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Abstract

Background

For many drugs, mechanisms of action with regard to desired effects and/or unwanted side
effects are only incompletely understood. To investigate possible pleiotropic effects and
respective molecular mechanisms, we describe here a catalogue of commonly used drugs
and their impact on the blood transcriptome.

Methods and results

From a population-based cohort in Germany (LIFE-Adult), we collected genome-wide
gene-expression data in whole blood using in lllumina HT12v4 micro-arrays (n = 3,378;
19,974 gene expression probes per individual). Expression profiles were correlated with
the intake of active substances as assessed by participants’ medication. This resulted in
a catalogue of fourteen substances that were identified as associated with differential
gene expression for a total of 534 genes. As an independent replication cohort, an
observational study of patients with suspected or confirmed stable coronary artery dis-
ease (CAD) or myocardial infarction (LIFE-Heart, n = 3,008, 19,966 gene expression
probes per individual) was employed. Notably, we were able to replicate differential
gene expression for three active substances affecting 80 genes in peripheral blood
mononuclear cells (carvedilol: 25; prednisolone: 17; timolol: 38). Additionally, using
gene ontology enrichment analysis, we demonstrated for timolol a significant enrich-
ment in 23 pathways, 19 of them including either GPER1 or PDE4B. In the case of car-
vedilol, we showed that, beside genes with well-established association with
hypertension (GPER1, PDE4B and TNFAIP3), the drug also affects genes that are only
indirectly linked to hypertension due to their effects on artery walls or their role in lipid
biosynthesis.
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Conclusions

Our developed catalogue of blood gene expressions profiles affected by medication can be
used to support both, drug repurposing and the identification of possible off-target effects.

Introduction

Over the last years, blood-based gene-expression (GE) analyses have been broadly used to
identify biomarkers, to detect potential molecular drivers for diseases and to assess molecular
phenotypes. This also provided new insights into disease processes, (sub-clinical) disease
states, and response to therapy [1].

However, GE is affected by a plethora of factors including the genetic background of a per-
son, the considered tissue, life-style, environmental and disease-related factors [2, 3]. In this
regard, the effect of drugs on single GE and defined pathways is still understudied. For phar-
macologists the association between drugs and GE is highly relevant as drug based transcrip-
tome analysis could provide new insights into the mechanisms of action of specific drugs.
These insights can be used for drug repurposing [4, 5] but also help to identify underlying rea-
sons for off-target effects [6].

Beta-blockers are widely prescribed drugs that cover a wide spectrum of cardiovascular
indications. As beta-blockers are inferior to calcium-channel blockers and renin-angiotensin
system inhibitors they are considered as second line antihypertensive treatment [7]. They are
however effective in long term secondary prevention after myocardial infarction [8] and are
also used in the treatment of specific cardiovascular diseases [9]. Beta-blockers are competitive
antagonists that block the receptor sites for the endogenous epinephrine and norepinephrine
on beta-adrenoceptors that are found on cells of the heart muscles, smooth muscles, arteries,
kidneys, airways and other tissues which are part of the sympathetic nervous system. While
non-selective beta-blockers block the activation of all types of beta-adrenoceptors, selective
beta-blockers only act on designated receptor subtypes (B1 to f3). In this study, we analysed
the impact of 83 active substances on whole blood transcriptome. Results were replicated in an
independent cohort. To gain deeper insight into the effects of beta blocking agents and their
mechanisms of action, we analysed associated genes and pathways in more detail and com-
pared the results with our current knowledge of the drug’s mechanisms.

Material and methods
Cohort description

The LIFE-Adult study is a population-based cohort study of 10,000 participants from Leipzig,
a city in Germany [10]. Most of the participants are aged between 40 and 79, with a small sub-
group of 400 participants being between 18 and 39. The study population is of central Euro-
pean descent and the main study goal is to investigate prevalence, genetic predisposition and
the role of lifestyle-related factors (such as smoking habits, alcohol consumption, dietary pat-
terns and physical activity) on major civilization diseases including subclinical signs. Initial
data collection was performed between 2011 and 2014.

LIFE-Heart is an observational study of patients collected at the Heart Center of Leipzig,
Germany. A total of 6,994 patients were recruited with suspected or confirmed stable coronary
artery disease (CAD) or myocardial infarction. The study design and a detailed description of
patients can be found elsewhere [11]. Initial data collection was performed between 2006 and

PLOS ONE | https://doi.org/10.1371/journal.pone.0266897  April 21, 2022

2/15


https://doi.org/10.1371/journal.pone.0266897

PLOS ONE Impact of medication on blood transcriptome reveals off-target regulations of beta-blockers

Table 1. Study characteristics of LIFE-Adult and LIFE-Heart.

Study characteristics
Parameter LIFE-Adult (n = 3,378) LIFE-Heart (n = 2,978)

With medication Without medication | With medication Without medication
Men / Women 1323/ 1419 422/214 1849/ 1003 99 /27
Age (years) 60.7 £ 12.1 51.1+11.6 63.2 £10.8 53.9+10.4
Non Smoker / Smoker 2061/ 485 432/183 2344 /508 90/ 36
BMI (kg/mz) 279+48 26.1 £3.8 29.8+£5.0 27.3+3.8
Lymphocytes in % 29.8+£7.9 322+7.6 254+7.7 28.1+73
Monocytes in % 82+21 8320 87%23 8.6 2.6
Average number of active substances per individual | 4.1 (median =3,IQR=2t06) |0 5.9 (median =5,IQR=3t08) |0

For the continuous parameters, the arithmetic mean and SD is given. Additionally, average numbers of substances are given as median and interquartile range (IQR).

https://doi.org/10.1371/journal.pone.0266897.t001

2014. For the present analysis, we excluded patients with acute myocardial infarction since the
acute situation may have a profound impact on gene expression profiles.

Baseline characteristics for the cohorts are provided in Table 1.

Both studies meet the ethical standards of the Declaration of Helsinki and were approved
by the Ethics Committee of the Medical Faculty of the University Leipzig, Germany (LIFE-A-
dult: Reg. No 263-2009-14122009; LIFE-Heart: Reg. No. 276-2005). Written informed consent
including agreement with molecular-genetic analyses was obtained from all participants.

Gene expression analysis

RNA was available from whole blood of n = 3,526 LIFE-Adult participants. Raw gene-expres-
sion data were measured by Illumina HumanHT-12 v4 Expression BeadChip. A total of 47,231
expression probes were successfully measured in all samples using Illumina GenomeStudio.
We further processed these data within R 2.13.1 / Bioconductor. Transcripts not sufficiently
expressed according to Illumina’s internal cut-off as implemented in Bioconductor package
‘Tlumi’ (detection p-value< 0.05) in at least 5% of all samples were not further considered in the
analysis. Expression values were quantile normalised and log2-transformed [12]. Furthermore,
we defined for each individual a combined quantitative measure combining quality control
features available for HT-12 v4 (i.e. perfect-match and miss-match control probes, control
probes present at different concentrations, mean of negative control probes, mean of house-
keeping genes, Euclidean distances of expression values, number of expressed genes, mean sig-
nal strength of biotin-control-probes, S1 Fig). We calculated the Mahalanobis-distance
between all individuals and an artificial individual showing average values for these quality
control features (S2 Fig). Samples had to be within 4 x interquartile range (IQR) from the
median [13] of this distance. Transcript levels were adjusted for the known batch Sentrix bar-
code (i.e. expression chip-ID) using an empirical Bayes method as described [14]. The empiri-
cal Bayes method required that at least two individuals for each batch are provided. This
excluded two individuals. Success of adjustment was checked using ANOVA for both, the Sen-
trix barcode as well as the processing batch (in a processing batch, several expression chips
were jointly processed, in consequence, within a processing-batch, several Sentrix barcodes are
nested, S3 Fig). Finally, we controlled for the Euclidean distance between all samples and an
artificial sample defined as the average of samples (after removing 10% samples farthest away
from the average of all samples). We found no individual with a distance larger than median

+ 4 x IQR. The final sample size was n = 3,378. As previously described [15], we filtered gene
expression probes for sufficiently good mapping leaving a final number of 19,974 valid gene
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expression probes corresponding to 13,693 unique genes. The described pre-processing pipe-
line has been published as R-package HT12ProcessoR on GitHub [16]. The pre-processing
method corresponds to the method named “noBg_log quantile” and was found to be one of
the two best-performing methods regarding optimal bias and variance performance [12] (S4
Fig)o,

In LIFE-Heart, RNA from peripheral blood mononuclear cells (PBMC) was used
(n = 3,008). Gene expression data was processed and filtered as described above resulting in
final sample-size n = 2,978 and 19,966 valid gene expression probes mapping to 13,687 unique
genes.

Drug assessment

Participants of LIFE-Adult were asked to provide all packages of medicaments taken in the last
7 days to the study centre. Packages were recorded electronically. In LIFE-Heart, patient medi-
cal records were evaluated to determine the current medication. For both cohorts no informa-
tion about previous medication is available.

Results were classified based on the German anatomic therapeutic chemical (ATC) classifi-
cation [17], which is the German translation of the ATC/DDD Index published by the WHO
Collaborating Centre for Drug Statistics Methodology, Oslo. The ATC-Classification is a five
level system dividing substances into different groups according to the organ or organ system
that they affect and their pharmacological and therapeutic properties. The active substance is
named in the lowest level (level five). Based on the ATC codes provided for each study partici-
pant and the level 5 information available, we compiled a list of active substances for each indi-
vidual. As shown in Table 1 we had in both cohorts participants taking no medication, which
were used as control group.

Statistical analysis

Statistical analysis was performed using the statistical software package R 3.6.0. Gene expres-
sion analysis was performed using the R-packages lumi 2.3.8 [18] and limma 3.42.2 [19].

Polymedication. Dose of medication was not available; therefore, we considered medica-
tion of active substances as binary traits. To account for the effects of polymedication in our
analysis, we aimed to adjust for the drugs with the largest impact on gene-expression in our
models. To define these, we first performed multivariate linear regression analysis of gene-
expressions estimating the impact of fifteen substances that were used by more than five per-
cent of our LIFE-Adult subjects. In this analysis, we adjusted for sex, age, lymphocytes, mono-
cytes, smoking status, and log transformed Body-Mass-Index (BMI) and tested one of the
fifteen active substances at a time. For our gene expression adjustment model we selected
active substances that caused significantly differential gene expression (5% FDR per
substance).

We tested collinearity between the substances in the adjustment model using variance infla-
tion factor (VIF), confirming that there is no multi-collinearity problem between the resulting
variables used for adjustment.

Multivariate differential gene expression analysis. Next, we used the adjustment model
defined above to analyse the effects of the single active substances on gene expression. We first
tested for an extreme pairwise odds ratio (OR < 0.125 or OR > 8) between the active substance
considered and the drugs in the adjustment model. If such an extreme pairwise OR was
detected, the respective drug of the adjustment model was dropped to avoid collinearity issues.
A total of 83 active substances were analysed (each of them used by at least 20 LIFE-Adult par-
ticipants) (S1 Table: Active substances analysed). P-values for each active substance were
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Fig 1. Replication of LIFE-Adult results in LIFE-Heart. Top graph shows results of hierarchical multiple testing
correction, which we selected as replication criteria. For information purposes, we include results for nominal
significance (graph in the middle) and sign-test (lower graph). Results show strong transferability of results for whole
blood to PBMC for carvedilol, timolol and prednisolone.
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estimated based on moderated t-statistics [20] and adjusted according to Benjamini and Hoch-
berg’s method to control the false discovery rate (FDR) [21]. Significant probes identified were
mapped to the respective genes. A gene is considered significantly differentially expressed,
when at least one probe mapped to this gene was significantly differentially expressed

(q < 0.05).

We aimed at replicating the identified associations in the LIFE-Heart cohort using the same
adjustment model for all probes that were significant in LIFE-Adult. For replication, we
applied hierarchical multiple testing correction. First, we adjusted the p-values for each sub-
stance by Benjamini and Hochberg’s method [21] resulting in q-values per substance. Then,
for each substance we selected the lowest q-value for further calculation. In the next step, these
lowest q-values per substance were taken and further adjusted for multiple testing of sub-
stances according to Benjamini and Bogomolov’s method for multiple testing in families of
hypotheses [22]. The result for a gene was considered replicated when at least one probe that
mapped to a gene was significantly differentially expressed in LIFE-Heart and showed the
same effect direction for the same drug. In addition we performed a sensitivity analysis, by
comparing the results with those obtained from a sign-test and nominal significance (Fig 1).

For the replicated substances and genes, we performed a pathway enrichment analysis con-
sidering all analysed genes as background. Here, we used ontologies KEGG, GO, DOSE and
Reactome [23-26] and considered an FDR value per substance of 0.05 as cut-off. The complete
analysis workflow is shown in S5 Fig.
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Results

Polymedication

The majority of study participants took more than one active substance (Fig 2). Most partici-
pants hereby took medication affecting the cardiovascular system. In total, we identified 745
drugs with 587 different active substances in our LIFE-Adult discovery cohort (LIFE-Heart:
568 drugs; 512 active substances). From the 587 active substances taken by LIFE-Adult partici-
pants, we considered 15 substances as potential covariates to adjust for polymedication.
Among these, eight substances in LIFE-Adult caused significantly (FDR < 0.05) differentially
expressed gene expression probes (Table 2). Thus, we adjusted for a total of eight substances in
our final model for gene expression analyses in conjunction with sex, age, lymphocytes, mono-
cytes, smoking status and log transformed Body-Mass-Index (BMI).

Differential gene expression analysis

Using the polymedication based adjustment model, we identified fourteen (of initially ana-
lysed 83 substances taken by 20 or more LIFE-Adult participants) active substances that signif-
icantly (q < 0.05) affected the expression of a total of 544 probes matching 534 genes in
LIFE-Adult (S2 Table: Summary of significant substances). The ratio between up and down
regulation was balanced (down regulation: n = 248; up regulation n = 286). Effect sizes varied
between B = -0.75, q = 2.36x10> (effect of Propranolol on GZMB) and B = 0.45, q = 7.84x10°°
(effect of Carvedilol on ADRB2). The number of genes affected by an active substance varied
between one gene for phenprocoumon and 265 genes being affected by metoprolol. The four-
teen substances included two non-selective (carvedilol, propranolol) and two selective (biso-
prolol, metoprolol) beta-blockers which are primarily used to treat hypertension and
cardiovascular diseases. A complete list of the analysed active substances and affected genes is
provided in S3 Table (statistics for each significant probe / substance combination). With
respect to the number of genes affected by a single active substance our study shows that beta
blockers affect the highest number of genes (376 of a total of 534 genes shown to be affected by
drugs from this class in our study), followed by bronchodilators (59 genes), estrogen (46
genes) and corticosteroids (33 genes).

Matching the significant probes with available LIFE-Heart probes resulted in 473 probes
and 465 genes eligible for replication. This excludes 71 probes were the active substance was

Top 25 substances in LIFE Adult Top 25 substances in LIFE Heart
33.7% R
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Fig 2. Polymedication of LIFE-Adult and LIFE-Heart participants and most common substances. Top: Polymedication of LIFE-Adult and LIFE-Heart
participants, shown by number of active substances consumed. Participants taking no medication were used as control group. Bottom: Most common
substances used in both cohorts.

https://doi.org/10.1371/journal.pone.0266897.9g002
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Table 2. Active substances showing significant effects on gene expression levels in LIFE-Adult and hence adjusted for in gene expression analysis.

# (%) of study participants taking
substance

# of significant probes
(fdr<0.05)

# (%) of study participants taking
substance

# of significant probes
(fdr<0.05)

Acetylsalicylic acid 436 (15.9%) 9 1,681 (58.9%) 1
Allopurinol 176 (6.4%) 387 330 (11.6%) 6
Bisoprolol 439 (16.0%) 1,529 805 (28.3%) 0
Hydrochlorothiazide 179 (6.5%) 5 716 (25.1%) 11
Metformin 274 (8.1%) 210 396 (13.2%) 14
Metroprolol 297 (8.8%) 3,597 740 (25.9%) 1
Simvastatin 454 (13.4%) 558 1022 (35.9%) 5
Valsartan 211 (6.2%) 8 294 (10.3%) 0

These substances were used to account for polymedication in the multivariate analysis models for both studies. In LIFE-Adult n = 636 (LIFE-Heart n = 126) participants

did not take medication.

https://doi.org/10.1371/journal.pone.0266897.t002

ethinylestradiol, levonorgestrel, propranolol, thiazide or vildagliptin which were not recorded
in LIFE-Heart. Thus, a total of 473 probes associated with nine active substances were tested in
LIFE-Heart. The aggregated replication results are provided in Table 3.

For three of the nine active substances (carvedilol, prednisolone and timolol), we were able
to also show differential gene expression in PBMC in LIFE-Heart (Fig 3). More specifically, we
could replicate 25 of the originally identified 34 probes for carvedilol, 17 of the originally iden-
tified 33 probes for prednisolone and 38 of originally 49 probes in the case of timolol. For all
three substances the differential gene expression of all replicated genes had the same direction
in both cohorts. Between carvedilol and timolol there was an overlap of 15 genes (Fig 4), caus-
ing an upregulation, among others, of GPER1, PDE4B and TNFAIP3, which are genes directly

Table 3. Substances that cause differential gene expression in LIFE-Adult and their replication in LIFE-Heart.

up- down- up- down-

regulated | regulated regulated | regulated
Bisoprolol 22 6 16 5.03x10%* 22 0 0 0 2.56x10"
Carvedilol 34 30 4 1.57x10"° |34 25 22 3 1.50x10°"*
Ethinyl estradiol | 47 33 14 2.30x10” |0 n/a n/a n/a n/a
Insulin aspart | 4 2 2 4.80x10 4 0 0 0 4.41x10""
Levonorgestrel | 8 7 1 2.75x10 n/a n/a n/a n/a
Metoprolol 265 107 158 2.05x10°%* | 265 0 0 0 4.90x10™"
Phenprocoumon | 1 1 1.88x10 1 0 0 0 9.14x10™
Prednisolone 34 25 1.64x10°% 34 17 14 3 3.33x10"7
Propranolol 11 6 7.14x10°%* 0 n/a n/a n/a n/a
Salbutamol 61 41 20 1.54x10* 61 0 0 0 8.91x10™""
Thiazide 1 1 0 2.74x10° 0 n/a n/a n/a n/a
Timolol 49 27 22 9.14x10™" 49 38 20 18 1.73x10°*
Torasemide 3 1.87x10°2 3 0 0 0 3.06x10°"
Vildagliptin 4 4 1.24x10 0 n/a n/a n/a n/a

Not all probes significant in LIFE-Adult were available in LIFE-Heart. Minimum q-value refers to the probe associated with a substance with lowest q-value.

https://doi.org/10.1371/journal.pone.0266897.t003
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Fig 3. Differential gene expression caused by carvedilol, prednisolone and Timolol. Original results as obtained from LIFE-Adult and successfully replicated
in LIFE-Heart. Genes may be captured on multiple probes and are then shown multiple times. All replicated genes show the same effect direction.

https://doi.org/10.1371/journal.pone.0266897.9003

associated with hypertension [27-29]. The full list of replicated genes and their effect strength
and -direction is provided in 54 Table. For all three substances we also identified a total of 120
significantly enriched pathways of replicated genes. The majority of the enriched pathways
were caused by the beta blockers timolol (69 enriched pathways) and carvedilol (48 enriched
pathways). For Prednisolone we identified three enriched pathways. Between timolol and car-
vedilol there was an overlap of 20 enriched pathways (Fig 5, S6 Fig, S5 Table). Of the 20 path-
ways, 15 included either GPER1 or TNFAIP3.

Discussion

At the current state of research, the effects of drugs on defined gene expression profiles is
understudied. We here performed the first population based transcriptome-wide association
analysis of 83 drugs on gene expression in two independent cohorts. We discovered 534 genes

ADRB2 PDE4B Carvedilol
AVPI1 PTPRO

CEBPA RAPH1

CEBPA-DT S1PR3

CEBPG SLITRK4

FAM20C  SPRED1

LMO2 TNFAIP3

Timolol .
Prednisolone

Fig 4. Genes overexpressed by more than one substance. Analysis shows high overlap between timolol and

carvedilol.

https://doi.org/10.1371/journal.pone.0266897.9004
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Fig 5. Pathways with significant enrichment in LIFE-Adult and LIFE-Heart (FDR < 5%). If two pathways are
enriched due to the identical set of replicated genes, only the pathway with the higher enrichment (i.e. higher Odds
ratio) is shown here. All significantly enriched pathways are reported in S5 Table. Differentially expressed genes per
pathway are shown in S6 Fig.

https://doi.org/10.1371/journal.pone.0266897.g005

affected by 14 substances in whole blood in our cohort of 3,378 subjects of LIFE-Adult. Nota-
bly, we were able to replicate differential gene expression for three drugs affecting 80 genes in
peripheral blood mononuclear cells (carvedilol: 25; prednisolone: 17; timolol: 38).

Replication in LIFE-Heart shows the transferability of our results from whole blood to
PBMC on gene as well as on pathway level. As PBMC represents only a subset of the cells avail-
able in whole blood the replication is even more notable. This was true for the two beta-block-
ers, carvedilol, timolol, as well as for prednisolone. Using more relaxed criteria for replication
(nominal significance and sign-test) also led to results for bisoprolol that could be replicated.
While timolol is used as long term medication in form of eye drops to treat glaucoma and
decrease intraocular pressure, the results confirm gene expression due to systemic concentra-
tions after local application [30] as timolol avoids to a large extend the first pass metabolism
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and about 80% of the drug are systemically absorbed [31]. This is in line with the large effect of
timolol, which we observed at both, gene- and pathway level.

We were not able to compare our results with other studies, because population based gene
expression studies for substances have not been published yet. The only study that had ana-
lysed the effect of carvedilol on gene expression was for heart tissue in mice [32]. There was no
overlap between the genes found in this study and the genes identified by us. To better under-
stand if our results provide potential insights into possible off-target-effects, we therefore
searched the literature for the genes that were affected in both cohorts by carvedilol, a com-
monly used beta- and alpha-blocker that causes vasodilation. Only three of the 23 unique
genes replicated, have been directly associated with hypertension (GPERI, PDE4B and
TNFAIP3) so far [27-29]. All three genes were also differentially expressed by timolol. Further
eight genes are associated with having effects on artery walls (LMO2 [33], ADRB2 [34],
SPREDI [35], CX3CRI1 [36], ADAP2 [37], PTPRO [38], RAPHI [39] and CEBPG [40, 41]) and
are therefore indirectly linked to blood pressure. Another six genes (SIPR3 [42], MBOAT!
[43], FAM20C [44], CAPI [45], SORTI [46] and SLC27A3 [47]) are involved in lipid biosyn-
thesis and can therefore affect blood pressure indirectly via influencing atherosclerosis. For the
remaining six genes, no studies exist so far linking them to hypertension. These genes are
CEBPA, CEBPA-DT, SLITRK4, TEX2, AVPI1 and PTRH2. As beta blockers affect the whole
sympathetic nervous system, effects other than on the cardiovascular system are not surprising.
Further research is needed to clarify if the differential expression observed for these genes may
lead to unwanted side-effects of carvedilol in regards to the cardiovascular system or if the
genes indeed are involved in cardiovascular pathomechanisms. Regarding the 17 genes linked
directly or indirectly to hypertension, we showed that carvedilol delivers cardioprotective
effects on multiple levels. They either affect blood pressure directly, support the repair
response to acute cardiac damage or decrease the risk of plaque formation. Also plausible path-
way enrichments were found, e.g. negative regulation of interleukin-1 production and brown
fat cell differentiation, which are linked to lower blood pressure [48] and better cardio-meta-
bolic health [49].

Limitations: Both analysed studies are cross-sectional, i.e. we could not compare gene-
expression prior and after start of medication. We cannot exclude that effects of active sub-
stances on blood gene-expressions are at least in parts caused by the underlying disease
conditions. Replication of the LIFE-Adult results in LIFE-Heart may be restricted by the
different tissues analysed (whole blood vs. PBMC). Differences between LIFE-Adult and
LIFE-Heart in the medication anamnesis as well as missing temporal aspects for medica-
tion history may have affected the results of differential gene-expression. In LIFE-Adult
the medicaments taken in the last 7 days were reported, while in LIFE-Heart only the cur-
rent medication (based on medical records) was available. No information about previous
medication or recent changes in medication was available in both studies. As we analysed
the effect on the level of active substances, the medication specific resorption may have
affected the results. We also have to acknowledge that case numbers differ largely between
different types of medication resulting in largely different power to detect associations.
Thus, number of identified genes is not a measure of the total impact of the respective
drug on gene-expression.

In conclusion, this is the first study that provides insights on how active substances may
affect blood gene-expression. Several novel associations contribute to the understanding of
pleiotropic effects and mechanisms of actions of the investigated substances.
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