C2, TGFBR1,
TMBIM4, MLLT1, HIF1A, LINC00336, IL33, SLC38A1, and
CISD1) were identified as target genes by using LASSO analysis,
which signature showed better prediction ability in distinguishing
ALS from controls. CYBB (also called NOX2), catalyzes the
formation of ROS and was thought to be a new drug target and
biomarker in neurodegenerative diseases (Sorce et al., 2017). In
ALS patients, people with low NOX2 activity live longer (1-year
increase in survival) (Sorce et al., 2017). In the ALS SOD1
transgenic mouse, the inactivation of NOX2 delays
neurodegeneration and extends survival (Sorce et al., 2017).
ULK1 is an autophagy inducing kinase that is reported to be
more hyperactive in ALSmouse and could be regulated by C9orf72
(one of the well-known genetic causes of ALS) (Bandyopadhyay
et al., 2014; Webster et al., 2016). HIF1A is a key transcription
factor in maintaining oxygen homeostasis and is involved in the
motor neuron degeneration of ALS (Nomura et al., 2019). Moreau
et al. (Moreau et al., 2011) reported that the HIF-1 pathway of
sporadic ALS patients showed significant abnormalities during
hypoxia and could be a novel target for ALS therapy. In a recent
study, the investigators found the loss of TGFBR1 in SOD1 mice,
which suppressed the phagocytosis of microglia (Butovsky et al.,
2015). LAMP2, a heavily glycosylated protein, correlated closely
with inflammatory and lysosomal accumulation in the central
nervous system (Rothaug et al., 2015). Chen et al. (Cheng et al.,
2018) found that progressive lysosomal deficits existed in the
familial amyotrophic lateral sclerosis-linked SOD1G93A mouse.
However, they didn’t find evidence to support the LAMP1/2 as
the specific markers to assess lysosome distribution in
neurodegenerative diseases, which requires additional studies to
confirm in the future. Notably, although these genes have not been
demonstrated to be directly associated with ALS in previous
studies, NR4A1 (Zhao et al., 2018) and DRD4 (Lin et al., 2012)
are reported in AD, ACSL4 seems to be a biomarker of ferroptosis
(Yuan et al., 2016), and SETD1B is associated with syndromic
neurodevelopmental disorder (Weerts et al., 2021). Moreover,
using KM analysis, we didn’t find the survival differences in the
age of onset, gender, and onset site, which might be due to the
method of selected stratification approach and the inclusion of
more long-surviving patients (Chiò et al., 2009; Magnus et al.,
2002). Importantly, we found that the higher the expression level of
CHMP5 and SLC38A1, the worse the prognosis. CHMP5 has not
been reported in previous ALS related research, and SLC38A1 is a
main transporter of glutamine and has been reported as a positive
regulator of mTOR complex 1 (mTORC1), which is closely
connected with autophagy and plays an essential role in many
neurodegenerative diseases (Lipton and Sahin, 2014; Yamada et al.,
2019). Overall, these results might offer a new point in the
exploration of molecular mechanisms and the seeking of
prognostic biomarkers of ALS.
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There were also some limitations to be mentioned. First,
because of the four genes undetected in the whole-blood
samples of ChIP–chip data, we only used 18 FRGs to perform
LASSO analysis, which may miss some important contributions
to the blood model construction. Second, there were no external
validation blood datasets in this study; however, we used two
different methods that had 5-fold cross-validation and both
showed good predictive ability for ALS. Third, the ALS gene
signature analysis was based on public data, the findings here
need future experimental and clinical validation.

CONCLUSION

The results of this study prove that ferroptosis-related genes are
closely related to ALS. The identified 21 FRGs and 16 FRGs can
differentiate ALS patients from controls in autopsy and blood
samples, respectively, which are potential biomarkers for disease
diagnosis. Finally, higher expression of CHMP5 and SLC38A1 is
related to shorter survival, which may be potential biomarkers for
the prognosis of ALS.
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