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Abstract: Carbon gels are a kind of porous organic polymer, which play pivotal roles in electrode,
supercapacitor, hydrogen storage, and catalysis. Carbon gels are commonly prepared by the condensation
of resorcinol and formaldehyde. The as-prepared polymers are further aged and sintered at a high
temperature in an inert atmosphere to form cross-linked and intertwined porous structures. Owing
to its large specific area and narrow pore size distribution, this kind of material is very appropriate for
mass transfer, substrate absorption, and product desorption from the pores. In recent years, carbon
gels have been discovered to function as effective hybrid materials with TiO2 for photocatalytic
applications. They could act as efficient deep-traps for photo-induced holes, which decreases the
recombination probability of photo-induced carriers and lengthens their lifetime. In this mini-review,
we will discuss the state-of-the-art paragon examples of carbon gels/TiO2 composite materials applied
in photo(electro)catalysis. The major challenges and gaps of its application in this field will also
be emphasized.
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1. Introduction

Nowadays, environmental pollution and energy shortage are two main crises facing the whole
world. The excessive utilization of fossil fuels produces various pollutants, which was discharged
into water and air environments. There is an urgent need for the use of green and renewable energy
resources for human society. Sunlight, considered as an inexhaustible and environmentally friendly
energy source, has aroused the attention from both academics and industries. As Fujishima and
Honda first reported TiO2 could be used to catalyze the water-splitting process evolving hydrogen and
oxygen under sunlight illumination in 1972 [1], and Carey et al. initially used TiO2 photocatalysis as an
advanced oxidation technique for the removal of pollutants in aqueous solution [2,3], photocatalysis has
been developed rapidly and becomes the focus of various disciplines including catalysis [4–7], materials
chemistry [8–10], environmental chemistry [11], energy chemistry [12,13], surface chemistry [14–16],
and processing chemistry and chemical engineering [17,18]. Among various photocatalysts, TiO2 being
extremely stable under light irradiation, highly acidic, and basic conditions; non-toxic, earth-abundant,
and easily-recyclable; and reusable without much loss of activity, has been profoundly investigated
from the 1970s up till now [19–27]. Moreover, with the high photo-induced hole oxidation potential
(Evb

+ = 2.7 V vs. NHE (Normal Hydrogen Electrode) at pH = 7); the ability to produce similarly highly
oxidative OH• radicals (E = 2.8 V vs. NHE), H2O2, and HOO•; and the appropriate photo-induced
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conduction band electron reduction potential (E = −0.5 V vs. NHE at pH = 7), which could be easily
trapped by dioxygen generating superoxide radical anion, all of these reactive oxygen species, along
with the photo-induced holes on TiO2 surface, could almost decompose all the organic pollutants
by unselective thorough mineralization with sequential hydrogen abstraction; halogen abstraction;
and addition to R•, C=C, and C≡C bonds until all the organic pollutants finally transform to CO2,
H2O, and inorganic ion species [7,11,28]. Although TiO2 photocatalysis has garnered a plethora
of successful examples in water environment remediation applications [29–33], there are still gaps
and shortcomings that need to be overcome for TiO2 photocatalysis to be applied in real industrial
processes. The following main issues need to be addressed. Firstly, owing to the wide band gap
(Eg = 3.2 eV for anatase and 3.0 eV for rutile), TiO2-based nanomaterial could only be excited under UV
(ultra-violet) irradiation (λ < 387.5 nm). This means that only less than 5% of the solar spectrum energy
could be utilized by TiO2 photocatalysis. Approximately 95% of the solar energy is wasted as heat.
Furthermore, current TiO2 photocatalysis displays a low quantum yield, even in UV spectrum. Poor
photon energy to chemical energy efficiency is obtained for the existing TiO2 system. The quantum
yield is in the range below 20%. The poor photocatalysis performance of TiO2 is attributed to the
following factors: (1) poor visible-light absorption, (2) facile hole-electron recombination, and (3) poor
adsorption and catalytic activity towards non-polar and hydrophobic compounds. To overcome these
obstacles, various strategies have been developed. Metal and non-metal atoms [34] doping such as
Fe [35], Cu [36], Ni [37] and N [38–40], C [41], and S [42], which could introduce extra traps below
the bottom of the conduction band and the top of the valence band, were incorporated in lowering
the band gap to facilitate visible-light absorption ability [43]. However, the addition of these dopant
atoms could in another way decrease its photocatalytic efficiency, as the trapping sites would also be
the recombination sites for electrons and holes. Coupling other photocatalysts with TiO2 to construct
heterojunction structure is another approach to improve TiO2 photocatalysis performance. A number
of inorganic and organic semiconductor photocatalysts, including CdS [44], BiVO4 [45], AgBr [46],
RGO [47], and g-C3N4 [48], have been combined with TiO2 to generate a hybrid photocatalyst system,
which displays excellent performance for various photocatalytic applications including water-splitting,
CO2 reduction, water and air decontamination, and organic synthesis [49–52].

Carbon gels, as a kind of aerogels, were discovered as early as 1931 by Kistler [53]. The author
successfully prepared the gels using the supercritical liquid evaporation method, which guaranteed that
the jelly internal structure did not experience either change or shrinkage. This is a milestone discovery
for colloid chemistry. However, the synthesis and preparation of carbon gels was not rediscovered
and researched until more than half a century later. Pekala and co-workers innovatively developed
the four-step procedure to synthesize resorcinol–formaldehyde (RF) gels as shown in Figure 1 [54].
Firstly, resorcinol and formaldehyde were polycondensed in an alkaline solution. Then, the as-formed
RF mixtures were subjected to aging conditions at 85 ◦C for several days. Later, the acid-treatment
and solvent-exchange processes were required before the key critical-point drying procedure. Finally,
CO2 was introduced to flow in and replace the residue solvent molecules at 45 ◦C. The dried RF
gels were characterized by various techniques to prove the existence of the organic aerogel structure.
This example resembles the renaissance of organic carbon gels [55–59]. Nowadays, carbon gels have
been extensively investigated and applied in hydrogen and methane storage [60–69], electric energy
storage [70–73], thermal transport [74,75], and catalysis [76–78]. Carbon gels have been demonstrated as
ideal materials for these applications owing to their large specific surface area, high electric conductivity,
and porous structure [79,80]. These features would also be critical merits for catalyst and co-catalyst
materials for photocatalysis applications [81,82]. Carbon gels have been successfully incorporated
into TiO2 photocatalysis to improve the overall performance for photocatalytic water-splitting and
environment remediation [83]. This review will discuss the state-of-the-art paragon examples of carbon
gels-modified TiO2-nanomaterials including the preparation, characterization, and activity of these
composite photocatalysts. Furthermore, the gaps and challenges of this area will also be outlined.



Materials 2020, 13, 1734 3 of 15

Materials 2019, 12, x FOR PEER REVIEW 3 of 15 

 

 
Figure 1. A schematic diagram of the reaction of resorcinol and formaldehyde to 
synthesize carbon aerogel. Copied with permission from [54], Copyrights 1989 Springer 
[54]. 

2. Carbon Gels-Modified TiO2 Photocatalysis 

Owing to their large specific surface area, ordered porous structure, and high electric 
conductivity, carbon gels have been applied in various fields including hydrogen storage, electrode 
materials, and heterogeneous catalyst support. Although carbon gels are often used as conductive 
materials, they also can be used to construct a composite semiconductor photocatalyst with TiO2. 

In 2010, Zhao and co-workers firstly used carbon gels to modify the TiO2 photocatalyst to 
improve its adsorption and conductivity performance [84]. They prepared a TiO2/carbon aerogel 
(CA) photoelectrode material. The CA was synthesized by the base-catalyzed polycondensation 
between resorcinol and formaldehyde. The as-synthesized wet gels were initially 
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final photoelectrode material. Various characterization techniques such as scanning electronic 
microscopy (SEM), X-ray diffraction (XRD), Raman spectrometry, and N2 isothermal adsorption 
and desorption experiments were applied to determine the morphology (as shown in Figure 2), 
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photocatalytic properties owing to the anatase TiO2 semiconductor photoresponsive component 
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methylene blue wastewater under a −0.6 V potential bias and 365 nm light irradiation compared 
with the TiO2/ITO photoelectrode. The authors attributed the high efficiency to the following factors. 
Firstly, applying −0.6 V bias would form an electrical double layer between the electrode and bulk 
solution, causing the pollutants methylene blue, which possesses positive charges, to adsorb on 
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Figure 1. A schematic diagram of the reaction of resorcinol and formaldehyde to synthesize carbon
aerogel. Copied with permission from [54], Copyrights 1989 Springer [54].

2. Carbon Gels-Modified TiO2 Photocatalysis

Owing to their large specific surface area, ordered porous structure, and high electric conductivity,
carbon gels have been applied in various fields including hydrogen storage, electrode materials,
and heterogeneous catalyst support. Although carbon gels are often used as conductive materials,
they also can be used to construct a composite semiconductor photocatalyst with TiO2.

In 2010, Zhao and co-workers firstly used carbon gels to modify the TiO2 photocatalyst to
improve its adsorption and conductivity performance [84]. They prepared a TiO2/carbon aerogel (CA)
photoelectrode material. The CA was synthesized by the base-catalyzed polycondensation between
resorcinol and formaldehyde. The as-synthesized wet gels were initially solvent-exchanged by acetone
to replace water. The organic gel was transformed to CA by heating in an argon atmosphere at
950 ◦C. The CA material was immersed into the sol–gel process of TiO2 formation. The as-formed
mixed TiO2/CA was sintered at different high temperatures to yield the final photoelectrode material.
Various characterization techniques such as scanning electronic microscopy (SEM), X-ray diffraction
(XRD), Raman spectrometry, and N2 isothermal adsorption and desorption experiments were applied
to determine the morphology (as shown in Figure 2), crystal structure, and porosity property.
The TiO2/CA photoelectrode possesses both excellent photocatalytic properties owing to the anatase
TiO2 semiconductor photoresponsive component and outstanding electrochemical properties of CA
material, such as its extremely high conductivity, low electrochemical impedance, and large specific
surface area. Thus, the TiO2/CA photoelectrode demonstrated much higher photocurrent density and
degradation efficiency for highly opaque methylene blue wastewater under a −0.6 V potential bias
and 365 nm light irradiation compared with the TiO2/ITO photoelectrode. The authors attributed the
high efficiency to the following factors. Firstly, applying −0.6 V bias would form an electrical double
layer between the electrode and bulk solution, causing the pollutants methylene blue, which possesses
positive charges, to adsorb on TiO2/CA electrode surface. The excellent conductivity of CA materials
would enhance the electrosorption process and the large specific surface area would promote the
dispersion of TiO2 nano-crystallite on the electrode film. The electrosorption effect would increase the
transparency of the opaque wastewater, which would greatly increase the photocatalytic degradation
efficiency of TiO2.
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Figure 2. Scanning electronic microscopy (SEM) images of carbon aerogel (CA) (A × 500, B × 80 k)
and TiO2/CA (C × 500, D × 80 k, E × 450 k). Copied with the permission from [84], Copyrights 2010
ACS [84].

In 2011, Wu and co-workers reported that mesoporous and macroporous carbon aerogels could
couple with TiO2 to construct a hybrid CA/TiO2 composite photocatalyst [85]. The composite photocatalyst
was prepared by a sol–gel process mixing Ti(iPrO)4 with CA in an alcoholic solution. The as-prepared
CA was sintered at 400 ◦C under N2 atmosphere. Two CA materials with different pore diameters
were hybridized with TiO2. The one with mesoporous structure displayed much higher activity on
methyl orange degradation compared with pristine TiO2 and TiO2/CA with macroporous structure
as shown in Figure 3. By analyzing XRD (X-ray diffraction), SEM (scanning electron microscopy),
and BET (Brunner-Emmet-Teller measurements) experimental results, the authors determined that the
mesoporous structure of TiO2/CA125 photocatalyst promoted the substrates adsorption and products
desorption because of the suitable pore size. The micropores could not accommodate the considerably
large methyl orange dye molecule entering the pore, while the macropore is too large to confine the
dye molecule inside the pore for effective adsorption and surface photocatalytic reaction.
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In 2011, Zhao and co-workers reported that CA/TiO2 hybrid material could act as a very promising
candidate for a photocatalysis enhanced electroadsorption (PES)-based dye pollutant elimination
process [86]. They prepared the CA/TiO2 electrode by dispersing the as-prepared CA material into
titania tetrabutylate sol–gel. The CA material was synthesized from the poly-condensation of resorcinol
and formaldehyde, the displacement of water by immersing in acetone, and final sintering under
argon at a high temperature forming the final porous aerosol microstructure. The morphology, surface
composition, and properties were characterized by SEM, EDS (Energy Dispersive Spectroscopy),
TG/DTA (Thermogravimetric Analysis/Differential Thermal Analysis), BET, EIS (Electrochemical
Impedance Spectroscopy), and Raman spectrometry. Furthermore, the material demonstrated excellent
alizarin red (AR) dye pollutant elimination ability by combining adsorption, electroadsorption,
and photocatalysis in a three-in-all strategy. In a 400 mg/L high concentration AR pollutant solution,
the hybrid material exhibited 97.3% TOC (Total Organic Carbon) removal in 240 min for the PES
process in comparison with 59% in the photocatalysis process without applied electric field and
22% in the electrosorption process without illumination. Not only did it possess high AR removal
efficiency, but this material also exhibited very good stability, providing 92.3% AR removal after
five cycles. Moreover, the authors proposed a mechanism for the synergistic effect of photocatalysis
and electrosorption as shown in Figure 4. The adsorbed dye molecules labile bonds were initially
cleaved via single-electron-transfer by TiO2 photo-induced hole species or hydrogen abstraction by
hydroxyl radicals and other reactive oxygen species (ROS), and the dye molecule radical cations
were hydroxylated and mineralized step by step via radical addition, atom abstraction, and bond
cleavage mechanism. The photo-induced electrons were extracted to the other electrode by circuit
to inhibit hole-electron recombination, and thus improve the mineralization efficiency. Owing to
the excellent porosity and conductivity, CA could act as very effective adsorbent and electrode
materials. Under applied positive potential, negative-charged dye-molecules would be attracted to
the positive electrode, enhancing adsorption. The TiO2 photocatalyst mineralized the dye, which
avoided saturated adsorption of CA material, while CA adsorbed and enriched dye pollutant to keep
high pollutant concentration on the TiO2 surface to make the photocatalytic reaction proceed rapidly.
Photocatalysis and electroadsorption synergistically ensured highly efficient high-concentration dye
solution decontamination, which is important not only in academics, but also in industrial engineering.

Materials 2019, 12, x FOR PEER REVIEW 5 of 15 

 

In 2011, Zhao and co-workers reported that CA/TiO2 hybrid material could act as a very 
promising candidate for a photocatalysis enhanced electroadsorption (PES)-based dye pollutant 
elimination process [86]. They prepared the CA/TiO2 electrode by dispersing the as-prepared CA 
material into titania tetrabutylate sol–gel. The CA material was synthesized from the 
poly-condensation of resorcinol and formaldehyde, the displacement of water by immersing in 
acetone, and final sintering under argon at a high temperature forming the final porous aerosol 
microstructure. The morphology, surface composition, and properties were characterized by SEM, 
EDS (Energy Dispersive Spectroscopy), TG/DTA (Thermogravimetric Analysis/Differential Thermal 
Analysis), BET, EIS (Electrochemical Impedance Spectroscopy), and Raman spectrometry. 
Furthermore, the material demonstrated excellent alizarin red (AR) dye pollutant elimination 
ability by combining adsorption, electroadsorption, and photocatalysis in a three-in-all strategy. In 
a 400 mg/L high concentration AR pollutant solution, the hybrid material exhibited 97.3% TOC 
(Total Organic Carbon) removal in 240 min for the PES process in comparison with 59% in the 
photocatalysis process without applied electric field and 22% in the electrosorption process without 
illumination. Not only did it possess high AR removal efficiency, but this material also exhibited 
very good stability, providing 92.3% AR removal after five cycles. Moreover, the authors proposed 
a mechanism for the synergistic effect of photocatalysis and electrosorption as shown in Figure 4. 
The adsorbed dye molecules labile bonds were initially cleaved via single-electron-transfer by TiO2 
photo-induced hole species or hydrogen abstraction by hydroxyl radicals and other reactive oxygen 
species (ROS), and the dye molecule radical cations were hydroxylated and mineralized step by 
step via radical addition, atom abstraction, and bond cleavage mechanism. The photo-induced 
electrons were extracted to the other electrode by circuit to inhibit hole-electron recombination, and 
thus improve the mineralization efficiency. Owing to the excellent porosity and conductivity, CA 
could act as very effective adsorbent and electrode materials. Under applied positive potential, 
negative-charged dye-molecules would be attracted to the positive electrode, enhancing adsorption. 
The TiO2 photocatalyst mineralized the dye, which avoided saturated adsorption of CA material, 
while CA adsorbed and enriched dye pollutant to keep high pollutant concentration on the TiO2 
surface to make the photocatalytic reaction proceed rapidly. Photocatalysis and electroadsorption 
synergistically ensured highly efficient high-concentration dye solution decontamination, which is 
important not only in academics, but also in industrial engineering. 

 
Figure 4. Mechanism of photocatalysis enhanced electroadsorption (PES) degradation of 
alizarin red (AR) dye on the TiO2/CA photoelectrode. Copied with the permission from 
[86], Copyrights 2011 Elsevier [86]. CB: Conduction Band. VB: Valence band. 

Furthermore, Zhao and co-workers discovered that TiO2/CA material could have the capacity 
to act as an effective photoelectrode to extend the TiO2 absorption spectrum to the visible-light 
region and mineralize Rhodamine 6G dye pollutants under visible-light irradiation in an aerobic 
condition under −0.9 V bias [87]. They figured out that H2O2 was generated on the electrode surface 
by the reduction of dioxygen. Further, the in-situ generated H2O2 coordinated with TiO2, forming a 
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(AR) dye on the TiO2/CA photoelectrode. Copied with the permission from [86], Copyrights 2011
Elsevier [86]. CB: Conduction Band. VB: Valence band.

Furthermore, Zhao and co-workers discovered that TiO2/CA material could have the capacity to
act as an effective photoelectrode to extend the TiO2 absorption spectrum to the visible-light region and
mineralize Rhodamine 6G dye pollutants under visible-light irradiation in an aerobic condition under
−0.9 V bias [87]. They figured out that H2O2 was generated on the electrode surface by the reduction of
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dioxygen. Further, the in-situ generated H2O2 coordinated with TiO2, forming a visible-light responsive
surface Ti–peroxide complex. Upon light irradiation, this surface complex was excited and injected
electrons to the TiO2 conduction band. The conduction band electrons’ decomposed surface adsorbed
H2O2 to hydroxyl radicals. The hydroxyl radicals that possess strong oxidative ability (E1/2 = 2.4 V
vs. NHE) can be directly applied to mineralize pollutants. This mechanism was shown in Figure 5.
To demonstrate the efficiency of this photoelectrocatalysis system, azo dye Rhodamine 6G was applied
as a model pollutant in the activity test. The results showed that, upon –0.9 V bias and visible-light
irradiation (λ > 420 nm), the TiO2/CA photocathode could reach removal efficiency for Rhodamine 6G
at 90.3% and TOC at 83.3% in 300 min. GC-MS (Gas Chromatography- Mass Spectroscopy) and HPLC
(High-performance Liquid Chromatography) tracing of intermediates indicated that less intermediates
were generated under photoelectrocatalytic conditions than under traditional photocatalytic conditions.
This catalyst system demonstrated excellent pollutant removal efficiency and low energy consumption.
More importantly, this example provided us a new approach to explore the visible-light responsive
unconventional TiO2-based photocatalytic materials.
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Zhao and co-workers reported that TiO2 nanorod cluster (NRC) material could be loaded on
carbon aerogel by a hydrothermal/calcination method [88]. The as-prepared TiO2 NRC/CA composite
material could be used as photocathode for the decomposition and mineralization of a notorious
pollutant p-nitroaniline. They compared the pollutant removal efficiency and activity of TiO2 NRC/CA
with TiO2 NRC/graphite material. The results indicated that TiO2 NRC/CA material could provide
superior 98.2% PNA (p-Nitroaniline) removal efficiency in 180 min under visible-light irradiation
with −0.6 V bias in comparison with 79.8% for TiO2 NRC/graphite. From various characterization
experiments, the authors ascribed the higher efficiency of TiO2 NRC/CA to the CA’s three-dimensional
structure, which provided greater surface area and larger conductivity. More TiO2 photocatalyst could
be loaded on CA rather than on graphite. Further, more H2O2 and hydroxyl radicals could be formed
on electrode surface. Owing to the greater level of TiO2 loading, more surface Ti–peroxide complex and
photocurrent could be yielded under visible-light irradiation. All these factors made TiO2 NRC/CA
excellent photocathode materials for p-nitroaniline pollutants mineralization. Moreover, the authors
proposed the decomposition pathways for this photoelectrocatalytic system as shown in Figure 6.
They discovered the new important intermediates 1,2,4-trihydroxybenzene during the decomposition
processes of p-nitroaniline and reasonably explained its mineralization mechanism.



Materials 2020, 13, 1734 7 of 15

Materials 2019, 12, x FOR PEER REVIEW 7 of 15 

 

 
Figure 6. Mechanism of the decomposition of intermediates in TiO2 nanorod cluster 
(NRC)/CA photoelectrocatalysis over p-nitroaniline pollutants. Copied with the 
permission from [88], Copyrights 2013 Elsevier [88]. 

Shi and co-workers discovered that TiO2 photocatalytic activity of DMP (dimethyl phthalate) 
degradation could be enhanced by hybridizing a CA material and constructing secondary 
hydrophilic pores [89]. They synthesized TiO2/CA composite photocatalysts with different CA pore 
diameters. They discovered that materials comprising CA with 9.3 nm mesopores exhibited the 
highest photocatalytic degradation efficiency, while CA with smaller pore diameters of 3.4 and 4.3 
nm generated inferior results even compared with the pristine TiO2 photocatalyst. Contact angle 
analysis and DMP adsorption tests indicated that CA-9.3 possessed the least ability to adsorb DMP 
owing to its larger wettability and hydrophilicity. However, as TiO2 nanoparticles dispersed in both 
inner and outer space of CA-9.3, photo-induced electrons on the outer surface migrated to the inner 
surface through CA conductive porous structure, inhibiting electron-hole recombination and 
improving the charge separation process. Thus, the generation of hydroxyl radicals by 
photo-induced holes on the outer surface was enhanced by this effect, which increased the DMP 
photodegradation rate. Moreover, the generation rate of hydroxyl radical by other routes was also 
increased. In the inner space of hydrophilic secondary pore, dioxygen, photo-electrons, and water 
molecules were enriched by this micro-reactor. This encapsulation effect enhanced the hydroxyl 
radical generation by the dioxygen reduction route in comparison with the lack of porous structure 
of pristine TiO2. This mechanism was illustrated in Figure 7.  
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Shi and co-workers discovered that TiO2 photocatalytic activity of DMP (dimethyl phthalate)
degradation could be enhanced by hybridizing a CA material and constructing secondary hydrophilic
pores [89]. They synthesized TiO2/CA composite photocatalysts with different CA pore diameters. They
discovered that materials comprising CA with 9.3 nm mesopores exhibited the highest photocatalytic
degradation efficiency, while CA with smaller pore diameters of 3.4 and 4.3 nm generated inferior results
even compared with the pristine TiO2 photocatalyst. Contact angle analysis and DMP adsorption tests
indicated that CA-9.3 possessed the least ability to adsorb DMP owing to its larger wettability and
hydrophilicity. However, as TiO2 nanoparticles dispersed in both inner and outer space of CA-9.3,
photo-induced electrons on the outer surface migrated to the inner surface through CA conductive
porous structure, inhibiting electron-hole recombination and improving the charge separation process.
Thus, the generation of hydroxyl radicals by photo-induced holes on the outer surface was enhanced by
this effect, which increased the DMP photodegradation rate. Moreover, the generation rate of hydroxyl
radical by other routes was also increased. In the inner space of hydrophilic secondary pore, dioxygen,
photo-electrons, and water molecules were enriched by this micro-reactor. This encapsulation effect
enhanced the hydroxyl radical generation by the dioxygen reduction route in comparison with the lack
of porous structure of pristine TiO2. This mechanism was illustrated in Figure 7.
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Wang and co-workers reported that Ce-doped TiO2/CA could be applied as potent visible-light
responsive electrosorptive photocatalytic materials for 4-chlorophenol degradation [90]. They discovered
that cerium doping could introduce defect sites above the top of the valence band red-shifting TiO2

absorption spectrum from 387 nm to 532 nm. Furthermore, carbon aerogel was hybridized with
Ce-TiO2 photocatalyst by an impregnation method. The as-synthesized Ce-TiO2/CA material was
used as photoelectrode to degrade 4-chlorophenol under 0.6 V bias and 500 W Xenon lamp irradiation.
This material exhibited 75 times larger photocurrent than Ce-TiO2/FTO (fluorine-doped tin oxide),
which was ascribed to the lesser electron-hole recombination rate by the CA porous structure, which
facilitated the charge separation processes, as mentioned above. Furthermore, for the 4-chlorophenol
(4-CP) degradation, Ce-TiO2/CA generated 97.3% 4-CP removal in 4.5 h, in sharp contrast with 65.4%
for Ce-TiO2/FTO under other identical photoelectrochemical conditions. This enhancing effect was
mainly because of the highly-developed porous structure and excellent conductivity, which were
pivotal for 4-CP adsorption and the charge separation and migration processes. This mechanism was
illustrated in Figure 8.
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Figure 8. Schematics of the mechanism of Ce-TiO2/carbon aerogel electrode in the photoelectrocatalytic
degradation of 4-chlorophenol pollutant. Copied with the permission from [90], Copyrights 2018
Elsevier [90].

Szilágyi and co-workers reported an atomic-layer-deposition (ALD) method to prepare
resorcinol–formaldehyde aerogel (RFA) and resorcinol–formaldehyde carbon aerogel (RFCA)/TiO2
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composite photocatalysts [91]. They initially prepared RFA and RFCA by the modified Pekala’s
three-step method; the first step to synthesize RF hydrogel, the second step dry RF hydrogel in
supercritical condition forming RFA, and the last step to yield RFCA by sintering RFA under a N2

atmosphere at a high temperature. The as-synthesized RFA and RFCA were utilized as substrates for
ALD of TiO2 at 80 ◦C and 250 ◦C. TiO2 prepared at 80 ◦C was amorphous, while that at 250 ◦C was
crystalline. Furthermore, the authors conducted the photo-degradation experiments of methyl orange
dye. Surprisingly, they discovered that RFCA/amorphous TiO2 exhibited better photocatalytic activity
than RFCA/crystalline TiO2. Further, the RFCA material without TiO2 deposition exhibited the best
photocatalytic activity towards methyl orange degradation. These results were shown in Figure 9.
The authors ascribed these unconventional results to the fact that the oxide deposition reduced the
surface area and the functional group content of RFCA, thus blocking and decreasing the activity
sites. The ALD treatment at a higher temperature more significantly deteriorated the RFCA porous
structure and decreased its functional group contents. This report was interesting, demonstrating
that amorphous carbonaceous material such as resorcinol–formaldehyde carbon aerogel could not
only exhibit semiconductive photocatalytic activity, but also generate higher ability towards organic
pollutant degradation under illumination than traditional metal-oxide materials.
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Copyrights 2019 Elsevier [91].

The performance of the state-of-the-art examples of TiO2/CA photo(electro)catalysis is summarised
in Table 1.

Table 1. Summary of photo(electro)catalytic performance of TiO2/carbon aerogel (CA) materials for
pollutants removal. NRC, nanorod cluster; RFCA, resorcinol–formaldehyde carbon aerogel.

Catalyst Condition Pollutant Removal Rate
Constant Ref.

TiO2/CA 365 nm UV-irradiation under
−0.6 V bias

Methylene Blue
(150 mg/L) 10.27 × 10−3 min−1 [84]

TiO2/CA 125 300 W Hg lamp Methyl Orange
(10 mg/L) 46.2 × 10−3 min−1 [85]

TiO2/CA 80 W UV light (320–400 nm,
peak at 365 nm) 0.6 V bias

Alizarin Red
(400 mg/L) 9.24 × 10−3 min−1 [86]

TiO2/CA 300 W Xe lamp (420–800 nm)
100 mW/cm2

−0.9 V bias
Rhodamine 6G

(50 mg/L) 3.61 × 10−3 min−1 [87]

TiO2NRC/CA 500 W Xe lamp (peak at
420 nm) −0.6 V bias

p-Nitroaniline
(150 mg/L) 23.1 × 10−3 min−1 [88]

TiO2/CA-9.3 300 W Xe lamp (320–700 nm
peak at 420 nm) 85 mW/cm2

Dimethyl phthalate
(2 mg/L) 12.6 × 10−3 min−1 [89]

Ce-TiO2/CA 500 W Xe lamp 0.6 V bias 4-Chlorophenol
(100 mg/L) 9.24 × 10−3 min−1 [90]

RFCA/TiO2/80 ◦C 2 parallel UV lights
(18 W UV-A blacklights)

Methyl Orange
(8 × 10−5 mol/L) 3.3 × 10−3 min−1 [91]
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Besides the activity improvements of the TiO2/CA photo(electro)catalyst, its life cycle assessment
(LCA) of the environmental impacts should also be considered. Although we lack the data of the
environmental effects of the CA synthesis and the hybrid process of TiO2 and CA nano-materials,
according to the previously reported LCA of environmental impacts for seven different fabrication
routes of TiO2 nanomaterials by mass unit, surface-area unit, and photocatalytic activity unit [92], or the
reported LCA cradle to gate environmental impacts of five different non-doped and metal-doped TiO2

nanomaterials prepared by the sol–gel method by the function unit of photocatalytic carbamazepine and
methyl orange degradation [93], we can infer that the TiO2/CA photo(electro)catalyst will generate more
environmental impacts because the fabrication of CA materials requires an intensive energy-input process
and the use of a considerable amount of organic precursor resorcinol and formaldehyde, while the use of
formaldehyde will contribute to environmental concern. Further, during the photo(electro)catalytic
process of pollutant removal, the added bias would generate much greater consumption of electricity
energy. However, the greatly enhanced pollutants removal efficiency would come as a trade-off to the
added extra environment impacts for TiO2/CA materials compared with non-doped TiO2 photocatalysts.
Further, a thorough investigation using quantitative software to assess the environmental impacts
of the TiO2/CA photo(electro)catalyst “from cradle to grave” based on the function unit of the
photo(electro)catalytic removal of certain organic pollutants by LCA should be conducted in the future.

3. Conclusions

We have outlined the state-of-the-art examples of carbon aerogels materials hybridized with
TiO2 applied as both catalysts for photoelectrochemical cells and photocatalysts for environmental
pollutants degradation. Although still in its blossoming stage in comparison with other traditional
inorganic metal oxides, metal chalcogenides, and surface plasmonic metallic photocatalysts and
photo-electrocatalysts, CA-modified TiO2 material still exhibited miscellaneous advantages. Firstly,
carbon aerogels modification could greatly increase the surface area of TiO2 owing to the great porosity
and highly-developed hierarchical porous structures. The increase of surface area would enhance the
adsorption of pollutants on TiO2. Furthermore, the introduction of porous structure would enhance
electron-hole pair separation by the facilitated TiO2 photoelectron transfer between inner surface and
outer surface in the interconnected pore structure. Secondly, owing to CA’s excellent conductivity,
upon hybridization with CA, TiO2 semiconductive material became much more conductive, and the
electron-transfer impedance was greatly reduced. This effect was crucial for the increase of photocurrent
during the photoelectrochemical degradation of organic pollutants. Last, but not least, the doping of
carbon aerogel would introduce defect sites in TiO2 bulk solid, thus generating a dopant energy level
in the top of the valence band and in the bottom of the conduction band, thus providing the narrower
band gap for more efficient photon absorption. This would generate an apparent red-shift phenomenon
for TiO2, extending its absorption limit from 387 nm to approximately 532 nm. Compared with other
crystalline carbonaceous materials, metal oxides, metal chalcogenides, and metal surface plasmonic
photocatalysts, CA/TiO2 photocatalysts still have a long way to proceed for more mature applications
in environment remediation. The main limitations and challenges for CA/TiO2 photocatalysts include
the following aspects. Initially, the degradation efficiency should be further improved to fulfill the
requirements of practical use in industry wastewater treatment. To meet this end, an elaborate, intricate,
and novel synthesizing method should be developed. Much higher performance of hydroxyl radical
generation and pollutants adsorption should be achieved. Secondly, in order to improve the activity of
the composite photocatalyst, the mechanism of how the photoelectrons, photo-induced holes, dioxygen,
water, organic pollutants, and the degradation intermediates interacted in the composite photocatalyst,
and in particular, how the porous structure influenced the whole photocatalytic process should be
more clearly demonstrated. We do believe that if these issues can be resolved successfully, the future
of CA/TiO2 photocatalysis would be promising.
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