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Abstract
Background: Synthesis of the Staphylococcus aureus peptidoglycan pentaglycine interpeptide
bridge is catalyzed by the nonribosomal peptidyl transferases FemX, FemA and FemB. Inactivation
of the femAB operon reduces the interpeptide to a monoglycine, leading to a poorly crosslinked
peptidoglycan. femAB mutants show a reduced growth rate and are hypersusceptible to virtually all
antibiotics, including methicillin, making FemAB a potential target to restore β-lactam susceptibility
in methicillin-resistant S. aureus (MRSA). Cis-complementation with wild type femAB only restores
synthesis of the pentaglycine interpeptide and methicillin resistance, but the growth rate remains
low. This study characterizes the adaptations that ensured survival of the cells after femAB
inactivation.

Results: In addition to slow growth, the cis-complemented femAB mutant showed temperature
sensitivity and a higher methicillin resistance than the wild type. Transcriptional profiling paired
with reporter metabolite analysis revealed multiple changes in the global transcriptome. A number
of transporters for sugars, glycerol, and glycine betaine, some of which could serve as
osmoprotectants, were upregulated. Striking differences were found in the transcription of several
genes involved in nitrogen metabolism and the arginine-deiminase pathway, an alternative for ATP
production. In addition, microarray data indicated enhanced expression of virulence factors that
correlated with premature expression of the global regulators sae, sarA, and agr.

Conclusion: Survival under conditions preventing normal cell wall formation triggered complex
adaptations that incurred a fitness cost, showing the remarkable flexibility of S. aureus to
circumvent cell wall damage. Potential FemAB inhibitors would have to be used in combination with
other antibiotics to prevent selection of resistant survivors.
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Background
The peptidoglycan structure of Staphylococcus aureus is a
dynamic, three-dimensional meshwork consisting of
multiple layers of glycan strands that are crosslinked
through peptide bridges. It determines the bacterial shape
and confers protection against the high internal turgor.
Characteristic for the staphylococcal peptidoglycan is the
long and flexible pentaglycine interpeptide, which
branches off the ε-amino group of the L-lysine of the pep-
tidoglycan stem peptide. The pentaglycine interpeptide is
synthesized in a sequential fashion by the FemABX family
of nonribosomal peptidyl transferases, which use glycyl-
tRNA as a glycine donor. While FemX (synonym: FmhB)
adds the first glycine, FemA and FemB add Gly2,3 and
Gly4,5, respectively [1-4]. Although structurally and func-
tionally related, these factors cannot substitute for one
another [5]. Growth of mutants with a shortened inter-
peptide is strongly impaired [2]. They display a massive
reduction in cell wall crosslinking, aberrant septum for-
mation, and hypersusceptibility to antibiotics including
all β-lactams [1,2]. In methicillin-resistant S. aureus
(MRSA), methicillin resistance is completely abolished
upon inactivation of femA, suggesting that the monogly-
cine peptidoglycan is a very poor substrate for the native
penicillin-binding proteins (PBPs) as well as for the low
affinity PBP2a encoded by mecA, which confers resistance
to β-lactams. FemX and/or FemA were therefore regarded
as potential targets for novel antibacterial agents, which
could restore β-lactam susceptibility in MRSA [6]. While
FemX was shown to be essential [7], femAB null mutants
were postulated to require a secondary, yet uncharacter-
ized compensatory or suppressor mutation(s) chr* to sta-
bilize the cell [6]. The phenotype of a femAB null mutant
thus reflects not only the consequences of the inactivation
of the femAB operon, but additionally the effects due to
the postulated compensatory mutation(s). These com-
pensatory events or adaptations are of potential interest,
as they may tell us about the interrelationship between
cell wall synthesis and other cellular mechanisms. By re-
introducing the femAB wild type allele in cis, the compen-
satory effects were separated from those due to the femAB
inactivation. This allowed us to study the consequences of
the adaptation events in the presence of a restored pen-
taglycine interpeptide synthesis machinery.

Results and discussion
Phenotypic characterization of the femAB+ backcross
The femAB null mutant AS145 derived from the MRSA
BB270 produces only a monoglycine peptidoglycan inter-
peptide and shows a poorly crosslinked peptidoglycan,
aberrant septum formation, methicillin hypersusceptibil-
ity, and a reduced growth rate [2]. Back-transduction of
the wild type femAB allele in cis by selecting for the
upstream, co-transducible, silent insertion
Ω2000chr::Tn551, yielding the backcross strain BB1305,

restored methicillin resistance, but did not increase the
growth rate [6]. Therefore, survival of AS145 was sug-
gested to require a postulated compensatory mutation
termed chr*, which was retained in BB1305. The MRSA
strain BB903, which was obtained by transduction of
Ω2000chr::Tn551 into BB270, represents a wild type con-
trol strain isogenic to BB1305 except for the postulated
chr* mutation (Table 1).

Compared to the highly enlarged cells of AS145, cells of
strain BB1305, which were again able to produce a pen-
taglycine interpeptide, regained the same size as those of
the wild type strain BB903 (Figure 1A), suggesting a regu-
lar cell separation. The muropeptide pattern of AS145
showed a highly increased amount of uncrosslinked mon-
omeric muropeptides at the cost of the oligomeric peaks
as described earlier [2]. The wild type muropeptide profile
was then re-established in BB1305 as the characteristic
peaks of the dimeric, trimeric, and oligomeric muropep-
tide fractions were indistinguishable from those of BB903
(Figure 1B). However, calculation of the percentage of free
reducing termini in the peptidoglycan revealed on average
slightly longer glycan chains in AS145 and BB1305 than
in BB903 (Figure 2) as confirmed by two-sided t-test, sug-
gesting that AS145 may have compensated for the poorly
crosslinked cell wall by generating longer sugar chains.

In addition to the reduced growth rate, which may be a
further strategy to cope with the cell wall defects caused by
the femAB deletion, we found that AS145 and BB1305
also shared temperature sensitivity (Figure 3). The auto-
lytic banding patterns and spontaneous and Triton X-100-
induced autolysis, at both 37 and 42°C, were virtually
identical in the slowly growing femAB+ backcross BB1305

Table 1: S. aureus strains used in this study

Strain Relevant genotype 
and phenotypea

Specific growth 
rateb [1/h]

Source or 
reference

37°C 42°C

BB270 NCTC8325 
background, SCCmec 
type I; Mc-r, lysostaphin-
s

nd nd [72]

BB903 BB270, 
Ω2000chr::Tn551; Mc-r, 
Em-r, lysostaphin-s

1.38 1.36 This study

AS145 BB270, femAB::tetK, chr*; 
Mc-s, lysostaphin-r

0.94 0.78 [2]

BB130
5

AS145, 
Ω2000chr::Tn551 
(femAB+), chr*; Mc-r, 
Em-r, lysostaphin-s

1.09 0.85 [6]

aMc, methicillin; Em, erythromycin; r, resistant; s, susceptible.
bGrowth in LB broth. nd, not determined.
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and the wild type BB903 (data not shown), suggesting
that there was no correlation between the autolytic behav-
iour of BB1305 and the reduced growth rates observed.
Although the overall autolysis did not differ, subtle mod-
ulation in autolytic activities may count for the slightly
increased glycan chain length.

The strains used in this study all carry a functional mecA
gene and thus are MRSA. A characteristic feature of MRSA
strains is the heterogeneous expression of resistance to
methicillin and other penicillinase-stable β-lactams such
as oxacillin, whereby the majority of cells have only a low
resistance level. Upon exposure to inhibitory concentra-
tions of β-lactams, a subpopulation with high resistance is
selected. Once formed, high resistance is maintained in
absence of selective pressure resulting in MRSA with
homogeneous oxacillin resistance. Interestingly, detailed

analyses showed that the oxacillin resistance of the
femAB+ backcross BB1305 had become higher than that of
the parental strain BB270 and of BB903, as shown in the
population analysis profiles (Figure 4A) and by growth on
an oxacillin gradient plate (Figure 4B). Oxacillin resist-
ance was thus overcompensated in BB1305 and resem-
bled homogeneous resistance as if selected by passage on
inhibitory concentrations of oxacillin. In contrast,
BB1305 remained hypersusceptible to teicoplanin and
bacitracin (Figure 4B). The increased susceptibility to
teicoplanin, which interestingly did not extend to vanco-
mycin (data not shown), may indicate changes in the cell
membrane with which the lipophilic anchor of teico-
planin interacts [8]. It is therefore likely that the bacitracin
and teicoplanin hypersusceptibility of BB1305 and AS145
point to changes in the envelope and membrane organi-
sation.

(A) Scanning electron microscopy pictures of cells adhering to ThermanoxFigure 1
(A) Scanning electron microscopy pictures of cells adhering to Thermanox. The cells of the femAB null mutant AS145 are 
highly enlarged, while the femAB+ backcross BB1305 and the wild type BB903 show cells of the same size and appearance. The 
white bar corresponds to 1 µm. (B) Muropeptide pattern. The corresponding cell walls were digested with muramidase and 
subjected to reversed-phase HPLC. Major muropeptide components are numbered according to de Jonge [56]. Strains BB903 
and BB1305 show a muropeptide profile characteristic of wild type S. aureus strains, with the highest peak in the dimeric frac-
tion (peaks 11 and 12) and a high degree of crosslinking (peaks 15 and higher), while AS145 has the highest peak in the mono-
meric fraction (peaks 1 to 5) and a reduced amount of oligomeric muropeptides [2].
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Transcriptome analysis
Given the multiple phenotypic traits that were not com-
plemented by restoring the pentaglycine interpeptide,
changes in the genome transcription profile were
expected. In a snapshot of the transcriptomes of exponen-
tially growing cells by microarray analysis, 56 genes were
reported to be downregulated in the femAB+ backcross
strain BB1305 compared to the wild type strain BB903,
and 81 genes were reported to be upregulated [see Addi-
tional file 1]. The list of differentially expressed genes was
determined using the moderated t-statistics [9], followed
by the family-wise error rate (FWER)-based p-value adjust-
ment according to Holm [10], in order to guarantee high
confidence in the selected genes.

The distribution of functional classes within the down-
and the upregulated genes (Table 2) is depicted in pie
charts for comparison with their occurrence within the
total of genes represented on the chip (Figure 5). Among
the downregulated genes in the mutant, categories signif-

icantly overrepresented as determined by Fisher's exact
test comprised transport/binding proteins and lipopro-
teins, protein synthesis, metabolism of lipids, nucleotides
and nucleic acids. Taking into account the decreased
growth rate of BB1305, this finding may in part reflect the
differences in growth between the two strains tested, par-
ticularly with regard to protein synthesis. In contrast, the
categories that were overrepresented among the upregu-
lated genes, i.e. metabolism of amino acids and carbohy-
drates, pathogenic factors, and phage-related functions,
may point to changes in metabolism selected by an over-
all stress response to the original femAB deletion.

Metabolic differences
To uncover metabolic differences between the two strains,
we made use of recent systems biology advances: In con-
trast to an otherwise isolated analysis of single genes, we
computationally linked the transcriptional data with a
recently developed metabolic network model for S. aureus
[11] (see Methods). This procedure allowed us to consider

Table 2: Functional classification and numbers of genes that were found differentially expressed in the femAB+ backcross BB1305 
compared to the corresponding wild type BB903 as determined by microarray analysis

Functiona Number of ORFs Overrepresentationb

Chip Down Up p -value

Cell wall 63 2 0
Membrane bioenergetics (electron transport chain and ATP 
synthase)

58 1 2

Transport/binding proteins and lipoproteins 254 16 11 down < 0.001
Protein secretion 12 0 0
Sensors (signal transduction) 19 0 0
Cell division, germination, sporulation, and transformation/
competence

34 0 0

DNA modification, repair, recombination, replication, packaging, 
and segregation

80 0 3

Protein folding and modification 35 1 1
Protein synthesis 85 6 0 down 0.015
RNA modification 20 0 0
RNA synthesis 132 3 8
Metabolism of lipids 50 4 3 down 0.030
Metabolism of amino acids and related molecules 143 7 10 up 0.029
Metabolism of carbohydrates and related molecules 134 2 10 up 0.023
Metabolism of coenzymes and prosthetic groups 70 0 1
Metabolism of nucleotides and nucleic acids 74 5 3 down 0.030
Metabolism of phosphate and sulfur 8 0 0
Adaptation to atypical conditions 44 0 1
Pathogenic factors (toxins and colonization factors) 97 1 9 up 0.006
Phage-related functions 43 0 7 up 0.001
Detoxification, transposon and IS, miscellaneous 66 1 2
Similar to unknown proteins, no similarity 811 7 10

Total ORFs 2332 56 81

aThe cellular main roles are in accordance with the annotation on the DOGAN website [73].
bOverrepresented functions either among the down- or the upregulated genes are printed in bold and the respective p-values as determined by 
Fisher's exact test are given.
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t

he transcriptional differences between the two strains in a
metabolic context. The mapping of transcriptional data
onto a metabolic network, which underlies the employed
computational algorithm, allows to identify spots (so-
called reporter metabolites) around which significant reg-
ulation occurs, and thus assists in carving out metabo-
lism-related insight from the microarray data. The top
scoring reporter metabolites with p-values smaller than
0.05 are listed in Table 3 and an overview of pathways in
which many of these reporter metabolites occur is given in
Figure 6.

The arginine-deiminase pathway was found to be upregu-
lated in BB1305. This pathway imports extracellular
arginine driven by the simultaneous excretion of orni-
thine via the arginine-ornithine antiporter ArcD
(SA2426). Arginine is then converted by the arginine-
deiminase (ArcA) to citrulline, which is further metabo-
lized by the ornithine transcarbamoylase (ArcB) to orni-
thine and carbamoyl phosphate. The carbamate kinase
(ArcC) finally breaks down the latter into ammonia and
carbon dioxide yielding one ATP. This pathway is per-
ceived to act as an ATP source under anaerobic conditions
and in small colony variants (SCV) lacking a functional
respiratory chain [12,13], and it is also thought to be an
important player in pH homeostasis as it was also found
to be expressed in biofilms [14-16]. Furthermore, deple-
tion of arginine by the arginine-deiminase pathway,
which inhibits nitric oxide production in the host, and
thus both the innate and the adaptive immune responses
against microbial infections, may increase staphylococcal
virulence [17].

Changes in antibiotic resistanceFigure 4
Changes in antibiotic resistance. (A) Population analysis 
resistance profiles of the femAB+ backcross BB1305 (red tri-
angles) compared to the corresponding wild type MRSA 
BB903 (blue squares). (B) Antibiotic gradient plates visualiz-
ing differences in resistance levels between the femAB null 
mutant AS145, the femAB+ backcross BB1305, and the two 
MRSA strains BB270 and BB903.
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Another observation was a reduction in glnA expression in
the femAB+ backcross BB1305, as was confirmed by
Northern blots of the glnRA operon (data not shown). The
glutamine synthetase (GS) GlnA produces L-glutamine
from L-glutamate and ammonia using one ATP to drive
the reaction. Glutamine plays a central role in nitrogen
metabolism and functions as an amino group donor in
many biosynthetic pathways, leading to the synthesis of
histidine, tryptophan, carbamoyl phosphate, glu-
cosamine-6-phosphate, purines, and pyrimidines. A
mutation in glnR, which has a polar effect on glnA, results
in a decreased GS activity and in a reduction of the amida-
tion of the iD-glutamate of the peptidoglycan stem pep-
tide thereby reducing methicillin resistance [18]. glnA
downregulation in BB1305 may reflect an overall reduced
requirement for nitrogen due to slowed down growth.

Interestingly, another link to nitrogen metabolism was
found in the increased amounts of ureB (urease beta sub-
unit) and ureF (urease accessory protein UreF) transcripts
displayed by strain BB1305, which was consistent with
the derepression of urease production observed in AS145

and BB1305 in urea-containing medium (Figure 7). On
the one hand the urease reaction supplies nitrogen and on
the other hand it serves the maintenance of the pH value
by formation of ammonium. Urease expression is
induced during nitrogen-limited growth [19,20], and
upregulation is observed in glnA mutants [20], growth in
biofilms [14,15], and under heat shock conditions [21].

A downregulation of numerous members of the pyrimi-
dine operon comprising pyrAB, pyrB, pyrC, and pyrE as well
as of the regulator pyrR was detected in BB1305. The prod-
ucts of the pyr operon are involved in the de novo synthesis
of pyrimidine nucleotides from bicarbonate and from
intermediates of the central carbon metabolism or via sal-
vage of preformed pyrimidine bases and nucleotides
present in the medium. Transcription of the pyr operon
was verified by dot blot analysis because of the large tran-
script expected, using a pyrP-specific probe (data not
shown). A downregulation of the pyr operon was con-
firmed in early logarithmic growth phase at an optical
density at 600 nm (OD600) of 0.4, however, at an OD600
of 1, pyr mRNA levels in BB1305 were the same or even

Metabolic pathways influenced by transcriptional changes observed in the femAB+ backcross BB1305Figure 6
Metabolic pathways influenced by transcriptional changes 
observed in the femAB+ backcross BB1305. The correspond-
ing gene ID numbers refer to the genome of S. aureus strain 
N315. Reactions driven by enzymes showing enhanced gene 
expression in BB1305 are marked with thick arrows, 
whereas those with reduced expression are indicated by dot-
ted arrows. Reporter metabolites as ascertained by the 
method of Patil and Nielsen [67] are framed.
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higher than in BB903 (data not shown). In Bacillus subtilis,
PyrR controls the expression of the pyr operon by binding
to specific sequences of the pyr mRNA thereby leading to
attenuation of transcription [22,23] in response to exoge-
nous uracil and to intracellular UMP/phosphoribosyl
pyrophosphate pools [23,24]. Richardson et al. noted that
the pyr operon is repressed in response to nitrosative stress
in S. aureus [25]. The upregulation of the arginine-deimi-
nase pathway and the urease reaction as well as the down-
regulation of the glutamine synthesis may point to a
potential action of nitrogen regulators on the pyr operon.
Control of pyrR may be exerted by GlnR and TnrA [26-28],
since a GlnR/TnrA consensus sequence [27,29-31] with
two mismatches was identified 56 to 38 bp upstream of
the coding region of pyrR in the public staphylococcal
genomes. While according to the microarray data a
reduced transcription of pyrR was expected, signals
obtained in Northern blots using a pyrR-specific probe
were stronger in BB1305 than in BB903 (data not shown).
These were the only discrepancies between microarray
data and Northern blots found in the open reading frames
tested, leaving the regulation of the pyrimidine operon
and the link to the regulation of nitrogen-related func-
tions open.

Cell wall
Although the femAB+ backcross strain BB1305 produced
on average slightly longer glycan chains, the transcription
of pbpB, coding for the bifunctional PBP2 with transglyco-
sylase activity [32], was not detected to be upregulated, as
could have been expected, but downregulated. Further-
more, expression of the soluble glycosyltransferase genes,
sgtA and sgtB [33,34] and of genes coding for glucosamin-
idases, which may contribute to an increased glycan chain
length, could not be detected to be altered. These findings
do not rule out a posttranscriptional control of autolytic
activities by proteases [35,36], since three genes encoding
proteases (i.e. the cysteine protease SspB, the zinc metal-
loproteinase aureolysin Aur, and the serine protease-like

SplB) were significantly upregulated. In addition, the
decreased expression of dltA, dltB, and dltD in BB1305
could also contribute to a lower autolytic activity due to a
reduced D-alanine esterification of the teichoic acids [37].

Membrane and transporters
One of the major components of the membrane, lysyl-
phosphatidylglycerol, is a product of the lysylphosphati-
dylglycerol synthase FmtC (synonym: MprF), which adds
a positively charged lysyl residue to phosphatidylglycerol
[38,39]. The fmtC/mprF gene, which belongs to the so-
called fem and aux genes, and the inactivation of which
reduces methicillin and bacitracin resistance [40,41], was
found to be downregulated in BB1305. Reduced fmtC
transcription may on the one hand mirror the reduced
growth rate and could on the other hand, by its influence
on the membrane charge, also be one of the causes for
bacitracin and teicoplanin hypersusceptibility.

One fifth of the genes found differentially regulated in the
femAB+ backcross BB1305 code for membrane-associated
proteins, mainly transporters and permeases, with the
majority showing a reduced transcription level. Interest-
ingly, opuCC, which encodes the substrate-binding pro-
tein of a glycine betaine/carnitine/choline ABC
transporter, was upregulated as could be confirmed by
Northern hybridization showing a stronger transcription
of the whole opuC operon in BB1305 than in BB903 (data
not shown). The uptake of compatible solutes such as gly-
cine betaine, choline and proline is important in osmotic
stress response [42,43], and the upregulation of opuC may
indicate an attempt of the femAB deletion mutant to bal-
ance osmotic pressure due to the weakened cell wall. In
contrast, opuD and its homologue, sa1987, members of
the betaine/carnitine/choline transporter (BCCT) family,
were downregulated in BB1305. This latter family of trans-
porters, however, may respond to other kinds of osmotic
stress than the opuC operon.

Besides quaternary amines or amino acids, solutes such as
polyols (e.g. glycerol, arabitol) and sugars (e.g. sucrose,
trehalose) may play a role in osmoprotection [44].
Indeed, genes encoding transporters specific for these
classes of compounds were also found to be upregulated
in BB1305: namely the glycerol uptake facilitator (glpF),
the sucrose-specific IIBC component of the phosphotrans-
ferase system (PTS) (scrA), and a hypothetical protein sim-
ilar to ScrA (sa0186). Other genes encoding sugar
transporters were also induced in BB1305, i.e. sa0208/
sa0209 (permease homologue of a maltose/maltodextrin
ABC transporter), sa0260 (hypothetical protein similar to
the ribose transporter RbsU), and sa0318/sa0320 (hypo-
thetical protein similar to the pentitol-specific PTS trans-
porter SgaT/SgaA). Considering the observed
upregulation of glpF, it is noteworthy that glpD (aerobic

Urease production in urea-containing mediumFigure 7
Urease production in urea-containing medium. The increase 
in pH resulting from the cleavage of urea is indicated by a 
purple colour.

BB903 BB1305
Urea

medium BB270 AS145
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glycerol-3-phosphate dehydrogenase), glpQ (glycerophos-
phoryldiester phosphodiesterase), and sa0220 (hypothet-
ical protein similar to GlpQ) also appeared to be
upregulated in BB1305. These may support osmoprotec-
tion as GlpQ catalyzes the conversion of sn-glycero-3-
phosphocholine to glycerol-3-phosphate and choline, the
latter of which is oxidized to glycine betaine, which is not
metabolized further in osmotically stressed S. aureus [45].

Stress response and virulence factors
Given the temperature sensitivity of BB1305, a connec-
tion to the heat shock regulon was conceivable. In fact, the
gene encoding the chaperone DnaK was downregulated
according to the microarray data. DnaK belongs to the
HrcA and CtsR controlled heat shock regulon in S. aureus
[46]. A dnaK-specific probe, revealed a 3.5 kb-transcript in
Northern blot analysis, most probably covering the hrcA
operon, and confirmed reduced transcription levels in
BB1305 at 37°C (data not shown).

Unfavourable environmental conditions are known to
induce lysogenic phages, and the upregulation of phage-
related genes in BB1305 is most likely to be regarded in
the context of a stress response which occurred in the
femAB deletion mutant AS145. Various stress conditions
have also been described to trigger the expression of viru-
lence factors [21]. In BB1305, the transcriptional changes
observed included the upregulation of a whole series of
virulence genes, such as those coding for lipase (lip), ure-
ase (ure),α-hemolysin precursor (sa1007), truncated β-
hemolysin (sa1752 and sa1811), serine proteases (spl),
cysteine protease (sspB) and aureolysin (aur). Since the
expression of virulence factors depends on a complex reg-
ulatory network, this finding prompted us to analyze the
transcription profiles of the major global regulators
including sarA (staphylococcal accessory regulator), sae
(S. aureus exoprotein expression) and the agr (accessory
gene regulator) operon by Northern blot during growth.
In accordance with the expression pattern of two repre-
sentative virulence factors, namely the α-hemolysin pre-
cursor (sa1007) and the serine proteases (splABCDEF), the
regulators and especially RNAIII and saeRS peaked at a
lower OD600 in the femAB+ backcross BB1305 than in
BB903. At the transition to stationary phase, at an OD600
of 4, they had already become clearly weaker in the
mutant than in the wild type (Figure 8) revealing a
remarkably altered timing in the transcription of the main
global regulators in BB1305.

Conclusion
This is the first thorough characterization of compensa-
tory effects triggered by a shortened pentaglycine inter-
peptide, the low ability of PBP to crosslink this altered
peptidoglycan, and selection for survival. The poorly
crosslinked cell wall may be not strong enough to with-

Table 3: Top scoring reporter metabolites (p- values < 0.05)

Metabolisma Metabolite Number of 
neighbours

Z-score p-value

A, E, N Carbamoyl 
phosphate

5 4.341 < 0.001

N N-Carbamoyl-
L-aspartate

2 2.878 0.002

A, E, N Carbamate 2 2.772 0.003
Co, N Uracil 5 2.626 0.004

A L-Citrulline 3 2.484 0.006
A 4-Imidazolone-

5-propanoate
2 2.480 0.007

Co, N Uracil 
(extracellular)

1 2.210 0.014

N Orotidine-5-
phosphate

2 2.182 0.015

C Melibiose 
(extracellular)

1 2.092 0.018

C Raffinose 
(extracellular)

1 2.092 0.018

A N-Formimino-
L-glutamate

2 2.087 0.018

L Trihexadecano
ylglycerol

1 2.075 0.019

A L-Arginine 
(extracellular)

1 2.075 0.019

A L-Ornithine 
(extracellular)

1 2.075 0.019

L Phosphatidylet
hanolamine

2 2.047 0.020

L Phosphatidylch
oline

2 2.047 0.020

L Choline 
phosphate

2 2.047 0.020

L Ethanolamine 
phosphate

2 2.047 0.020

A 3-Methyl-2-
oxopentanoate

3 1.980 0.024

Co Nicotinate 2 1.979 0.024
C Melibiose 3 1.958 0.025

A, C, L Glycerol 
(extracellular)

1 1.949 0.026

N (S)-
Dihydroorotat
e

2 1.937 0.026

C, L 1,2-
Dihexadecanoy
l-sn-glycerol

7 1.924 0.027

C N-
Acetylneurami
nate

1 1.907 0.028

C Itaconate 1 1.884 0.030
C Itaconyl-CoA 1 1.884 0.030
C Raffinose 2 1.870 0.031

A, C, N D-Ribose 2 1.860 0.031
A, C, L Glycerol 4 1.804 0.036

C, Co, N Deoxyribose 1 1.768 0.038
A 2-

Aminoacrylate
1 1.746 0.040

A, N GDP 6 1.659 0.049
N Orotate 2 1.659 0.049
L (R)-5-

Diphosphomev
alonate

2 1.650 0.049

aA, amino acid metabolism; C, carbohydrate metabolism; Co, metabolism 
of cofactors and vitamins; E, energy metabolism; L, lipid metabolism; N, 
nucleotide metabolism
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stand the cells' high internal turgor. This imbalance must
have been sensed by the cells, which found a way to coun-
teract osmotic stress, though at the cost of a decreased
growth rate and temperature sensitivity. The rearrange-
ments required also involved changes in the expression of
metabolic pathways, especially of the arginine-deiminase
pathway and the nitrogen metabolism, and seem to be
maintained in a stable manner, since they persisted after
restoration of the pentaglycine interpeptide. This demon-
strates the vast extent of the compensatory adaptations.
Such compensatory adaptations following mutagenesis
may happen much more frequently than anticipated, and
may be the cause of the often observed experimental ina-
bility to fully complement mutations with the original
wild type alleles.

Cell wall-deficient forms (L-forms) of S. aureus are able to
survive without an intact murein sacculus, and to internal-
ize and persist in macrophages [47]. Adaptive responses
to L-forms of S. aureus have recently been described by
Fuller et al. [48], who selected cell wall-deficient mutants
with subinhibitory concentrations of penicillin in the
presence of elevated osmolality. Similar to what we
observed, namely that the reconstituted strain BB1305
displayed a higher, more homogeneous oxacillin resist-
ance than the wild type, recovery of the cell wall by the L-
forms resulted in a stably inherited penicillin resistance

that was independent of a β-lactamase or mecA. Appar-
ently, the expected negative effect of reduced fmtC or glnA
expression on oxacillin resistance was compensated in
BB1305. A phenomenon, that was also observed with
other fem, aux or fmt MRSA mutants which still harboured
their original mutations but regained resistance by com-
pensatory events when grown in the presence of β-lactams
[18,49].

The temperature sensitivity and the increased susceptibil-
ity to bacitracin and teicoplanin are indications for per-
manent alterations in the membrane. Membrane defects
may also be the cause for the premature upregulation of
global regulators which in turn most probably triggered
the enhanced expression of virulence factors [50,51].

It is likely that the adaptations represent just one of many
ways that S. aureus could respond to femAB inactivation.
Some of the findings may be secondary effects caused by
slow growth and changes within the cell, not contributing
to survival, similar to the upregulation of the purine
operon in vancomycin intermediate resistant S. aureus
[52], that did not contribute to increased glycopeptide
resistance [53].

At this stage, we cannot confirm that the numerous adap-
tive events that occurred in the femAB deletion mutant

Northern blots of differentially expressed genes in the wild type BB903 and the femAB+ backcross BB1305Figure 8
Northern blots of differentially expressed genes in the wild type BB903 and the femAB+ backcross BB1305. Cells were har-
vested at different optical densities as indicated. The amount of RNA loaded onto the respective gels is displayed by the ethid-
ium bromide stained 16S rRNA bands.
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and that are reflected in the femAB+ cis-complemented
strain were indeed due to mutation(s). The phenotypic
adaptations revealed here, such as temperature sensitivity,
slowed down growth, but no changes in autolytic activi-
ties, were strikingly similar to the phenotype caused by
mutations in femA after selection for lysostaphin resistant
clones [54], which might be evidence for a common sur-
vival strategy.

S. aureus has shown here a remarkable ability to compen-
sate and survive a severe condition, such as femAB inacti-
vation, which prevents peptidoglycan crosslinking.
Implementation of potential FemAB inhibitors may there-
fore entail selection of resistant subpopulations having
unwanted characteristics, making a combined treatment
with other antibiotics highly advisable.

Methods
Bacterial strains and growth conditions
The strains used in this study are listed in Table 1. Bacteria
were cultivated either on sheep blood agar or in Luria Ber-
tani (LB) broth (Becton Dickinson, Sparks, MD) at 37°C,
unless stated otherwise. The ratio between broth and cul-

ture flask volume was 1:5 and incubation was carried out
with shaking at 180 rpm.

Scanning electron microscopy (SEM)
Strains grown in brain heart infusion (BHI) broth at 30°C
for 3 h were used to inoculate 1 ml BHI broth in 24-well
plates containing polyethylene terephthalate (Ther-
manox) disks (Life Technologies, Basel, Switzerland) to
an OD600 of 0.05. The cells were incubated in stationary
culture at 30°C for 2 h. Fixation and SEM were carried out
as described previously [55].

Peptidoglycan analysis
Insoluble peptidoglycan was purified from cultures grown
to mid-log phase in BHI broth using a standard procedure
[56,57]. After removal of teichoic acids by hydrofluoric
acid, the relative glycan chain lengths were determined in
the peptidoglycan preparations as described elsewhere
[58] and their muropeptide patterns were compared fol-
lowing digestion with muramidase [56].

Antibiotic gradient plates
Qualitative differences in resistance levels were evaluated
by swabbing 0.5 McFarland-standard cell suspensions,
prepared from freshly grown overnight cultures, along an
antibiotic gradient on rectangular LB agar plates. Gradient
plates were incubated at 35°C for 24 to 48 h.

Population analysis profile
Overnight cultures were diluted in 0.85% NaCl and aliq-
uots of 0.1 ml were spread onto LB agar plates containing
various oxacillin concentrations. Colony forming units
(CFUs) were determined after 48 h.

Molecular biological methods
General molecular biology techniques were performed as
described by Sambrook et al. [59] and Ausubel et al. [60].

Transcriptional profiling
Overnight cultures were diluted 100-fold in LB broth and
cells were grown to an OD600 of 0.8–1.0. The cultures were
stabilized by incubation with 2 volumes of RNAprotect
Bacteria Reagent (QIAGEN, Hilden, Germany) for 5 min
at room temperature. Subsequently, cells were harvested
by centrifugation, lysed in the presence of 400 µg/ml lys-
ostaphin (Sigma-Aldrich, Taufkirchen, Germany) and
total RNA was isolated using the RNeasy Midi Kit (QIA-
GEN) following the manufacturers' instructions.

Three independent RNA preparations of each strain were
reverse transcribed twice, using either cyanine-3' (Cy3) or
cyanine-5' (Cy5) as a label. Briefly, 10 µg of total RNA
were transcribed into cDNA using Superscript II reverse
transcriptase (Invitrogen, Karlsruhe, Germany). The tran-
scription reaction was performed in the presence of 0.1

Table 4: Primers used for construction of DIG-labelled DNA 
probes

Primer Sequence (5'-3')

dltA-F TCAGGCGGTACATTAAATCTTGT
dltA-R TATGTGTTGTAAATCGTCGCACT
dnaK-F CGATGAGCCAAAAGTAATTC
dnaK-R TACTTCGAATACACCGTCAC
fmtC-F CCGTATGTCCTTAGTGTTAC
fmtC-R GCAGTACAATCCTACAAAAC
glnA-F AGATGGAACACCATTTGAAG
glnA-R AAACGTTAAAGTGCATACCG
glpF-F TAGACGGAAGTTTTGATTGG
glpF-R GGCAATTGGTCCTAAGATAG
opuCC-F TTGTCGTGTTTGTCTTATCG
opuCC-R ACGTATTCGCAAAACCATAC
pyrP-F TTATCACGGGATTAAGTACG
pyrP-R ACAATCGGAATCATTACAAG
pyrR-F AACGTACAGTGACGAGAATC
pyrR-R TAACTGCATTTCTTTGATCC
RNAII-F CGAAGACGATCCAAAAC
RNAII-R TTATCTAAATGGGCAATGAGT
RNAIII-F GTGATGGAAAATAGTTGATGAG
RNAIII-R GTGAATTTGTTCACTGTGTCG
sa1007-F TAATGAATCCTGTCGCTAAT
sa1007-R TTCAGTGTATGACCAATCGAA
saeR-F GACCCACTTACTGATCGTG
saeR-R CCTAATCCCCATACAGTTGTG
sarA-F AGGGAGGTTTTAAACATGGC
sarA-R CTCGACTCAATAATGATTCG
splA-F GAATTACCTGGTTGTGCATACG
splA-R GAAGACCTTGCGATAGTTCATG
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mM Cy3- or Cy5-labelled dCTP (Perkin Elmer Life Sci-
ence, Mechelen, Belgium) in addition to 0.2 mM dCTP,
0.5 mM dATP, dGTP and TTP, 75 µg/ml random hexamer
primer (Amersham, Bioscience, Freiburg, Germany) and
4U/µl RNase-Out (Invitrogen). RNA was degraded by
alkaline hydrolysis at 65°C and cDNA was purified using
the MinElute PCR Purification Kit (QIAGEN).

Differentially labelled cDNAs of both strains were com-
petitively hybridized with a custom PCR product microar-
ray (Scienion, Berlin, Germany) resulting in a total of six
chips. The microarray contained 2332 open reading
frames (ORFs) of the S.aureus N315 genome, each repre-
sented by adjacent duplicate spots. Hybridization was per-
formed at 42°C for 72 h according to the manufacturer's
instructions. The hybridized microarrays were read out
with a GenePix 4000B scanner (Axon Instruments/Distri-
bution by Biozyme, Oldendorf, Germany). Image analysis
and acquisition of relative data were conducted using
GenePixPro 4.1 software (Axon Instruments).

Microarray data analysis
First, the intensity data arising from the six two-colour
spotted microarrays were calibrated and normalized in
order to remove systematic technical variation (e.g. differ-
ent labelling efficiencies and scanning properties of the
Cy3 and Cy5 dyes) and to ensure that observed differences
in intensities indeed reflect biological signal. Two-chan-
nel normalization was performed to adjust the centre and
spread of the distribution of intensity log-ratios [61] using
the default method of the "marray" package [62] in Bio-
conductor version 1.8 [63]. Adaptive location normaliza-
tion within print-tip groups using robust local regression
[64] allows the capture of non-linear dependencies of the
intensity log-ratio on overall intensity, while ensuring that
the computed normalization values are not driven by a
small number of differentially expressed genes with
extreme log-ratios. Due to scale differences between the
arrays we also conducted global scale normalization
across arrays.

For identification of differentially expressed genes
between the femAB+ backcross BB1305 and the wild type
BB903, the linear modelling features of the "limma" R
package version 2.9.1 were used [65]. In the present exper-
iment, three BB1305 RNA preparations were to be com-
pared with three BB903 RNA preparations using six arrays,
i.e. each RNA appeared on two different arrays. Note that
technical replicates are not independent: in fact they are
likely to be positively correlated. Since the experimental
design did not arrange the arrays in groups of biological
replicates, we fitted a model with a coefficient for each
RNA preparation. The duplicate spots in adjacent position
were taken into account by estimating a common value
for the intra-duplicate correlation [66] that was used

when fitting a linear model for each gene. Finally, we
extracted the contrast referring to the average expression
differences between the two investigated S. aureus strains
and computed moderated t-statistics using empirical
Bayes methods. These borrow information across genes
and thus stabilize the analysis even for a small number of
arrays [9]. The reported list of potentially interesting genes
was determined by adjusting the p-values for multiple
testing. Here we have chosen the FWER-based p-value
adjustment according to Holm [10], where the multiple
significance level α was set to 0.05.

Reporter metabolite analysis
The microarray data were further analyzed by a recently
developed algorithm that uses the topology of an organ-
ism's metabolic network to uncover underlying metabo-
lism-related transcriptional regulation [67]. This
algorithm first converts a genome-scale metabolic net-
work of S. aureus N315 [11] into a bipartite metabolic
graph. In this graph, each metabolite node is then scored
based on the normalized transcriptional response of its
neighbouring enzymes. Using the genes' p-values as
inputs to score the enzyme nodes, the algorithm identifies
so-called reporter metabolites, designating metabolites
around which the most significant transcriptional changes
occur.

Northern blots
The transcription of a selection of genes was verified by
Northern hybridization and primers used for probe
amplification are listed in Table 4. Overnight cultures
were diluted 100-fold in LB broth and incubated for 2 h.
The pre-cultures were then diluted in LB broth to an
OD600 of 0.05 and grown until they reached the desired
OD600. Total RNA was extracted according to the method
of Cheung et al. [68]. For Northern hybridization, 8 µg of
total RNA per sample were loaded on a 1.5% agarose gel
containing 20 mM guanidine thiocyanate in 1xTris-
Borate-EDTA running buffer [69]. Blotting of the electro-
phoretically separated RNA and detection of transcripts
were carried out as described earlier [70].

Urease assay
McFarland 0.5-standard cell suspensions were diluted
100-fold in urea medium [71] and were incubated in 96-
well plates at 37°C for 24 hours.
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