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Linear mixed models have become a popular tool to analyze continuous data from
family-based designs by using random effects that model the correlation of subjects from
the same family. However, mixed models for family data are challenging to implement
with the BUGS (Bayesian inference Using Gibbs Sampling) software because of the
high-dimensional covariance matrix of the random effects. This paper describes an efficient
parameterization that utilizes the singular value decomposition of the covariance matrix
of random effects, includes the BUGS code for such implementation, and extends the
parameterization to generalized linear mixed models. The implementation is evaluated
using simulated data and an example from a large family-based study is presented with a
comparison to other existing methods.
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1. INTRODUCTION
Many observational studies are designed using some form of clus-
tered sampling that introduces correlation between observations
within the same cluster. A popular study design that produces cor-
related observations is the family-based study (Ott et al., 2011),
in which families (or clusters) may be selected because family
members are enriched of some particular trait of interest. In this
design, multiple relatives within the same family are enrolled in
the study, and subjects from the same family cannot be assumed
independent because they share some genetic background and
may have more similar phenotypes than members from different
families. In this context, standard statistical methods that assume
independent and identically distributed observations are not appro-
priate because ignoring the correlation between observations may
impact the false positive rates of statistical methods (Cannon
et al., 2001).

When the trait of interest is continuous, a linear mixed-effects
model can be used to account for the family structure by using
random effects with a variance-covariance matrix that describes
the within and between family covariances. However, the imple-
mentation of such models in the BUGS software (Lunn et al.,
2000) becomes challenging due to the high dimensionality of the
random effects vector, which is as large as the sample size in the
study. The fact that the high-dimensional covariance matrix can
only be updated as a composite whole in BUGS (Burton et al.,
1999) increases the computational burden of the Markov Chain
Monte Carlo (MCMC) estimation and often results in a fail-
ure to compile the model. To tackle this implementation issue,
Waldmann (2009) have proposed an approach based on a decom-
position of the multivariate normal distribution of the random
effects into univariate normal distributions using conditional

distributions (Hallander et al., 2010). Our experience with this
approach is that it fails to produce accurate results with large
multigenerational families.

This paper describes an alternative parameterization that uses
the singular value decomposition of the large covariance matrix
of the random effects to fit a mixed model with independent
random effects and avoids the use of large variance matrices.
This approach is not novel and, for example, it was used in fac-
tored spectrally transformed linear mixed models (FaST-LMM)
(Lippert et al., 2011) for fast computations with family data. The
novelty of our contribution is to use this approach for an efficient
implementation in the BUGS software and to extend it to general-
ized linear models. The BUGS code is also provided and a specific
example as well as results from simulation studies are presented
with some discussion.

2. PROPOSED PARAMETERIZATION
A common parameterization of linear mixed models for corre-
lated family data is:

y|β, σ 2
g , σ 2

e = Xβ + ρ + ε, (1)

where y is the phenotype vector of size n × 1, X is the n × (p + 1)
design matrix that contains values of measured covariates, β is the
fixed effect vector of size p × 1, ρ is the random effect vector of
size n × 1, which accounts for the additive polygenic effect, and ε

is a vector of random errors of size n × 1. The vectors ρ and ε are
marginally independent and follow distributions:

ρ ∼ N(0, σ 2
g A)

ε ∼ N(0, σ 2
e In),
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where A represents the known additive genetic relationship
matrix (see Figure 1), σ 2

g is the genetic variance, and σ 2
e is

the error variance (Eu-ahsunthornwattana et al., 2014). Under
this parameterization the variance-covariance matrix of the
observation y is the matrix:

Var(y|β, σ 2
g , σ 2

e ) = σ 2
g A + σ 2

e In. (2)

One can estimate the narrow-sense heritability of a trait as a ratio
of the genetic variance σ 2

g to the total phenotypic variance σ 2
g +

σ 2
e , such that h2 = σ 2

g

σ 2
g + σ 2

e
.

In a recent review article, Muller et al. (2013) described the fol-
lowing parameterization for general linear mixed-effects models:

y|β, σ 2
g , σ 2

e = Xβ + Gu + ε (3)

where u ∼ N(0, σ 2
g Is), e ∼ N(0, σ 2

e In), and G is a matrix of
known coefficients. The advantage of the parameterization in
Equation (3) is that the random effects ui, i = 1, . . . , n are
marginally independent rather than being correlated as in the
initial parameterization.

The two parameterizations are equivalent once the matrix G
is derived from the singular value decompostion of the matrix

FIGURE 1 | An example pedigree and corresponding additive genetic

relationship matrix. (A) The pedigree on the top panel displays the
relations among family members. (B) The additive genetic relationship
matrix is the kinship matrix multiplied by 2; the kinship matrix contains
kinship coefficients between any pair of family members and these
coefficients represent the probability that two individuals share the same
gene allele by identity by descent. The covariance between two family
members i and j with kinship coefficient kij is 2kijσ

2
g where σ 2

g represents
the genetic variance.

A. Specifically, by setting A = US1/2S1/2UT and letting G =
US1/2, the variance-covariance matrix of y from the model in
Equation (3) is

Var(y|β, u, e) = σ 2
g GGT + σ 2

e In = σ 2
g US1/2S1/2UT + σ 2

e In

= σ 2
g A + σ 2

e In (4)

Note that the matrix US1/2 needs to be computed only once. We
provide an example R script that computes US1/2 given a family-
based data set in the Supplementary Material.

The parameterization can be extended to generalized linear
mixed models. In a generalized linear mixed model (GLMM), the
formulation becomes:

y|β, φ, σ 2
g ∼ D ∈ exponential family

E(y|β, φ, σ 2
g ) = g(η)

η = Xβ + ρ,

where φ is the dispersion parameter of the distribution belong-
ing to the exponential family and g( · ) is the link function.
The parameterization of the random effects applies as before
and the linear predictors include the random effects in addition
to the fixed effects. The difference here is the assumption that
the observations are independent, conditionally on the random
effects.

3. A REAL DATA EXAMPLE
As an example to illustrate the implementation in OpenBUGS,
we consider the task of estimating the heritability of transfer-
rin receptor levels from a large family-based study. The data are
from the Long Life Family Study (LLFS) that between 2006 and
2009 enrolled approximately 5000 individuals from 583 families
demonstrating clustering for longevity and healthy aging in the
United States and Denmark (Sebastiani et al., 2009; Newman
et al., 2011). A typical family of the LLFS includes a proband,
the proband’s siblings, their spouses, offspring of probands and
siblings, and their spouses. The family size varies between 3 indi-
viduals to 77 individuals. In this example, transferrin receptor
levels were adjusted for age at enrollment in the study and insulin
levels. The kinship matrix A was calculated with the R package
kinship2 (Therneau et al., 2012) and the R code to generate the
matrix G is provided in Supplementary Material.

The entire BUGS code is shown with some comments below.
There are a few points that are noteworthy. First, the matrix G,
which is computed within R, is part of the BUGS data input. The
calculation of the matrix G is required only once. Second, the vari-
able offset is used to indicate the individuals who belong to each
specific family. For example, in the code below, we use the index i
to represents families and the index j to represent individuals. The
first few values of the variable offset in this particular example are
c(1, 8, 16, . . . ). When i = 1 (the first family), j will span from 1
to 7, indicating that individuals 1 through 7 belong to family 1.
When i = 2 (the second family), j will span from 8 to 15, indi-
cating that individuals 8 through 15 belong to family 2. Then,
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based on the values of j and offset, the inner product between an
appropriate row of the matrix G and vector u is computed.

A total of 11,000 iterations with the first 1000 as a burn-in was
sufficient to reach the convergence of the estimates. On average,
each iteration took 0.0892 s on an Intel(R) Core i5 processor
(2.53 GHz) with 4 GB of RAM. The data were also analyzed using
the method proposed in Hallander et al. (2010) and by fitting
classical linear mixed models with the function lmekin() in coxme
(Therneau, 2009) package in R.

The BUGS code
model svd {

## loop over families
for( i in 1:n.fam) {

## loop over individuals within each
family

for(j in offset[i]:(offset[i+1]
- 1) ){
y[j] ~ dnorm( mu[j], tau.e)

mu[j] <- b0 + b.age*age[j] +
b.insulin*insulin[j] +
## X *%* Beta
inprod(G[j,offset[i]:(offset[i+1]-1)
], u[offset[i]:(offset[i+1]-1))
## G *%* u

}
}

## Model random effects as univariate normal
for( t in 1:N) { u[t] ~ dnorm( 0, tau.g) }

## priors for fixed effects
b0 ~ dnorm(0,0.001)
b.age ~ dnorm(0,0.001)
b.insulin ~ dnorm(0,0.001)

## varance components
tau.e ~ dgamma(1, 1)
tau.g ~ dgamma(1 , 1)
sigma.g2 <- 1/tau.g
sigma.e2 <- 1/tau.e
## narrow-sense heritability
herit <- (1/tau.g)/( 1/tau.g+1/tau.e)
}

Table 1 compares the point estimates and standard errors (SE)
of regression parameters, the variance parameters, and the heri-
tability estimates from the linear mixed models computed using
the lmekin() function in R, the proposed method (SVD Model),
and the method in Hallander et al. (2010) (conditional Model).
Figure 2 displays the posterior distribution of heritability, resid-
ual variance, and genetic variance. The point estimates and SE
from the R ouput and SVD model are nearly identical. The her-
itability estimates in the two methods are 0.3677 and 0.3677,
respectively, with a difference of only 0.0031. However, compared
to these two methods, the conditional model produces discrepant
results; the residual variance is over-estimated and the genetic

variance is under-estimated, which leads to inconsistent estimate
of the heritability and the 95% credible intervals of the two
Bayesian methods do not overlap. Inconsistent results between
the SVD model and conditional model are surprising since, in
theory, both approaches rely on decomposition methods that
should lead to exactly the same covariance matrix. To further
investigate this discrepancy, simulations of several scenarios of
extended pedigree data structures were performed (see the next
section for details on simulations). However, we were not able
to pinpoint the reason for the apparent discrepancy. The advan-
tage of the Bayesian approach here, compared to the classical
approach is to provide measures of the uncertainity of the heri-
tability estimate by the posterior distribution (Figure 2) and the
95% credible interval.

We extended our approach to logistic regression with family
data. To our knowledge, no statistical package fully adjusts for the
familiar relatedness when the outcome variable is binary. A com-
monly used approach is to fit logistic regression with one random
effect per family or use a generalized estimating equation (GEE),
in which each family is considered a cluster . Thus, there is a need
to develop such methods to analyze binary traits coming from
family data. As an example, we again used the data from the LLFS,
in which the binary trait was the occurrence of cardiovascular
diseases within 8 years of follow-up and covariates were sex and
age at enrollment of participants. Cardiovascular diseases were
defined as having any one of the following: myocardial infarc-
tion, coronary artery bypass grafting, congestive heart failure, and
atrial fibrillation (Sebastiani et al., 2013). We modified the BUGS
code by changing the response variable y[j] to follow a Bernoulli
distribution and modeling the random effects vector on the log-
odds scale. For comparison, a logistic regression model based on
the GEE approach was also performed. Table 2 shows the point
estimates, standard errors, and 95% credible intervals based on
the two approaches. The point estimates between the two meth-
ods are comparable, although the standard errors from the GEE
model are slightly smaller for all three fixed effects parameters.
This is expected, as our proposed model takes into account the
full kinship matrix, whereas the GEE model treats each family as
a single cluster. It is also noteworthy to point out that convergence
can be slow for implementing this parameterization in a logistic
regression framework. A good heuristic for faster convergence is
to start with the maximum likelihood estimates of the fixed effects
parameters and then try to estimate the genetic variance σ 2

g .

4. EMPIRICAL EVALUATION
A simulation study was conducted to evaluate the accuracy of
the implementation of our method in different types of family
structure for normal data. Four different scenarios, in which the
current implementation was evaluated, are as follows:

• Nuclear Family: This is the simplest family structure in which
there is a couple with two offspring. There were a total of 100
such families, which led to N = 400.

• Two-trios: This is the simplest form of extended pedigree struc-
ture with first-, second-, and third-degree relatives where two
parent-offspring trios are related through a sibling pair in the
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Table 1 | Comparison of Point Estimates (PE ), standard errors (SE ), and 95% Credible Intervals (95% CI) for continuous trait.

R (lmekin) SVD model Conditional model

PE SE PE SE 95% CI PE SE 95% CI

Intercept 2.1494 0.0652 2.143 0.0697 2.014–2.283 2.153 0.0730 2.018–2.3

Age 0.0101 0.0008 0.0102 0.0009 0.0084–0.0119 0.0101 0.0009 0.0082–0.0119

Insulin 0.0021 0.0004 0.0022 0.0004 0.0014–0.0030 0.0022 0.0004 0.0014–0.0030

Heritability 0.3677 N/A 0.3707 0.0345 0.3015–0.4402 0.1325 0.0257 0.0957–0.195

Residual variance 0.4877 N/A 0.4866 0.0263 0.436–0.5402 0.6624 0.02439 0.6114–0.7074

Genetic variance 0.2837 N/A 0.2862 0.0289 0.2303–0.3466 0.1013 0.0198 0.0733–0.1494

R (lmekin), results obtained from using lmekin function in R; SVD Model, results obtained from using the proposed method based on singular value decomposition

of the additive genetic relationship matrix; Conditional Model, results obtained from using the method in Hallander et al. (2010). The total sample size was 4229 with

558 unique families.

FIGURE 2 | Plots of posterior distributions of heritability, residual

variance, and genetic variance.

parent generation. There were a total of 100 such families and
the total sample size was 600.

• Asymmetric Family: This is an asymmetric version of the sec-
ond scenario, in which the first trio has only one offspring and
the second trio has ten offspring. There were a total of 100 such
families with a total sample size of 1500.

• Combination: This is a combination of the first and second sce-
nario with several offspring in the second scenario. The total
sample size was 1400.

To generate correlated data, a kinship matrix from each family
Kf was created, and the variance-covariance matrix of the obser-
vations was defined as V = σ 2

e In + 2σ 2
g diag(K1, K2, . . . , Knf ),

where n is the total sample size and nf is the number of families
in each scenario. In each simulation, a vector Z of indepen-
dent and normally distributed observations was generated and
transformed into Y = UD1/2Z where U and D are the matrix of
eigenvectors and eigenvalues from the spectral decomposition of
the variance-covariance matrix V . This transformation guaran-
tees that V(Y) = UD1/2V(Z)D1/2UT = V so that the simulated
data have the desired correlation.

Table 3 compares the point estimates and standard errors of
the variance components from the linear mixed models com-
puted using the lmekin() function in R, the proposed method
(SVD Model), and the method in Hallander et al. (2010) (con-
ditional Model). In all scenarios, there was no discernible differ-
ence between the estimates among the three approaches, which
suggests that the implementation in BUGS works correctly.

5. CONCLUSION
The proposed BUGS code provides an easy and efficient way to
account for extended family structures in linear mixed models.
Results from a real data set as well as simulation data show that
this implementation produces consistent results with the classical
linear mixed models in R. The usefulness of this approach is that
it allows for linear mixed modeling of family-based data in the
BUGS software, and thus possibly facilitates the use of Bayesian
modeling of family-based data. The advantage of the Bayesian
approach is that it provides an estimate of heritability but imple-
mentation is often challenging. We also illustrate the extension of
our approach to generalized linear models that can be efficiently
implemented in BUGS.
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Table 2 | Comparison of Point Estimates (PE ), Standard Errors (SE ), and 95% Credible Intervals (95% CI) for binary trait.

SVD model GEE model

PE SE 95% CI PE SE 95% CI

Intercept −5.186 0.231 −5.646–−4.742 −5.023 0.210 −5.430–−4.610

Sex −0.470 0.077 −0.621–−0.318 −0.458 0.075 −0.604–−0.311

Age 0.064 0.0026 0.058–0.069 0.062 0.0024 0.057–0.066

SVD Model, results obtained from using the proposed method based on singular value decomposition of the additive genetic relationship matrix in a logistic

regression; GEE Model, results from generalized estimating equations in a logistic regression. The total sample size was 4654 with 583 unique families.

Table 3 | Comparison of Point Estimates (PE ) and Standard Errors (SE ) of variance components in simulated data.

R (lmekin) SVD model Conditional model

PE SE PE SE PE SE

Nuclear family σ 2
e 1.214 N/A 1.220 0.186 1.217 0.181

σ 2
g 0.734 N/A 0.738 0.211 0.741 0.206

Two-trios σ 2
e 0.936 N/A 0.926 0.193 0.936 0.200

σ 2
g 1.938 N/A 1.963 0.279 1.944 0.287

Asymmetric family σ 2
e 0.963 N/A 0.961 0.090 0.956 0.087

σ 2
g 1.024 N/A 1.029 0.143 1.043 0.141

Combination σ 2
e 1.030 N/A 1.028 0.117 1.031 0.123

σ 2
g 1.915 N/A 1.927 0.180 1.923 0.186

R (lmekin), results obtained from using lmekin function in R; SVD Model, results obtained from using the proposed method based on singular value decomposition

of the additive genetic relationship matrix; Conditional Model: results obtained from using the method in Hallander et al. (2010).

Sebastiani), and the National Institure of General Medical
Sciences T32GM074905.

SUPPLEMENTAL DATA
Sample R script for computing the singular value decomposition
of the additive genetic relationship matrix.

## Read the Phenotype Data ##
pheno.file <- read.csv("pheno.data.csv")

## Read the Pedigree Data
ped.file <- read.csv("ped.data.csv")

## Variable Description:
## subject = unique individual ID
## gpedid = family ID
## dadsubj = ID of the father
## momsubj = ID of the mother
## sex = sex of individual

## Needs to be ordered by family
ped.file <- ped.file[ order(ped.file$pedid),]

## Use package kinship2 to construct the pedigree
object and

## the kinship matrix.
library(kinship2)
## This creates pedigree objects
mped.full <- pedigree(id=ped.file$subject,
dadid=ped.file$dadsubj,
momid=ped.file$momsubj, sex=ped.file$sex,

famid=ped.file$gpedid,missid=0)
## This creates the kinship matrix
kmat.full <- kinship(mped.full)

## Singular Value Decomposition by family
family.list <- intersect(unique(ped.file$gpedid),
unique(pheno.file$gpedid))
my.U <- vector("list")
my.S <- vector("list")
my.kmat <- vector("list")
my.G <- vector("list")

for(i in 1:length(family.list)){
p <- ped.file[ which(ped.file$gpedid
== family.list[i]),]
mped <- pedigree(id=p$subject, dadid=p$dadsubj,

momid=p$momsubj,sex=p$sex,famid
=p$gpedid,missid=0)

kmat <- 2*kinship(mped)
## Now get kinship submatrix for subjects
ind.subj <- match(pheno.file$subject

[which(pheno.file$gpedid ==
family.list[i])], row.names(kmat))

test <- svd( kmat[ind.subj[ which(is.na
(ind.subj)==F)],

ind.subj[ which(is.na(ind.subj)==F)]])
my.U[[i]] <- test$u
my.S[[i]] <- test$d
my.G[[i]] <- test$u %*% diag( sqrt(test$d))
my.kmat[[i]] <- kmat[ind.subj

[ which(is.na(ind.subj)==F)],
ind.subj[ which(is.na(ind.subj)==F)]]

}

www.frontiersin.org November 2014 | Volume 5 | Article 390 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Statistical_Genetics_and_Methodology/archive


Bae et al. BUGS

## This is the matrix to be loaded to bugs
G.mat <- my.G[[1]]
for(i in 2:length(my.G)){

ith.block.1 <- rep(0, nrow(G.mat)*ncol(my.G[[i]]))
dim(ith.block.1) <- c(nrow(G.mat), ncol(my.G[[i]]))
ith.block.2 <- rep(0, ncol(G.mat)*nrow(my.G[[i]]))
dim(ith.block.2) <- c(nrow(my.G[[i]]), ncol(G.mat) )
G.mat <- rbind( cbind( G.mat, ith.block.1),

cbind(ith.block.2, my.G[[i]]))
}
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